mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* init * rename * add run android for termux in readme * add android readme * add instructions in readme * change name in readme * Update README.md * fixed line * add result in readme * random pos_embed * add positions index * change for ollama * change for ollama * better pos_embed in clip * support ollama * updata cmakelist * updata cmakelist * rename wrapper * clear code * replace and organize code * add link * sync master * fix warnings * fix warnings * fix bug in bicubic resize when need resize iamge smaller * receive review comments and modify * receive review comments and modify * put all code into llava dir * fix quality problem in pr code * change n_layer * add space in "-1" * imitate reshape bug of python code * fix bug in clip * fix issues for merging * fix llama-minicpmv-cli in cmake file * change pr readme * fix code review * remove in line 33 directory in the /cmakelists.txt (not in example, in the main dir * fix cmakefile * add warn * fix KEY_HAS_MINICPMV_PROJ * remove load_image_size into clip_ctx * remove the extern "C", MINICPMV_API * fix uhd code for review comment * delete minicpmv-wrapper in pr * remove uhd_image_embed * Modify 2 notes * clip : style changes * del common.h in clip * fix Type-Check error * fix Type-Check error * fix Type-Check error * fix Type-Check error * fix makefile error * fix ubuntu-make error * try fix clip * try fix 1 --------- Co-authored-by: Hongji Zhu <fireyoucan@gmail.com> Co-authored-by: harvestingmoon <leewenyeong@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			310 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			310 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "ggml.h"
 | 
						|
#include "log.h"
 | 
						|
#include "common.h"
 | 
						|
#include "clip.h"
 | 
						|
#include "llava.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <cstdio>
 | 
						|
#include <cstdlib>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
struct llava_context {
 | 
						|
    struct clip_ctx * ctx_clip = NULL;
 | 
						|
    struct llama_context * ctx_llama = NULL;
 | 
						|
    struct llama_model * model = NULL;
 | 
						|
};
 | 
						|
 | 
						|
static void show_additional_info(int /*argc*/, char ** argv) {
 | 
						|
    LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
 | 
						|
    LOG_TEE("  note: a lower temperature value like 0.1 is recommended for better quality.\n");
 | 
						|
}
 | 
						|
 | 
						|
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
 | 
						|
    (void) level;
 | 
						|
    (void) user_data;
 | 
						|
    LOG_TEE("%s", text);
 | 
						|
}
 | 
						|
 | 
						|
static struct llama_model * llava_init(gpt_params * params) {
 | 
						|
    llama_backend_init();
 | 
						|
    llama_numa_init(params->numa);
 | 
						|
 | 
						|
    llama_model_params model_params = llama_model_params_from_gpt_params(*params);
 | 
						|
 | 
						|
    llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
 | 
						|
    if (model == NULL) {
 | 
						|
        LOG_TEE("%s: error: unable to load model\n" , __func__);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    return model;
 | 
						|
}
 | 
						|
 | 
						|
static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
 | 
						|
    auto prompt = params->prompt;
 | 
						|
    if (prompt.empty()) {
 | 
						|
        prompt = "describe the image in detail.";
 | 
						|
    }
 | 
						|
 | 
						|
    llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
 | 
						|
    if (params->n_ctx < 2048) {
 | 
						|
        // warn user here, "Image processing requires at least 2048 context, setting context to 2048"
 | 
						|
        LOG_TEE("%s: warn: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
 | 
						|
        ctx_params.n_ctx = 2048;
 | 
						|
    } else {
 | 
						|
        ctx_params.n_ctx = params->n_ctx;
 | 
						|
    }
 | 
						|
 | 
						|
    llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
 | 
						|
 | 
						|
    if (ctx_llama == NULL) {
 | 
						|
        LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
 | 
						|
 | 
						|
    ctx_llava->ctx_llama = ctx_llama;
 | 
						|
    ctx_llava->model = model;
 | 
						|
    return ctx_llava;
 | 
						|
}
 | 
						|
 | 
						|
static void llava_free(struct llava_context * ctx_llava) {
 | 
						|
    if (ctx_llava->ctx_clip) {
 | 
						|
        clip_free(ctx_llava->ctx_clip);
 | 
						|
        ctx_llava->ctx_clip = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    llama_free(ctx_llava->ctx_llama);
 | 
						|
    llama_free_model(ctx_llava->model);
 | 
						|
    llama_backend_free();
 | 
						|
}
 | 
						|
 | 
						|
static struct clip_ctx * clip_init_context(gpt_params * params) {
 | 
						|
    const char * clip_path = params->mmproj.c_str();
 | 
						|
 | 
						|
    auto prompt = params->prompt;
 | 
						|
    if (prompt.empty()) {
 | 
						|
        prompt = "describe the image in detail.";
 | 
						|
    }
 | 
						|
    auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
 | 
						|
    return ctx_clip;
 | 
						|
}
 | 
						|
 | 
						|
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
 | 
						|
    int N = (int) tokens.size();
 | 
						|
    for (int i = 0; i < N; i += n_batch) {
 | 
						|
        int n_eval = (int) tokens.size() - i;
 | 
						|
        if (n_eval > n_batch) {
 | 
						|
            n_eval = n_batch;
 | 
						|
        }
 | 
						|
        if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
 | 
						|
            LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        *n_past += n_eval;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
 | 
						|
    std::vector<llama_token> tokens;
 | 
						|
    tokens.push_back(id);
 | 
						|
    return eval_tokens(ctx_llama, tokens, 1, n_past);
 | 
						|
}
 | 
						|
 | 
						|
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
 | 
						|
    std::string              str2     = str;
 | 
						|
    std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
 | 
						|
    return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
 | 
						|
}
 | 
						|
 | 
						|
static void process_eval_image_embed(struct llava_context * ctx_llava, const struct llava_image_embed * embeds, int n_batch, int * n_past, int idx) {
 | 
						|
    float * image_embed = (float *)malloc(clip_embd_nbytes(ctx_llava->ctx_clip));
 | 
						|
    std::memcpy(image_embed, embeds->embed + idx * clip_n_patches(ctx_llava->ctx_clip) * clip_n_mmproj_embd(ctx_llava->ctx_clip), clip_embd_nbytes(ctx_llava->ctx_clip));
 | 
						|
 | 
						|
    auto slice_embed = (llava_image_embed*)malloc(sizeof(llava_image_embed));
 | 
						|
    slice_embed->embed = image_embed;
 | 
						|
    slice_embed->n_image_pos = clip_n_patches(ctx_llava->ctx_clip);
 | 
						|
    llava_eval_image_embed(ctx_llava->ctx_llama, slice_embed, n_batch, n_past);
 | 
						|
    llava_image_embed_free(slice_embed);
 | 
						|
}
 | 
						|
 | 
						|
static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, gpt_params * params, int &n_past) {
 | 
						|
    std::string system_prompt;
 | 
						|
    int idx = 0;
 | 
						|
    int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
 | 
						|
    system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
 | 
						|
    LOG_TEE("%s: image token past: %d\n", __func__, n_past);
 | 
						|
    eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
 | 
						|
    process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
 | 
						|
    eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
 | 
						|
    if (num_image_embeds > 1) {
 | 
						|
        size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
 | 
						|
        eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
 | 
						|
        for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
 | 
						|
            for (size_t j = 0; j < num_image_embeds_col; ++j) {
 | 
						|
                eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
 | 
						|
                process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
 | 
						|
                eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
 | 
						|
                if (j == num_image_embeds_col - 1) {
 | 
						|
                    eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
 | 
						|
    }
 | 
						|
    LOG_TEE("%s: image token past: %d\n", __func__, n_past);
 | 
						|
}
 | 
						|
 | 
						|
static const char * sample(struct llama_sampling_context * ctx_sampling,
 | 
						|
                           struct llama_context * ctx_llama,
 | 
						|
                           int * n_past) {
 | 
						|
    const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
 | 
						|
    llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
 | 
						|
    static std::string ret;
 | 
						|
    if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
 | 
						|
        ret = "</s>";
 | 
						|
    } else {
 | 
						|
        ret = llama_token_to_piece(ctx_llama, id);
 | 
						|
    }
 | 
						|
    eval_id(ctx_llama, id, n_past);
 | 
						|
    return ret.c_str();
 | 
						|
}
 | 
						|
 | 
						|
static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
 | 
						|
    auto ctx_clip = clip_init_context(params);
 | 
						|
    auto embeds = llava_image_embed_make_with_filename(ctx_clip, params->n_threads, fname.c_str());
 | 
						|
    if (!embeds) {
 | 
						|
        std::cerr << "error: failed to load image " << fname << ". Terminating\n\n";
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    // process the prompt
 | 
						|
    if (params->prompt.empty() && params->interactive == false) {
 | 
						|
        LOG_TEE("prompt should be given or interactive mode should be on");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    auto model = llava_init(params);
 | 
						|
    if (model == NULL) {
 | 
						|
        fprintf(stderr, "%s: error: failed to init minicpmv model\n", __func__);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    const int64_t t_llava_init_start_us = ggml_time_us();
 | 
						|
    auto ctx_llava = llava_init_context(params, model);
 | 
						|
    ctx_llava->ctx_clip = ctx_clip;
 | 
						|
    const int64_t t_llava_init_end_us = ggml_time_us();
 | 
						|
    float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0;
 | 
						|
    LOG_TEE("\n%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms);
 | 
						|
 | 
						|
    const int64_t t_process_image_start_us = ggml_time_us();
 | 
						|
    process_image(ctx_llava, embeds, params, n_past);
 | 
						|
    const int64_t t_process_image_end_us = ggml_time_us();
 | 
						|
    float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0;
 | 
						|
    LOG_TEE("\n%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms);
 | 
						|
 | 
						|
    llava_image_embed_free(embeds);
 | 
						|
    return ctx_llava;
 | 
						|
}
 | 
						|
 | 
						|
static struct llama_sampling_context * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
 | 
						|
    std::string user_prompt = prompt;
 | 
						|
    if (!is_first) user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt;
 | 
						|
 | 
						|
    eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
 | 
						|
    eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false);
 | 
						|
    // generate the response
 | 
						|
 | 
						|
    LOG_TEE("\n");
 | 
						|
 | 
						|
    struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
 | 
						|
    return ctx_sampling;
 | 
						|
}
 | 
						|
 | 
						|
static const char * llama_loop(struct llava_context * ctx_llava,struct llama_sampling_context * ctx_sampling, int &n_past){
 | 
						|
 | 
						|
    const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
 | 
						|
    return tmp;
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    ggml_time_init();
 | 
						|
 | 
						|
    gpt_params params;
 | 
						|
 | 
						|
    if (!gpt_params_parse(argc, argv, params)) {
 | 
						|
        show_additional_info(argc, argv);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
#ifndef LOG_DISABLE_LOGS
 | 
						|
    log_set_target(log_filename_generator("llava", "log"));
 | 
						|
    LOG_TEE("Log start\n");
 | 
						|
    log_dump_cmdline(argc, argv);
 | 
						|
    llama_log_set(llama_log_callback_logTee, nullptr);
 | 
						|
#endif // LOG_DISABLE_LOGS
 | 
						|
 | 
						|
    if (params.mmproj.empty() || (params.image.empty())) {
 | 
						|
        gpt_params_print_usage(argc, argv, params);
 | 
						|
        show_additional_info(argc, argv);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto & image : params.image) {
 | 
						|
        int n_past = 0;
 | 
						|
        auto ctx_llava = minicpmv_init(¶ms, image, n_past);
 | 
						|
 | 
						|
        if (!params.prompt.empty()) {
 | 
						|
            LOG_TEE("<user>%s\n", params.prompt.c_str());
 | 
						|
            LOG_TEE("<assistant>");
 | 
						|
            auto ctx_sampling = llama_init(ctx_llava, ¶ms, params.prompt.c_str(), n_past, true);
 | 
						|
            const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
 | 
						|
            std::string response = "";
 | 
						|
            bool have_tmp = false;
 | 
						|
            for (int i = 0; i < max_tgt_len; i++) {
 | 
						|
                auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
 | 
						|
                response += tmp;
 | 
						|
                if (strcmp(tmp, "</s>") == 0){
 | 
						|
                    if(!have_tmp)continue;
 | 
						|
                    else break;
 | 
						|
                }
 | 
						|
                if (strstr(tmp, "###")) break; // Yi-VL behavior
 | 
						|
                have_tmp = true;
 | 
						|
                printf("%s", tmp);
 | 
						|
                if (strstr(response.c_str(), "<user>")) break; // minicpm-v
 | 
						|
 | 
						|
                fflush(stdout);
 | 
						|
            }
 | 
						|
            llama_sampling_free(ctx_sampling);
 | 
						|
        }else {
 | 
						|
            while (true) {
 | 
						|
                LOG_TEE("<user>");
 | 
						|
                std::string prompt;
 | 
						|
                std::getline(std::cin, prompt);
 | 
						|
                LOG_TEE("<assistant>");
 | 
						|
                auto ctx_sampling = llama_init(ctx_llava, ¶ms, prompt, n_past, true);
 | 
						|
                const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
 | 
						|
                std::string response = "";
 | 
						|
                for (int i = 0; i < max_tgt_len; i++) {
 | 
						|
                    auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
 | 
						|
                    response += tmp;
 | 
						|
                    if (strcmp(tmp, "</s>") == 0) break;
 | 
						|
                    if (strstr(tmp, "###")) break; // Yi-VL behavior
 | 
						|
                    printf("%s", tmp);// mistral llava-1.6
 | 
						|
                    if (strstr(response.c_str(), "<user>")) break; // minicpm-v
 | 
						|
                    fflush(stdout);
 | 
						|
                }
 | 
						|
                llama_sampling_free(ctx_sampling);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        printf("\n");
 | 
						|
        llama_print_timings(ctx_llava->ctx_llama);
 | 
						|
 | 
						|
        ctx_llava->model = NULL;
 | 
						|
        llava_free(ctx_llava);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |