mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* Refactor shaders, extract GLSL code from ggml_vk_generate_shaders.py into vulkan-shaders directory * Improve debug log code * Add memory debug output option * Fix flake8 * Fix unnecessary high llama-3 VRAM use
		
			
				
	
	
		
			45 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
#version 450
 | 
						|
 | 
						|
#include "generic_head.comp"
 | 
						|
#include "types.comp"
 | 
						|
 | 
						|
#extension GL_EXT_control_flow_attributes : enable
 | 
						|
#define BLOCK_SIZE 512
 | 
						|
 | 
						|
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
 | 
						|
 | 
						|
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
 | 
						|
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
 | 
						|
 | 
						|
shared vec2 sum[BLOCK_SIZE];
 | 
						|
 | 
						|
void main() {
 | 
						|
    const uint row = gl_WorkGroupID.x;
 | 
						|
    const uint tid = gl_LocalInvocationID.x;
 | 
						|
 | 
						|
    sum[tid] = vec2(0.0f, 0.0f);
 | 
						|
 | 
						|
    [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
 | 
						|
        const float xi = float(data_a[row*p.KX + col]);
 | 
						|
        sum[tid].x += xi;
 | 
						|
        sum[tid].y += xi * xi;
 | 
						|
    }
 | 
						|
 | 
						|
    // sum up partial sums and write back result
 | 
						|
    barrier();
 | 
						|
    [[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
 | 
						|
        if (tid < s) {
 | 
						|
            sum[tid] += sum[tid + s];
 | 
						|
        }
 | 
						|
        barrier();
 | 
						|
    }
 | 
						|
 | 
						|
    const float mean = sum[0].x / p.KX;
 | 
						|
    const float var = sum[0].y / p.KX - mean * mean;
 | 
						|
    const float inv_std = inversesqrt(var + p.param1);
 | 
						|
 | 
						|
    [[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
 | 
						|
        data_d[row*p.KX + col] = D_TYPE((float(data_a[row*p.KX + col]) - mean) * inv_std);
 | 
						|
    }
 | 
						|
}
 |