mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			11933 lines
		
	
	
		
			473 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			11933 lines
		
	
	
		
			473 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "ggml-quants.h"
 | |
| #include "ggml-impl.h"
 | |
| 
 | |
| #define GGML_COMMON_IMPL_C
 | |
| #include "ggml-common.h"
 | |
| 
 | |
| #include <math.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| #include <float.h>
 | |
| #include <stdlib.h> // for qsort
 | |
| #include <stdio.h>  // for GGML_ASSERT
 | |
| 
 | |
| #ifdef __ARM_NEON
 | |
| 
 | |
| // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
 | |
| //
 | |
| //   $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
 | |
| //
 | |
| #include <arm_neon.h>
 | |
| 
 | |
| #else
 | |
| 
 | |
| #ifdef __wasm_simd128__
 | |
| #include <wasm_simd128.h>
 | |
| #else
 | |
| #if defined(__POWER9_VECTOR__) || defined(__powerpc64__)
 | |
| #include <altivec.h>
 | |
| #undef bool
 | |
| #define bool _Bool
 | |
| #else
 | |
| #if defined(_MSC_VER) || defined(__MINGW32__)
 | |
| #include <intrin.h>
 | |
| #else
 | |
| #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
 | |
| #if !defined(__riscv)
 | |
| #include <immintrin.h>
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef __riscv_v_intrinsic
 | |
| #include <riscv_vector.h>
 | |
| #endif
 | |
| 
 | |
| #undef MIN
 | |
| #undef MAX
 | |
| 
 | |
| #define MIN(a, b) ((a) < (b) ? (a) : (b))
 | |
| #define MAX(a, b) ((a) > (b) ? (a) : (b))
 | |
| 
 | |
| #define UNUSED GGML_UNUSED
 | |
| 
 | |
| // some compilers don't provide _mm256_set_m128i, e.g. gcc 7
 | |
| #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
 | |
| 
 | |
| #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
 | |
| // multiply int8_t, add results pairwise twice
 | |
| static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
 | |
|     // Get absolute values of x vectors
 | |
|     const __m128i ax = _mm_sign_epi8(x, x);
 | |
|     // Sign the values of the y vectors
 | |
|     const __m128i sy = _mm_sign_epi8(y, x);
 | |
|     // Perform multiplication and create 16-bit values
 | |
|     const __m128i dot = _mm_maddubs_epi16(ax, sy);
 | |
|     const __m128i ones = _mm_set1_epi16(1);
 | |
|     return _mm_madd_epi16(ones, dot);
 | |
| }
 | |
| 
 | |
| #if __AVX__ || __AVX2__ || __AVX512F__
 | |
| // horizontally add 8 floats
 | |
| static inline float hsum_float_8(const __m256 x) {
 | |
|     __m128 res = _mm256_extractf128_ps(x, 1);
 | |
|     res = _mm_add_ps(res, _mm256_castps256_ps128(x));
 | |
|     res = _mm_add_ps(res, _mm_movehl_ps(res, res));
 | |
|     res = _mm_add_ss(res, _mm_movehdup_ps(res));
 | |
|     return _mm_cvtss_f32(res);
 | |
| }
 | |
| 
 | |
| // horizontally add 8 int32_t
 | |
| static inline int hsum_i32_8(const __m256i a) {
 | |
|     const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
 | |
|     const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
 | |
|     const __m128i sum64 = _mm_add_epi32(hi64, sum128);
 | |
|     const __m128i hi32  = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
 | |
|     return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
 | |
| }
 | |
| 
 | |
| // horizontally add 4 int32_t
 | |
| static inline int hsum_i32_4(const __m128i a) {
 | |
|     const __m128i hi64 = _mm_unpackhi_epi64(a, a);
 | |
|     const __m128i sum64 = _mm_add_epi32(hi64, a);
 | |
|     const __m128i hi32  = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
 | |
|     return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
 | |
| }
 | |
| 
 | |
| #if defined(__AVX2__) || defined(__AVX512F__)
 | |
| // spread 32 bits to 32 bytes { 0x00, 0xFF }
 | |
| static inline __m256i bytes_from_bits_32(const uint8_t * x) {
 | |
|     uint32_t x32;
 | |
|     memcpy(&x32, x, sizeof(uint32_t));
 | |
|     const __m256i shuf_mask = _mm256_set_epi64x(
 | |
|             0x0303030303030303, 0x0202020202020202,
 | |
|             0x0101010101010101, 0x0000000000000000);
 | |
|     __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
 | |
|     const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
 | |
|     bytes = _mm256_or_si256(bytes, bit_mask);
 | |
|     return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
 | |
| }
 | |
| 
 | |
| // Unpack 32 4-bit fields into 32 bytes
 | |
| // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
 | |
| static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
 | |
| {
 | |
|     const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
 | |
|     const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
 | |
|     const __m256i lowMask = _mm256_set1_epi8( 0xF );
 | |
|     return _mm256_and_si256(lowMask, bytes);
 | |
| }
 | |
| 
 | |
| // add int16_t pairwise and return as float vector
 | |
| static inline __m256 sum_i16_pairs_float(const __m256i x) {
 | |
|     const __m256i ones = _mm256_set1_epi16(1);
 | |
|     const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
 | |
|     return _mm256_cvtepi32_ps(summed_pairs);
 | |
| }
 | |
| 
 | |
| static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
 | |
| #if __AVXVNNI__
 | |
|     const __m256i zero = _mm256_setzero_si256();
 | |
|     const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
 | |
|     return _mm256_cvtepi32_ps(summed_pairs);
 | |
| #else
 | |
|     // Perform multiplication and create 16-bit values
 | |
|     const __m256i dot = _mm256_maddubs_epi16(ax, sy);
 | |
|     return sum_i16_pairs_float(dot);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // multiply int8_t, add results pairwise twice and return as float vector
 | |
| static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
 | |
| #if __AVXVNNIINT8__
 | |
|     const __m256i zero = _mm256_setzero_si256();
 | |
|     const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
 | |
|     return _mm256_cvtepi32_ps(summed_pairs);
 | |
| #else
 | |
|     // Get absolute values of x vectors
 | |
|     const __m256i ax = _mm256_sign_epi8(x, x);
 | |
|     // Sign the values of the y vectors
 | |
|     const __m256i sy = _mm256_sign_epi8(y, x);
 | |
|     return mul_sum_us8_pairs_float(ax, sy);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline __m128i packNibbles( __m256i bytes )
 | |
| {
 | |
|     // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
 | |
| #if __AVX512F__
 | |
|     const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4);   // 0000_0000_abcd_0000
 | |
|     bytes = _mm256_or_si256(bytes, bytes_srli_4);               // 0000_abcd_abcd_efgh
 | |
|     return _mm256_cvtepi16_epi8(bytes);                         // abcd_efgh
 | |
| #else
 | |
|     const __m256i lowByte = _mm256_set1_epi16( 0xFF );
 | |
|     __m256i high = _mm256_andnot_si256( lowByte, bytes );
 | |
|     __m256i low = _mm256_and_si256( lowByte, bytes );
 | |
|     high = _mm256_srli_epi16( high, 4 );
 | |
|     bytes = _mm256_or_si256( low, high );
 | |
| 
 | |
|     // Compress uint16_t lanes into bytes
 | |
|     __m128i r0 = _mm256_castsi256_si128( bytes );
 | |
|     __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
 | |
|     return _mm_packus_epi16( r0, r1 );
 | |
| #endif
 | |
| }
 | |
| #elif defined(__AVX__)
 | |
| // spread 32 bits to 32 bytes { 0x00, 0xFF }
 | |
| static inline __m256i bytes_from_bits_32(const uint8_t * x) {
 | |
|     uint32_t x32;
 | |
|     memcpy(&x32, x, sizeof(uint32_t));
 | |
|     const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
 | |
|     const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
 | |
|     __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
 | |
|     __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
 | |
|     const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
 | |
|     bytesl = _mm_or_si128(bytesl, bit_mask);
 | |
|     bytesh = _mm_or_si128(bytesh, bit_mask);
 | |
|     bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
 | |
|     bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
 | |
|     return MM256_SET_M128I(bytesh, bytesl);
 | |
| }
 | |
| 
 | |
| // Unpack 32 4-bit fields into 32 bytes
 | |
| // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
 | |
| static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
 | |
| {
 | |
|     // Load 16 bytes from memory
 | |
|     __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
 | |
|     __m128i tmph = _mm_srli_epi16(tmpl, 4);
 | |
|     const __m128i lowMask = _mm_set1_epi8(0xF);
 | |
|     tmpl = _mm_and_si128(lowMask, tmpl);
 | |
|     tmph = _mm_and_si128(lowMask, tmph);
 | |
|     return MM256_SET_M128I(tmph, tmpl);
 | |
| }
 | |
| 
 | |
| // add int16_t pairwise and return as float vector
 | |
| static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
 | |
|     const __m128i ones = _mm_set1_epi16(1);
 | |
|     const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
 | |
|     const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
 | |
|     const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
 | |
|     return _mm256_cvtepi32_ps(summed_pairs);
 | |
| }
 | |
| 
 | |
| static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
 | |
|     const __m128i axl = _mm256_castsi256_si128(ax);
 | |
|     const __m128i axh = _mm256_extractf128_si256(ax, 1);
 | |
|     const __m128i syl = _mm256_castsi256_si128(sy);
 | |
|     const __m128i syh = _mm256_extractf128_si256(sy, 1);
 | |
|     // Perform multiplication and create 16-bit values
 | |
|     const __m128i dotl = _mm_maddubs_epi16(axl, syl);
 | |
|     const __m128i doth = _mm_maddubs_epi16(axh, syh);
 | |
|     return sum_i16_pairs_float(doth, dotl);
 | |
| }
 | |
| 
 | |
| // multiply int8_t, add results pairwise twice and return as float vector
 | |
| static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
 | |
|     const __m128i xl = _mm256_castsi256_si128(x);
 | |
|     const __m128i xh = _mm256_extractf128_si256(x, 1);
 | |
|     const __m128i yl = _mm256_castsi256_si128(y);
 | |
|     const __m128i yh = _mm256_extractf128_si256(y, 1);
 | |
|     // Get absolute values of x vectors
 | |
|     const __m128i axl = _mm_sign_epi8(xl, xl);
 | |
|     const __m128i axh = _mm_sign_epi8(xh, xh);
 | |
|     // Sign the values of the y vectors
 | |
|     const __m128i syl = _mm_sign_epi8(yl, xl);
 | |
|     const __m128i syh = _mm_sign_epi8(yh, xh);
 | |
|     // Perform multiplication and create 16-bit values
 | |
|     const __m128i dotl = _mm_maddubs_epi16(axl, syl);
 | |
|     const __m128i doth = _mm_maddubs_epi16(axh, syh);
 | |
|     return sum_i16_pairs_float(doth, dotl);
 | |
| }
 | |
| 
 | |
| static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
 | |
| {
 | |
|     // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
 | |
|     const __m128i lowByte = _mm_set1_epi16( 0xFF );
 | |
|     __m128i high = _mm_andnot_si128( lowByte, bytes1 );
 | |
|     __m128i low = _mm_and_si128( lowByte, bytes1 );
 | |
|     high = _mm_srli_epi16( high, 4 );
 | |
|     bytes1 = _mm_or_si128( low, high );
 | |
|     high = _mm_andnot_si128( lowByte, bytes2 );
 | |
|     low = _mm_and_si128( lowByte, bytes2 );
 | |
|     high = _mm_srli_epi16( high, 4 );
 | |
|     bytes2 = _mm_or_si128( low, high );
 | |
| 
 | |
|     return _mm_packus_epi16( bytes1, bytes2);
 | |
| }
 | |
| #endif
 | |
| #elif defined(__SSSE3__)
 | |
| // horizontally add 4x4 floats
 | |
| static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
 | |
|     __m128 res_0 =_mm_hadd_ps(a, b);
 | |
|     __m128 res_1 =_mm_hadd_ps(c, d);
 | |
|     __m128 res =_mm_hadd_ps(res_0, res_1);
 | |
|     res =_mm_hadd_ps(res, res);
 | |
|     res =_mm_hadd_ps(res, res);
 | |
| 
 | |
|     return _mm_cvtss_f32(res);
 | |
| }
 | |
| #endif // __AVX__ || __AVX2__ || __AVX512F__
 | |
| #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| 
 | |
| #define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if !defined(__aarch64__)
 | |
| 
 | |
| // 64-bit compatibility
 | |
| 
 | |
| // vaddvq_s16
 | |
| // vpaddq_s16
 | |
| // vpaddq_s32
 | |
| // vaddvq_s32
 | |
| // vaddvq_f32
 | |
| // vmaxvq_f32
 | |
| // vcvtnq_s32_f32
 | |
| // vzip1_u8
 | |
| // vzip2_u8
 | |
| 
 | |
| inline static int32_t vaddvq_s16(int16x8_t v) {
 | |
|     return
 | |
|         (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
 | |
|         (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
 | |
|         (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
 | |
|         (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
 | |
| }
 | |
| 
 | |
| inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
 | |
|     int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
 | |
|     int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
 | |
|     return vcombine_s16(a0, b0);
 | |
| }
 | |
| 
 | |
| inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
 | |
|     int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
 | |
|     int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
 | |
|     return vcombine_s32(a0, b0);
 | |
| }
 | |
| 
 | |
| inline static int32_t vaddvq_s32(int32x4_t v) {
 | |
|     return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
 | |
| }
 | |
| 
 | |
| inline static float vaddvq_f32(float32x4_t v) {
 | |
|     return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
 | |
| }
 | |
| 
 | |
| inline static float vmaxvq_f32(float32x4_t v) {
 | |
|     return
 | |
|         MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
 | |
|             MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
 | |
| }
 | |
| 
 | |
| inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
 | |
|     int32x4_t res;
 | |
| 
 | |
|     res[0] = roundf(vgetq_lane_f32(v, 0));
 | |
|     res[1] = roundf(vgetq_lane_f32(v, 1));
 | |
|     res[2] = roundf(vgetq_lane_f32(v, 2));
 | |
|     res[3] = roundf(vgetq_lane_f32(v, 3));
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
 | |
|     uint8x8_t res;
 | |
| 
 | |
|     res[0] = a[0]; res[1] = b[0];
 | |
|     res[2] = a[1]; res[3] = b[1];
 | |
|     res[4] = a[2]; res[5] = b[2];
 | |
|     res[6] = a[3]; res[7] = b[3];
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
 | |
|     uint8x8_t res;
 | |
| 
 | |
|     res[0] = a[4]; res[1] = b[4];
 | |
|     res[2] = a[5]; res[3] = b[5];
 | |
|     res[4] = a[6]; res[5] = b[6];
 | |
|     res[6] = a[7]; res[7] = b[7];
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| // vld1q_s16_x2
 | |
| // vld1q_u8_x2
 | |
| // vld1q_u8_x4
 | |
| // vld1q_s8_x2
 | |
| // vld1q_s8_x4
 | |
| // TODO: double-check these work correctly
 | |
| 
 | |
| typedef struct ggml_int16x8x2_t {
 | |
|     int16x8_t val[2];
 | |
| } ggml_int16x8x2_t;
 | |
| 
 | |
| inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
 | |
|     ggml_int16x8x2_t res;
 | |
| 
 | |
|     res.val[0] = vld1q_s16(ptr + 0);
 | |
|     res.val[1] = vld1q_s16(ptr + 8);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| typedef struct ggml_uint8x16x2_t {
 | |
|     uint8x16_t val[2];
 | |
| } ggml_uint8x16x2_t;
 | |
| 
 | |
| inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
 | |
|     ggml_uint8x16x2_t res;
 | |
| 
 | |
|     res.val[0] = vld1q_u8(ptr + 0);
 | |
|     res.val[1] = vld1q_u8(ptr + 16);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| typedef struct ggml_uint8x16x4_t {
 | |
|     uint8x16_t val[4];
 | |
| } ggml_uint8x16x4_t;
 | |
| 
 | |
| inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
 | |
|     ggml_uint8x16x4_t res;
 | |
| 
 | |
|     res.val[0] = vld1q_u8(ptr + 0);
 | |
|     res.val[1] = vld1q_u8(ptr + 16);
 | |
|     res.val[2] = vld1q_u8(ptr + 32);
 | |
|     res.val[3] = vld1q_u8(ptr + 48);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| typedef struct ggml_int8x16x2_t {
 | |
|     int8x16_t val[2];
 | |
| } ggml_int8x16x2_t;
 | |
| 
 | |
| inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
 | |
|     ggml_int8x16x2_t res;
 | |
| 
 | |
|     res.val[0] = vld1q_s8(ptr + 0);
 | |
|     res.val[1] = vld1q_s8(ptr + 16);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| typedef struct ggml_int8x16x4_t {
 | |
|     int8x16_t val[4];
 | |
| } ggml_int8x16x4_t;
 | |
| 
 | |
| inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
 | |
|     ggml_int8x16x4_t res;
 | |
| 
 | |
|     res.val[0] = vld1q_s8(ptr + 0);
 | |
|     res.val[1] = vld1q_s8(ptr + 16);
 | |
|     res.val[2] = vld1q_s8(ptr + 32);
 | |
|     res.val[3] = vld1q_s8(ptr + 48);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| // NOTE: not tested
 | |
| inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
 | |
|     int8x16_t res;
 | |
| 
 | |
|     res[ 0] = a[b[ 0]];
 | |
|     res[ 1] = a[b[ 1]];
 | |
|     res[ 2] = a[b[ 2]];
 | |
|     res[ 3] = a[b[ 3]];
 | |
|     res[ 4] = a[b[ 4]];
 | |
|     res[ 5] = a[b[ 5]];
 | |
|     res[ 6] = a[b[ 6]];
 | |
|     res[ 7] = a[b[ 7]];
 | |
|     res[ 8] = a[b[ 8]];
 | |
|     res[ 9] = a[b[ 9]];
 | |
|     res[10] = a[b[10]];
 | |
|     res[11] = a[b[11]];
 | |
|     res[12] = a[b[12]];
 | |
|     res[13] = a[b[13]];
 | |
|     res[14] = a[b[14]];
 | |
|     res[15] = a[b[15]];
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| // NOTE: not tested
 | |
| inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
 | |
|     uint8x16_t res;
 | |
| 
 | |
|     res[ 0] = a[b[ 0]];
 | |
|     res[ 1] = a[b[ 1]];
 | |
|     res[ 2] = a[b[ 2]];
 | |
|     res[ 3] = a[b[ 3]];
 | |
|     res[ 4] = a[b[ 4]];
 | |
|     res[ 5] = a[b[ 5]];
 | |
|     res[ 6] = a[b[ 6]];
 | |
|     res[ 7] = a[b[ 7]];
 | |
|     res[ 8] = a[b[ 8]];
 | |
|     res[ 9] = a[b[ 9]];
 | |
|     res[10] = a[b[10]];
 | |
|     res[11] = a[b[11]];
 | |
|     res[12] = a[b[12]];
 | |
|     res[13] = a[b[13]];
 | |
|     res[14] = a[b[14]];
 | |
|     res[15] = a[b[15]];
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define ggml_int16x8x2_t  int16x8x2_t
 | |
| #define ggml_uint8x16x2_t uint8x16x2_t
 | |
| #define ggml_uint8x16x4_t uint8x16x4_t
 | |
| #define ggml_int8x16x2_t  int8x16x2_t
 | |
| #define ggml_int8x16x4_t  int8x16x4_t
 | |
| 
 | |
| #define ggml_vld1q_s16_x2 vld1q_s16_x2
 | |
| #define ggml_vld1q_u8_x2  vld1q_u8_x2
 | |
| #define ggml_vld1q_u8_x4  vld1q_u8_x4
 | |
| #define ggml_vld1q_s8_x2  vld1q_s8_x2
 | |
| #define ggml_vld1q_s8_x4  vld1q_s8_x4
 | |
| #define ggml_vqtbl1q_s8   vqtbl1q_s8
 | |
| #define ggml_vqtbl1q_u8   vqtbl1q_u8
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if !defined(__ARM_FEATURE_DOTPROD)
 | |
| 
 | |
| inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
 | |
|     const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
 | |
|     const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
 | |
| 
 | |
|     return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if defined(__ARM_NEON) || defined(__wasm_simd128__)
 | |
| #define B1(c,s,n)  0x ## n ## c ,  0x ## n ## s
 | |
| #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
 | |
| #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
 | |
| #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
 | |
| #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
 | |
| #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
 | |
| #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
 | |
| #define B8(c,s  ) B7(c,s,     c), B7(c,s,     s)
 | |
| 
 | |
| // precomputed tables for expanding 8bits to 8 bytes:
 | |
| static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
 | |
| static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
 | |
| #endif
 | |
| 
 | |
| // reference implementation for deterministic creation of model files
 | |
| void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
 | |
|     static const int qk = QK4_0;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float amax = 0.0f; // absolute max
 | |
|         float max  = 0.0f;
 | |
| 
 | |
|         for (int j = 0; j < qk; j++) {
 | |
|             const float v = x[i*qk + j];
 | |
|             if (amax < fabsf(v)) {
 | |
|                 amax = fabsf(v);
 | |
|                 max  = v;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         const float d  = max / -8;
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const float x0 = x[i*qk + 0    + j]*id;
 | |
|             const float x1 = x[i*qk + qk/2 + j]*id;
 | |
| 
 | |
|             const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
 | |
|             const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
 | |
| 
 | |
|             y[i].qs[j]  = xi0;
 | |
|             y[i].qs[j] |= xi1 << 4;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
 | |
|     quantize_row_q4_0_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| 
 | |
| void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
 | |
|     const int qk = QK4_1;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float min = FLT_MAX;
 | |
|         float max = -FLT_MAX;
 | |
| 
 | |
|         for (int j = 0; j < qk; j++) {
 | |
|             const float v = x[i*qk + j];
 | |
| 
 | |
|             if (v < min) min = v;
 | |
|             if (v > max) max = v;
 | |
|         }
 | |
| 
 | |
|         const float d  = (max - min) / ((1 << 4) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
|         y[i].m = GGML_FP32_TO_FP16(min);
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const float x0 = (x[i*qk + 0    + j] - min)*id;
 | |
|             const float x1 = (x[i*qk + qk/2 + j] - min)*id;
 | |
| 
 | |
|             const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
 | |
|             const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
 | |
| 
 | |
|             y[i].qs[j]  = xi0;
 | |
|             y[i].qs[j] |= xi1 << 4;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
 | |
|     quantize_row_q4_1_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
 | |
|     static const int qk = QK5_0;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float amax = 0.0f; // absolute max
 | |
|         float max  = 0.0f;
 | |
| 
 | |
|         for (int j = 0; j < qk; j++) {
 | |
|             const float v = x[i*qk + j];
 | |
|             if (amax < fabsf(v)) {
 | |
|                 amax = fabsf(v);
 | |
|                 max  = v;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         const float d  = max / -16;
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
| 
 | |
|         uint32_t qh = 0;
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const float x0 = x[i*qk + 0    + j]*id;
 | |
|             const float x1 = x[i*qk + qk/2 + j]*id;
 | |
| 
 | |
|             const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
 | |
|             const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
 | |
| 
 | |
|             y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
 | |
| 
 | |
|             // get the 5-th bit and store it in qh at the right position
 | |
|             qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
 | |
|             qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
 | |
|         }
 | |
| 
 | |
|         memcpy(&y[i].qh, &qh, sizeof(qh));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
 | |
|     quantize_row_q5_0_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
 | |
|     const int qk = QK5_1;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float min = FLT_MAX;
 | |
|         float max = -FLT_MAX;
 | |
| 
 | |
|         for (int j = 0; j < qk; j++) {
 | |
|             const float v = x[i*qk + j];
 | |
| 
 | |
|             if (v < min) min = v;
 | |
|             if (v > max) max = v;
 | |
|         }
 | |
| 
 | |
|         const float d  = (max - min) / ((1 << 5) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
|         y[i].m = GGML_FP32_TO_FP16(min);
 | |
| 
 | |
|         uint32_t qh = 0;
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const float x0 = (x[i*qk + 0    + j] - min)*id;
 | |
|             const float x1 = (x[i*qk + qk/2 + j] - min)*id;
 | |
| 
 | |
|             const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
 | |
|             const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
 | |
| 
 | |
|             y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
 | |
| 
 | |
|             // get the 5-th bit and store it in qh at the right position
 | |
|             qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
 | |
|             qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
 | |
|         }
 | |
| 
 | |
|         memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
 | |
|     quantize_row_q5_1_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| // reference implementation for deterministic creation of model files
 | |
| void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
 | |
|     assert(k % QK8_0 == 0);
 | |
|     const int nb = k / QK8_0;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float amax = 0.0f; // absolute max
 | |
| 
 | |
|         for (int j = 0; j < QK8_0; j++) {
 | |
|             const float v = x[i*QK8_0 + j];
 | |
|             amax = MAX(amax, fabsf(v));
 | |
|         }
 | |
| 
 | |
|         const float d = amax / ((1 << 7) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
| 
 | |
|         for (int j = 0; j < QK8_0; ++j) {
 | |
|             const float x0 = x[i*QK8_0 + j]*id;
 | |
| 
 | |
|             y[i].qs[j] = roundf(x0);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
 | |
|     assert(QK8_0 == 32);
 | |
|     assert(k % QK8_0 == 0);
 | |
|     const int nb = k / QK8_0;
 | |
| 
 | |
|     block_q8_0 * restrict y = vy;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float32x4_t srcv [8];
 | |
|         float32x4_t asrcv[8];
 | |
|         float32x4_t amaxv[8];
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) srcv[j]  = vld1q_f32(x + i*32 + 4*j);
 | |
|         for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
 | |
| 
 | |
|         for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
 | |
|         for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
 | |
|         for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
 | |
| 
 | |
|         const float amax = vmaxvq_f32(amaxv[0]);
 | |
| 
 | |
|         const float d = amax / ((1 << 7) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) {
 | |
|             const float32x4_t v  = vmulq_n_f32(srcv[j], id);
 | |
|             const int32x4_t   vi = vcvtnq_s32_f32(v);
 | |
| 
 | |
|             y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
 | |
|             y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
 | |
|             y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
 | |
|             y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
 | |
|         }
 | |
|     }
 | |
| #elif defined(__wasm_simd128__)
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         v128_t srcv [8];
 | |
|         v128_t asrcv[8];
 | |
|         v128_t amaxv[8];
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) srcv[j]  = wasm_v128_load(x + i*32 + 4*j);
 | |
|         for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
 | |
| 
 | |
|         for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
 | |
|         for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
 | |
|         for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
 | |
| 
 | |
|         const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
 | |
|                                    wasm_f32x4_extract_lane(amaxv[0], 1)),
 | |
|                                MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
 | |
|                                    wasm_f32x4_extract_lane(amaxv[0], 3)));
 | |
| 
 | |
|         const float d = amax / ((1 << 7) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) {
 | |
|             const v128_t v  = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
 | |
|             const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
 | |
| 
 | |
|             y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
 | |
|             y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
 | |
|             y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
 | |
|             y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
 | |
|         }
 | |
|     }
 | |
| #elif defined(__AVX2__) || defined(__AVX__)
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         // Load elements into 4 AVX vectors
 | |
|         __m256 v0 = _mm256_loadu_ps( x );
 | |
|         __m256 v1 = _mm256_loadu_ps( x + 8 );
 | |
|         __m256 v2 = _mm256_loadu_ps( x + 16 );
 | |
|         __m256 v3 = _mm256_loadu_ps( x + 24 );
 | |
|         x += 32;
 | |
| 
 | |
|         // Compute max(abs(e)) for the block
 | |
|         const __m256 signBit = _mm256_set1_ps( -0.0f );
 | |
|         __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
 | |
|         maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
 | |
|         maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
 | |
|         maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
 | |
| 
 | |
|         __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
 | |
|         max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
 | |
|         max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
 | |
|         const float maxScalar = _mm_cvtss_f32( max4 );
 | |
| 
 | |
|         // Quantize these floats
 | |
|         const float d = maxScalar / 127.f;
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
|         const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
 | |
|         const __m256 mul = _mm256_set1_ps( id );
 | |
| 
 | |
|         // Apply the multiplier
 | |
|         v0 = _mm256_mul_ps( v0, mul );
 | |
|         v1 = _mm256_mul_ps( v1, mul );
 | |
|         v2 = _mm256_mul_ps( v2, mul );
 | |
|         v3 = _mm256_mul_ps( v3, mul );
 | |
| 
 | |
|         // Round to nearest integer
 | |
|         v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
 | |
|         v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
 | |
|         v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
 | |
|         v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
 | |
| 
 | |
|         // Convert floats to integers
 | |
|         __m256i i0 = _mm256_cvtps_epi32( v0 );
 | |
|         __m256i i1 = _mm256_cvtps_epi32( v1 );
 | |
|         __m256i i2 = _mm256_cvtps_epi32( v2 );
 | |
|         __m256i i3 = _mm256_cvtps_epi32( v3 );
 | |
| 
 | |
| #if defined(__AVX2__)
 | |
|         // Convert int32 to int16
 | |
|         i0 = _mm256_packs_epi32( i0, i1 );	// 0, 1, 2, 3,  8, 9, 10, 11,  4, 5, 6, 7, 12, 13, 14, 15
 | |
|         i2 = _mm256_packs_epi32( i2, i3 );	// 16, 17, 18, 19,  24, 25, 26, 27,  20, 21, 22, 23, 28, 29, 30, 31
 | |
|                                             // Convert int16 to int8
 | |
|         i0 = _mm256_packs_epi16( i0, i2 );	// 0, 1, 2, 3,  8, 9, 10, 11,  16, 17, 18, 19,  24, 25, 26, 27,  4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
 | |
| 
 | |
|         // We got our precious signed bytes, but the order is now wrong
 | |
|         // These AVX2 pack instructions process 16-byte pieces independently
 | |
|         // The following instruction is fixing the order
 | |
|         const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
 | |
|         i0 = _mm256_permutevar8x32_epi32( i0, perm );
 | |
| 
 | |
|         _mm256_storeu_si256((__m256i *)y[i].qs, i0);
 | |
| #else
 | |
|         // Since we don't have in AVX some necessary functions,
 | |
|         // we split the registers in half and call AVX2 analogs from SSE
 | |
|         __m128i ni0 = _mm256_castsi256_si128( i0 );
 | |
|         __m128i ni1 = _mm256_extractf128_si256( i0, 1);
 | |
|         __m128i ni2 = _mm256_castsi256_si128( i1 );
 | |
|         __m128i ni3 = _mm256_extractf128_si256( i1, 1);
 | |
|         __m128i ni4 = _mm256_castsi256_si128( i2 );
 | |
|         __m128i ni5 = _mm256_extractf128_si256( i2, 1);
 | |
|         __m128i ni6 = _mm256_castsi256_si128( i3 );
 | |
|         __m128i ni7 = _mm256_extractf128_si256( i3, 1);
 | |
| 
 | |
|         // Convert int32 to int16
 | |
|         ni0 = _mm_packs_epi32( ni0, ni1 );
 | |
|         ni2 = _mm_packs_epi32( ni2, ni3 );
 | |
|         ni4 = _mm_packs_epi32( ni4, ni5 );
 | |
|         ni6 = _mm_packs_epi32( ni6, ni7 );
 | |
|         // Convert int16 to int8
 | |
|         ni0 = _mm_packs_epi16( ni0, ni2 );
 | |
|         ni4 = _mm_packs_epi16( ni4, ni6 );
 | |
| 
 | |
|         _mm_storeu_si128((__m128i *)(y[i].qs +  0), ni0);
 | |
|         _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
 | |
| #endif
 | |
|     }
 | |
| #elif defined(__riscv_v_intrinsic)
 | |
| 
 | |
|     size_t vl = __riscv_vsetvl_e32m4(QK8_0);
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         // load elements
 | |
|         vfloat32m4_t v_x   = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
 | |
| 
 | |
|         vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
 | |
|         vfloat32m1_t tmp   = __riscv_vfmv_v_f_f32m1(0.0f, vl);
 | |
|         vfloat32m1_t vmax  = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
 | |
|         float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
 | |
| 
 | |
|         const float d = amax / ((1 << 7) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
| 
 | |
|         vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
 | |
| 
 | |
|         // convert to integer
 | |
|         vint16m2_t   vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
 | |
|         vint8m1_t    vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
 | |
| 
 | |
|         // store result
 | |
|         __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
 | |
|     }
 | |
| #else
 | |
|     GGML_UNUSED(nb);
 | |
|     // scalar
 | |
|     quantize_row_q8_0_reference(x, y, k);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // reference implementation for deterministic creation of model files
 | |
| void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
 | |
|     assert(QK8_1 == 32);
 | |
|     assert(k % QK8_1 == 0);
 | |
|     const int nb = k / QK8_1;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float amax = 0.0f; // absolute max
 | |
| 
 | |
|         for (int j = 0; j < QK8_1; j++) {
 | |
|             const float v = x[i*QK8_1 + j];
 | |
|             amax = MAX(amax, fabsf(v));
 | |
|         }
 | |
| 
 | |
|         const float d = amax / ((1 << 7) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = d;
 | |
| 
 | |
|         int sum = 0;
 | |
| 
 | |
|         for (int j = 0; j < QK8_1/2; ++j) {
 | |
|             const float v0 = x[i*QK8_1           + j]*id;
 | |
|             const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
 | |
| 
 | |
|             y[i].qs[          j] = roundf(v0);
 | |
|             y[i].qs[QK8_1/2 + j] = roundf(v1);
 | |
| 
 | |
|             sum += y[i].qs[          j];
 | |
|             sum += y[i].qs[QK8_1/2 + j];
 | |
|         }
 | |
| 
 | |
|         y[i].s = sum*d;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
 | |
|     assert(k % QK8_1 == 0);
 | |
|     const int nb = k / QK8_1;
 | |
| 
 | |
|     block_q8_1 * restrict y = vy;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float32x4_t srcv [8];
 | |
|         float32x4_t asrcv[8];
 | |
|         float32x4_t amaxv[8];
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) srcv[j]  = vld1q_f32(x + i*32 + 4*j);
 | |
|         for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
 | |
| 
 | |
|         for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
 | |
|         for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
 | |
|         for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
 | |
| 
 | |
|         const float amax = vmaxvq_f32(amaxv[0]);
 | |
| 
 | |
|         const float d = amax / ((1 << 7) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = d;
 | |
| 
 | |
|         int32x4_t accv = vdupq_n_s32(0);
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) {
 | |
|             const float32x4_t v  = vmulq_n_f32(srcv[j], id);
 | |
|             const int32x4_t   vi = vcvtnq_s32_f32(v);
 | |
| 
 | |
|             y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
 | |
|             y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
 | |
|             y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
 | |
|             y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
 | |
| 
 | |
|             accv = vaddq_s32(accv, vi);
 | |
|         }
 | |
| 
 | |
|         y[i].s = d * vaddvq_s32(accv);
 | |
|     }
 | |
| #elif defined(__wasm_simd128__)
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         v128_t srcv [8];
 | |
|         v128_t asrcv[8];
 | |
|         v128_t amaxv[8];
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) srcv[j]  = wasm_v128_load(x + i*32 + 4*j);
 | |
|         for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
 | |
| 
 | |
|         for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
 | |
|         for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
 | |
|         for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
 | |
| 
 | |
|         const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
 | |
|                                    wasm_f32x4_extract_lane(amaxv[0], 1)),
 | |
|                                MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
 | |
|                                    wasm_f32x4_extract_lane(amaxv[0], 3)));
 | |
| 
 | |
|         const float d = amax / ((1 << 7) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = d;
 | |
| 
 | |
|         v128_t accv = wasm_i32x4_splat(0);
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) {
 | |
|             const v128_t v  = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
 | |
|             const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
 | |
| 
 | |
|             y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
 | |
|             y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
 | |
|             y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
 | |
|             y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
 | |
| 
 | |
|             accv = wasm_i32x4_add(accv, vi);
 | |
|         }
 | |
| 
 | |
|         y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
 | |
|                       wasm_i32x4_extract_lane(accv, 1) +
 | |
|                       wasm_i32x4_extract_lane(accv, 2) +
 | |
|                       wasm_i32x4_extract_lane(accv, 3));
 | |
|     }
 | |
| #elif defined(__AVX2__) || defined(__AVX__)
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         // Load elements into 4 AVX vectors
 | |
|         __m256 v0 = _mm256_loadu_ps( x );
 | |
|         __m256 v1 = _mm256_loadu_ps( x + 8 );
 | |
|         __m256 v2 = _mm256_loadu_ps( x + 16 );
 | |
|         __m256 v3 = _mm256_loadu_ps( x + 24 );
 | |
|         x += 32;
 | |
| 
 | |
|         // Compute max(abs(e)) for the block
 | |
|         const __m256 signBit = _mm256_set1_ps( -0.0f );
 | |
|         __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
 | |
|         maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
 | |
|         maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
 | |
|         maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
 | |
| 
 | |
|         __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
 | |
|         max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
 | |
|         max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
 | |
|         const float maxScalar = _mm_cvtss_f32( max4 );
 | |
| 
 | |
|         // Quantize these floats
 | |
|         const float d = maxScalar / 127.f;
 | |
|         y[i].d = d;
 | |
|         const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
 | |
|         const __m256 mul = _mm256_set1_ps( id );
 | |
| 
 | |
|         // Apply the multiplier
 | |
|         v0 = _mm256_mul_ps( v0, mul );
 | |
|         v1 = _mm256_mul_ps( v1, mul );
 | |
|         v2 = _mm256_mul_ps( v2, mul );
 | |
|         v3 = _mm256_mul_ps( v3, mul );
 | |
| 
 | |
|         // Round to nearest integer
 | |
|         v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
 | |
|         v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
 | |
|         v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
 | |
|         v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
 | |
| 
 | |
|         // Convert floats to integers
 | |
|         __m256i i0 = _mm256_cvtps_epi32( v0 );
 | |
|         __m256i i1 = _mm256_cvtps_epi32( v1 );
 | |
|         __m256i i2 = _mm256_cvtps_epi32( v2 );
 | |
|         __m256i i3 = _mm256_cvtps_epi32( v3 );
 | |
| 
 | |
| #if defined(__AVX2__)
 | |
|         // Compute the sum of the quants and set y[i].s
 | |
|         y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
 | |
| 
 | |
|         // Convert int32 to int16
 | |
|         i0 = _mm256_packs_epi32( i0, i1 );	// 0, 1, 2, 3,  8, 9, 10, 11,  4, 5, 6, 7, 12, 13, 14, 15
 | |
|         i2 = _mm256_packs_epi32( i2, i3 );	// 16, 17, 18, 19,  24, 25, 26, 27,  20, 21, 22, 23, 28, 29, 30, 31
 | |
|                                             // Convert int16 to int8
 | |
|         i0 = _mm256_packs_epi16( i0, i2 );	// 0, 1, 2, 3,  8, 9, 10, 11,  16, 17, 18, 19,  24, 25, 26, 27,  4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
 | |
| 
 | |
|         // We got our precious signed bytes, but the order is now wrong
 | |
|         // These AVX2 pack instructions process 16-byte pieces independently
 | |
|         // The following instruction is fixing the order
 | |
|         const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
 | |
|         i0 = _mm256_permutevar8x32_epi32( i0, perm );
 | |
| 
 | |
|         _mm256_storeu_si256((__m256i *)y[i].qs, i0);
 | |
| #else
 | |
|         // Since we don't have in AVX some necessary functions,
 | |
|         // we split the registers in half and call AVX2 analogs from SSE
 | |
|         __m128i ni0 = _mm256_castsi256_si128( i0 );
 | |
|         __m128i ni1 = _mm256_extractf128_si256( i0, 1);
 | |
|         __m128i ni2 = _mm256_castsi256_si128( i1 );
 | |
|         __m128i ni3 = _mm256_extractf128_si256( i1, 1);
 | |
|         __m128i ni4 = _mm256_castsi256_si128( i2 );
 | |
|         __m128i ni5 = _mm256_extractf128_si256( i2, 1);
 | |
|         __m128i ni6 = _mm256_castsi256_si128( i3 );
 | |
|         __m128i ni7 = _mm256_extractf128_si256( i3, 1);
 | |
| 
 | |
|         // Compute the sum of the quants and set y[i].s
 | |
|         const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
 | |
|         const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
 | |
|         y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
 | |
| 
 | |
|         // Convert int32 to int16
 | |
|         ni0 = _mm_packs_epi32( ni0, ni1 );
 | |
|         ni2 = _mm_packs_epi32( ni2, ni3 );
 | |
|         ni4 = _mm_packs_epi32( ni4, ni5 );
 | |
|         ni6 = _mm_packs_epi32( ni6, ni7 );
 | |
|         // Convert int16 to int8
 | |
|         ni0 = _mm_packs_epi16( ni0, ni2 );
 | |
|         ni4 = _mm_packs_epi16( ni4, ni6 );
 | |
| 
 | |
|         _mm_storeu_si128((__m128i *)(y[i].qs +  0), ni0);
 | |
|         _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
 | |
| #endif
 | |
|     }
 | |
| #elif defined(__riscv_v_intrinsic)
 | |
| 
 | |
|     size_t vl = __riscv_vsetvl_e32m4(QK8_1);
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         // load elements
 | |
|         vfloat32m4_t v_x   = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
 | |
| 
 | |
|         vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
 | |
|         vfloat32m1_t tmp   = __riscv_vfmv_v_f_f32m1(0.0, vl);
 | |
|         vfloat32m1_t vmax  = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
 | |
|         float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
 | |
| 
 | |
|         const float d  = amax / ((1 << 7) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = d;
 | |
| 
 | |
|         vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
 | |
| 
 | |
|         // convert to integer
 | |
|         vint16m2_t   vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
 | |
|         vint8m1_t    vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
 | |
| 
 | |
|         // store result
 | |
|         __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
 | |
| 
 | |
|         // compute sum for y[i].s
 | |
|         vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
 | |
|         vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
 | |
| 
 | |
|         // set y[i].s
 | |
|         int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
 | |
|         y[i].s = sum*d;
 | |
|     }
 | |
| #else
 | |
|     GGML_UNUSED(nb);
 | |
|     // scalar
 | |
|     quantize_row_q8_1_reference(x, y, k);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
 | |
|     static const int qk = QK4_0;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const int x0 = (x[i].qs[j] & 0x0F) - 8;
 | |
|             const int x1 = (x[i].qs[j] >>   4) - 8;
 | |
| 
 | |
|             y[i*qk + j + 0   ] = x0*d;
 | |
|             y[i*qk + j + qk/2] = x1*d;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
 | |
|     static const int qk = QK4_1;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float m = GGML_FP16_TO_FP32(x[i].m);
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const int x0 = (x[i].qs[j] & 0x0F);
 | |
|             const int x1 = (x[i].qs[j] >>   4);
 | |
| 
 | |
|             y[i*qk + j + 0   ] = x0*d + m;
 | |
|             y[i*qk + j + qk/2] = x1*d + m;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
 | |
|     static const int qk = QK5_0;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         uint32_t qh;
 | |
|         memcpy(&qh, x[i].qh, sizeof(qh));
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
 | |
|             const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;
 | |
| 
 | |
|             const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
 | |
|             const int32_t x1 = ((x[i].qs[j] >>   4) | xh_1) - 16;
 | |
| 
 | |
|             y[i*qk + j + 0   ] = x0*d;
 | |
|             y[i*qk + j + qk/2] = x1*d;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
 | |
|     static const int qk = QK5_1;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float m = GGML_FP16_TO_FP32(x[i].m);
 | |
| 
 | |
|         uint32_t qh;
 | |
|         memcpy(&qh, x[i].qh, sizeof(qh));
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
 | |
|             const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;
 | |
| 
 | |
|             const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
 | |
|             const int x1 = (x[i].qs[j] >>   4) | xh_1;
 | |
| 
 | |
|             y[i*qk + j + 0   ] = x0*d + m;
 | |
|             y[i*qk + j + qk/2] = x1*d + m;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k) {
 | |
|     static const int qk = QK8_0;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         for (int j = 0; j < qk; ++j) {
 | |
|             y[i*qk + j] = x[i].qs[j]*d;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // 2-6 bit quantization in super-blocks
 | |
| //
 | |
| 
 | |
| //
 | |
| // ===================== Helper functions
 | |
| //
 | |
| static inline int nearest_int(float fval) {
 | |
|     assert(fval <= 4194303.f);
 | |
|     float val = fval + 12582912.f;
 | |
|     int i; memcpy(&i, &val, sizeof(int));
 | |
|     return (i & 0x007fffff) - 0x00400000;
 | |
| }
 | |
| 
 | |
| static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
 | |
|         const float * restrict qw) {
 | |
|     float max = 0;
 | |
|     float amax = 0;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         float ax = fabsf(x[i]);
 | |
|         if (ax > amax) { amax = ax; max = x[i]; }
 | |
|     }
 | |
|     if (amax < 1e-30f) { // all zero
 | |
|         for (int i = 0; i < n; ++i) {
 | |
|             L[i] = 0;
 | |
|         }
 | |
|         return 0.f;
 | |
|     }
 | |
|     float iscale = -nmax / max;
 | |
|     if (rmse_type == 0) {
 | |
|         for (int i = 0; i < n; ++i) {
 | |
|             int l = nearest_int(iscale * x[i]);
 | |
|             L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
 | |
|         }
 | |
|         return 1/iscale;
 | |
|     }
 | |
|     bool return_early = false;
 | |
|     if (rmse_type < 0) {
 | |
|         rmse_type = -rmse_type;
 | |
|         return_early = true;
 | |
|     }
 | |
|     float sumlx = 0;
 | |
|     float suml2 = 0;
 | |
| #ifdef HAVE_BUGGY_APPLE_LINKER
 | |
|     // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
 | |
|     for (volatile int i = 0; i < n; ++i) {
 | |
| #else
 | |
|     for (int i = 0; i < n; ++i) {
 | |
| #endif
 | |
|         int l = nearest_int(iscale * x[i]);
 | |
|         l = MAX(-nmax, MIN(nmax-1, l));
 | |
|         L[i] = l + nmax;
 | |
|         float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
 | |
|         sumlx += w*x[i]*l;
 | |
|         suml2 += w*l*l;
 | |
|     }
 | |
|     float scale = sumlx/suml2;
 | |
|     if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
 | |
|     float best = scale * sumlx;
 | |
|     for (int is = -9; is <= 9; ++is) {
 | |
|         if (is == 0) {
 | |
|             continue;
 | |
|         }
 | |
|         iscale = -(nmax + 0.1f*is) / max;
 | |
|         sumlx = suml2 = 0;
 | |
|         for (int i = 0; i < n; ++i) {
 | |
|             int l = nearest_int(iscale * x[i]);
 | |
|             l = MAX(-nmax, MIN(nmax-1, l));
 | |
|             float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
 | |
|             sumlx += w*x[i]*l;
 | |
|             suml2 += w*l*l;
 | |
|         }
 | |
|         if (suml2 > 0 && sumlx*sumlx > best*suml2) {
 | |
|             for (int i = 0; i < n; ++i) {
 | |
|                 int l = nearest_int(iscale * x[i]);
 | |
|                 L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
 | |
|             }
 | |
|             scale = sumlx/suml2; best = scale*sumlx;
 | |
|         }
 | |
|     }
 | |
|     return scale;
 | |
| }
 | |
| 
 | |
| static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
 | |
|     float max = 0;
 | |
|     float amax = 0;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         float ax = fabsf(x[i]);
 | |
|         if (ax > amax) { amax = ax; max = x[i]; }
 | |
|     }
 | |
|     if (!amax) { // all zero
 | |
|         for (int i = 0; i < n; ++i) { L[i] = 0; }
 | |
|         return 0.f;
 | |
|     }
 | |
|     float iscale = -nmax / max;
 | |
|     if (do_rmse) {
 | |
|         float sumlx = 0;
 | |
|         float suml2 = 0;
 | |
|         for (int i = 0; i < n; ++i) {
 | |
|             int l = nearest_int(iscale * x[i]);
 | |
|             l = MAX(-nmax, MIN(nmax-1, l));
 | |
|             L[i] = l;
 | |
|             float w = x[i]*x[i];
 | |
|             sumlx += w*x[i]*l;
 | |
|             suml2 += w*l*l;
 | |
|         }
 | |
|         for (int itry = 0; itry < 5; ++itry) {
 | |
|             int n_changed = 0;
 | |
|             for (int i = 0; i < n; ++i) {
 | |
|                 float w = x[i]*x[i];
 | |
|                 float slx = sumlx - w*x[i]*L[i];
 | |
|                 if (slx > 0) {
 | |
|                     float sl2 = suml2 - w*L[i]*L[i];
 | |
|                     int new_l = nearest_int(x[i] * sl2 / slx);
 | |
|                     new_l = MAX(-nmax, MIN(nmax-1, new_l));
 | |
|                     if (new_l != L[i]) {
 | |
|                         slx += w*x[i]*new_l;
 | |
|                         sl2 += w*new_l*new_l;
 | |
|                         if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
 | |
|                             L[i] = new_l; sumlx = slx; suml2 = sl2;
 | |
|                             ++n_changed;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (!n_changed) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         for (int i = 0; i < n; ++i) {
 | |
|             L[i] += nmax;
 | |
|         }
 | |
|         return sumlx / suml2;
 | |
|     }
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         int l = nearest_int(iscale * x[i]);
 | |
|         l = MAX(-nmax, MIN(nmax-1, l));
 | |
|         L[i] = l + nmax;
 | |
|     }
 | |
|     return 1/iscale;
 | |
| }
 | |
| 
 | |
| static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
 | |
|         int ntry, float alpha) {
 | |
|     float min = x[0];
 | |
|     float max = x[0];
 | |
|     for (int i = 1; i < n; ++i) {
 | |
|         if (x[i] < min) min = x[i];
 | |
|         if (x[i] > max) max = x[i];
 | |
|     }
 | |
|     if (max == min) {
 | |
|         for (int i = 0; i < n; ++i) L[i] = 0;
 | |
|         *the_min = 0;
 | |
|         return 0.f;
 | |
|     }
 | |
|     if (min > 0) min = 0;
 | |
|     float iscale = nmax/(max - min);
 | |
|     float scale = 1/iscale;
 | |
|     for (int itry = 0; itry < ntry; ++itry) {
 | |
|         float sumlx = 0; int suml2 = 0;
 | |
|         bool did_change = false;
 | |
|         for (int i = 0; i < n; ++i) {
 | |
|             int l = nearest_int(iscale*(x[i] - min));
 | |
|             l = MAX(0, MIN(nmax, l));
 | |
|             if (l != L[i]) {
 | |
|                 L[i] = l;
 | |
|                 did_change = true;
 | |
|             }
 | |
|             sumlx += (x[i] - min)*l;
 | |
|             suml2 += l*l;
 | |
|         }
 | |
|         scale = sumlx/suml2;
 | |
|         float sum = 0;
 | |
|         for (int i = 0; i < n; ++i) {
 | |
|             sum += x[i] - scale*L[i];
 | |
|         }
 | |
|         min = alpha*min + (1 - alpha)*sum/n;
 | |
|         if (min > 0) min = 0;
 | |
|         iscale = 1/scale;
 | |
|         if (!did_change) break;
 | |
|     }
 | |
|     *the_min = -min;
 | |
|     return scale;
 | |
| }
 | |
| 
 | |
| static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
 | |
|         uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
 | |
|         float rmin, float rdelta, int nstep, bool use_mad) {
 | |
|     float min = x[0];
 | |
|     float max = x[0];
 | |
|     float sum_w = weights[0];
 | |
|     float sum_x = sum_w * x[0];
 | |
| #ifdef HAVE_BUGGY_APPLE_LINKER
 | |
|     // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
 | |
|     for (volatile int i = 1; i < n; ++i) {
 | |
| #else
 | |
|     for (int i = 1; i < n; ++i) {
 | |
| #endif
 | |
|         if (x[i] < min) min = x[i];
 | |
|         if (x[i] > max) max = x[i];
 | |
|         float w = weights[i];
 | |
|         sum_w += w;
 | |
|         sum_x += w * x[i];
 | |
|     }
 | |
|     if (min > 0) min = 0;
 | |
|     if (max == min) {
 | |
|         for (int i = 0; i < n; ++i) L[i] = 0;
 | |
|         *the_min = -min;
 | |
|         return 0.f;
 | |
|     }
 | |
|     float iscale = nmax/(max - min);
 | |
|     float scale = 1/iscale;
 | |
|     float best_mad = 0;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         int l = nearest_int(iscale*(x[i] - min));
 | |
|         L[i] = MAX(0, MIN(nmax, l));
 | |
|         float diff = scale * L[i] + min - x[i];
 | |
|         diff = use_mad ? fabsf(diff) : diff * diff;
 | |
|         float w = weights[i];
 | |
|         best_mad += w * diff;
 | |
|     }
 | |
|     if (nstep < 1) {
 | |
|         *the_min = -min;
 | |
|         return scale;
 | |
|     }
 | |
|     for (int is = 0; is <= nstep; ++is) {
 | |
|         iscale = (rmin + rdelta*is + nmax)/(max - min);
 | |
|         float sum_l = 0, sum_l2 = 0, sum_xl = 0;
 | |
|         for (int i = 0; i < n; ++i) {
 | |
|             int l = nearest_int(iscale*(x[i] - min));
 | |
|             l = MAX(0, MIN(nmax, l));
 | |
|             Laux[i] = l;
 | |
|             float w = weights[i];
 | |
|             sum_l += w*l;
 | |
|             sum_l2 += w*l*l;
 | |
|             sum_xl += w*l*x[i];
 | |
|         }
 | |
|         float D = sum_w * sum_l2 - sum_l * sum_l;
 | |
|         if (D > 0) {
 | |
|             float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
 | |
|             float this_min   = (sum_l2 * sum_x - sum_l * sum_xl)/D;
 | |
|             if (this_min > 0) {
 | |
|                 this_min = 0;
 | |
|                 this_scale = sum_xl / sum_l2;
 | |
|             }
 | |
|             float mad = 0;
 | |
|             for (int i = 0; i < n; ++i) {
 | |
|                 float diff = this_scale * Laux[i] + this_min - x[i];
 | |
|                 diff = use_mad ? fabsf(diff) : diff * diff;
 | |
|                 float w = weights[i];
 | |
|                 mad += w * diff;
 | |
|             }
 | |
|             if (mad < best_mad) {
 | |
|                 for (int i = 0; i < n; ++i) {
 | |
|                     L[i] = Laux[i];
 | |
|                 }
 | |
|                 best_mad = mad;
 | |
|                 scale = this_scale;
 | |
|                 min = this_min;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     *the_min = -min;
 | |
|     return scale;
 | |
| }
 | |
| 
 | |
| #if QK_K == 256
 | |
| static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
 | |
|     if (j < 4) {
 | |
|         *d = q[j] & 63; *m = q[j + 4] & 63;
 | |
|     } else {
 | |
|         *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
 | |
|         *m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| //========================- 2-bit (de)-quantization
 | |
| 
 | |
| void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     uint8_t L[QK_K];
 | |
|     uint8_t Laux[16];
 | |
|     float   weights[16];
 | |
|     float mins[QK_K/16];
 | |
|     float scales[QK_K/16];
 | |
| 
 | |
|     const float q4scale = 15.f;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float max_scale = 0; // as we are deducting the min, scales are always positive
 | |
|         float max_min = 0;
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
 | |
|             scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
 | |
|             float scale = scales[j];
 | |
|             if (scale > max_scale) {
 | |
|                 max_scale = scale;
 | |
|             }
 | |
|             float min = mins[j];
 | |
|             if (min > max_min) {
 | |
|                 max_min = min;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (max_scale > 0) {
 | |
|             float iscale = q4scale/max_scale;
 | |
|             for (int j = 0; j < QK_K/16; ++j) {
 | |
|                 int l = nearest_int(iscale*scales[j]);
 | |
|                 y[i].scales[j] = l;
 | |
|             }
 | |
|             y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
 | |
|         } else {
 | |
|             for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
 | |
|             y[i].d = GGML_FP32_TO_FP16(0.f);
 | |
|         }
 | |
|         if (max_min > 0) {
 | |
|             float iscale = q4scale/max_min;
 | |
|             for (int j = 0; j < QK_K/16; ++j) {
 | |
|                 int l = nearest_int(iscale*mins[j]);
 | |
|                 y[i].scales[j] |= (l << 4);
 | |
|             }
 | |
|             y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
 | |
|         } else {
 | |
|             y[i].dmin = GGML_FP32_TO_FP16(0.f);
 | |
|         }
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
 | |
|             if (!d) continue;
 | |
|             const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
 | |
|             for (int ii = 0; ii < 16; ++ii) {
 | |
|                 int l = nearest_int((x[16*j + ii] + dm)/d);
 | |
|                 l = MAX(0, MIN(3, l));
 | |
|                 L[16*j + ii] = l;
 | |
|             }
 | |
|         }
 | |
| 
 | |
| #if QK_K == 256
 | |
|         for (int j = 0; j < QK_K; j += 128) {
 | |
|             for (int l = 0; l < 32; ++l) {
 | |
|                 y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
 | |
|             }
 | |
|         }
 | |
| #else
 | |
|         for (int l = 0; l < 16; ++l) {
 | |
|             y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         x += QK_K;
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float min = GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         const uint8_t * q = x[i].qs;
 | |
| 
 | |
| #if QK_K == 256
 | |
|         int is = 0;
 | |
|         float dl, ml;
 | |
|         for (int n = 0; n < QK_K; n += 128) {
 | |
|             int shift = 0;
 | |
|             for (int j = 0; j < 4; ++j) {
 | |
| 
 | |
|                 uint8_t sc = x[i].scales[is++];
 | |
|                 dl = d * (sc & 0xF); ml = min * (sc >> 4);
 | |
|                 for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
 | |
| 
 | |
|                 sc = x[i].scales[is++];
 | |
|                 dl = d * (sc & 0xF); ml = min * (sc >> 4);
 | |
|                 for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
 | |
| 
 | |
|                 shift += 2;
 | |
|             }
 | |
|             q += 32;
 | |
|         }
 | |
| #else
 | |
|         float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
 | |
|         float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
 | |
|         float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
 | |
|         float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
 | |
|         for (int l = 0; l < 16; ++l) {
 | |
|             y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
 | |
|             y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
 | |
|             y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
 | |
|             y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
 | |
|         }
 | |
|         y += QK_K;
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
 | |
|     quantize_row_q2_K_reference(x, vy, k);
 | |
| }
 | |
| 
 | |
| static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
 | |
|         uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
 | |
|         float rmin, float rdelta, int nstep, bool use_mad) {
 | |
|     float min = x[0];
 | |
|     float max = x[0];
 | |
|     float sum_w = weights ? weights[0] : x[0]*x[0];
 | |
|     float sum_x = sum_w * x[0];
 | |
| #ifdef HAVE_BUGGY_APPLE_LINKER
 | |
|     // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
 | |
|     for (volatile int i = 1; i < n; ++i) {
 | |
| #else
 | |
|     for (int i = 1; i < n; ++i) {
 | |
| #endif
 | |
|         if (x[i] < min) min = x[i];
 | |
|         if (x[i] > max) max = x[i];
 | |
|         float w = weights ? weights[i] : x[i]*x[i];
 | |
|         sum_w += w;
 | |
|         sum_x += w * x[i];
 | |
|     }
 | |
|     if (min > 0) {
 | |
|         min = 0;
 | |
|     }
 | |
|     if (max <= min) {
 | |
|         memset(L, 0, n);
 | |
|         *the_min = -min;
 | |
|         return 0.f;
 | |
|     }
 | |
|     float iscale = nmax/(max - min);
 | |
|     float scale = 1/iscale;
 | |
|     float best_mad = 0;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         int l = nearest_int(iscale*(x[i] - min));
 | |
|         L[i] = MAX(0, MIN(nmax, l));
 | |
|         float diff = scale * L[i] + min - x[i];
 | |
|         diff = use_mad ? fabsf(diff) : diff*diff;
 | |
|         float w = weights ? weights[i] : x[i]*x[i];
 | |
|         best_mad += w * diff;
 | |
|     }
 | |
|     if (nstep < 1) {
 | |
|         *the_min = -min;
 | |
|         return scale;
 | |
|     }
 | |
|     for (int is = 0; is <= nstep; ++is) {
 | |
|         iscale = (rmin + rdelta*is + nmax)/(max - min);
 | |
|         float sum_l = 0, sum_l2 = 0, sum_xl = 0;
 | |
|         for (int i = 0; i < n; ++i) {
 | |
|             int l = nearest_int(iscale*(x[i] - min));
 | |
|             l = MAX(0, MIN(nmax, l));
 | |
|             Laux[i] = l;
 | |
|             float w = weights ? weights[i] : x[i]*x[i];
 | |
|             sum_l  += w*l;
 | |
|             sum_l2 += w*l*l;
 | |
|             sum_xl += w*l*x[i];
 | |
|         }
 | |
|         float D = sum_w * sum_l2 - sum_l * sum_l;
 | |
|         if (D > 0) {
 | |
|             float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
 | |
|             float this_min   = (sum_l2 * sum_x - sum_l * sum_xl)/D;
 | |
|             if (this_min > 0) {
 | |
|                 this_min = 0;
 | |
|                 this_scale = sum_xl / sum_l2;
 | |
|             }
 | |
|             float mad = 0;
 | |
|             for (int i = 0; i < n; ++i) {
 | |
|                 float diff = this_scale * Laux[i] + this_min - x[i];
 | |
|                 diff = use_mad ? fabsf(diff) : diff*diff;
 | |
|                 float w = weights ? weights[i] : x[i]*x[i];
 | |
|                 mad += w * diff;
 | |
|             }
 | |
|             if (mad < best_mad) {
 | |
|                 for (int i = 0; i < n; ++i) {
 | |
|                     L[i] = Laux[i];
 | |
|                 }
 | |
|                 best_mad = mad;
 | |
|                 scale = this_scale;
 | |
|                 min = this_min;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     *the_min = -min;
 | |
|     return scale;
 | |
| }
 | |
| 
 | |
| static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
 | |
|     float max = 0;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         max = MAX(max, x[i]);
 | |
|     }
 | |
|     if (!max) { // all zero
 | |
|         for (int i = 0; i < n; ++i) { L[i] = 0; }
 | |
|         return 0.f;
 | |
|     }
 | |
|     float iscale = nmax / max;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         L[i] = nearest_int(iscale * x[i]);
 | |
|     }
 | |
|     float scale = 1/iscale;
 | |
|     float best_mse = 0;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         float diff = x[i] - scale*L[i];
 | |
|         float w = quant_weights[i];
 | |
|         best_mse += w*diff*diff;
 | |
|     }
 | |
|     for (int is = -4; is <= 4; ++is) {
 | |
|         if (is == 0) continue;
 | |
|         float iscale_is = (0.1f*is + nmax)/max;
 | |
|         float scale_is = 1/iscale_is;
 | |
|         float mse = 0;
 | |
|         for (int i = 0; i < n; ++i) {
 | |
|             int l = nearest_int(iscale_is*x[i]);
 | |
|             l = MIN(nmax, l);
 | |
|             float diff = x[i] - scale_is*l;
 | |
|             float w = quant_weights[i];
 | |
|             mse += w*diff*diff;
 | |
|         }
 | |
|         if (mse < best_mse) {
 | |
|             best_mse = mse;
 | |
|             iscale = iscale_is;
 | |
|         }
 | |
|     }
 | |
|     float sumlx = 0;
 | |
|     float suml2 = 0;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         int l = nearest_int(iscale * x[i]);
 | |
|         l = MIN(nmax, l);
 | |
|         L[i] = l;
 | |
|         float w = quant_weights[i];
 | |
|         sumlx += w*x[i]*l;
 | |
|         suml2 += w*l*l;
 | |
|     }
 | |
|     for (int itry = 0; itry < 5; ++itry) {
 | |
|         int n_changed = 0;
 | |
|         for (int i = 0; i < n; ++i) {
 | |
|             float w = quant_weights[i];
 | |
|             float slx = sumlx - w*x[i]*L[i];
 | |
|             float sl2 = suml2 - w*L[i]*L[i];
 | |
|             if (slx > 0 && sl2 > 0) {
 | |
|                 int new_l = nearest_int(x[i] * sl2 / slx);
 | |
|                 new_l = MIN(nmax, new_l);
 | |
|                 if (new_l != L[i]) {
 | |
|                     slx += w*x[i]*new_l;
 | |
|                     sl2 += w*new_l*new_l;
 | |
|                     if (slx*slx*suml2 > sumlx*sumlx*sl2) {
 | |
|                         L[i] = new_l; sumlx = slx; suml2 = sl2;
 | |
|                         ++n_changed;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (!n_changed) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return sumlx / suml2;
 | |
| }
 | |
| 
 | |
| static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
 | |
|     GGML_ASSERT(quant_weights);
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
|     const bool requantize = true;
 | |
| 
 | |
|     uint8_t L[QK_K];
 | |
|     uint8_t Laux[16];
 | |
|     float mins[QK_K/16];
 | |
|     float scales[QK_K/16];
 | |
|     float sw[QK_K/16];
 | |
|     float weight[16];
 | |
|     uint8_t Ls[QK_K/16], Lm[QK_K/16];
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         memset(sw, 0, QK_K/16*sizeof(float));
 | |
|         float sumx2 = 0;
 | |
|         for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
 | |
|         float sigma2 = sumx2/QK_K;
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             const float * restrict qw = quant_weights + QK_K * i + 16*j;
 | |
|             for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
 | |
|             for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
 | |
|             scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
 | |
|         }
 | |
| 
 | |
|         float dm, mm;
 | |
| #if QK_K == 64
 | |
|         float max_scale = 0, max_min = 0;
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             max_scale = MAX(max_scale, scales[j]);
 | |
|             max_min   = MAX(max_min,   mins[j]);
 | |
|         }
 | |
|         dm = max_scale/15;
 | |
|         mm = max_min/15;
 | |
|         if (max_scale) {
 | |
|             float id = 1/dm;
 | |
|             for (int j = 0; j < QK_K/16; ++j) {
 | |
|                 int l = nearest_int(id*scales[j]);
 | |
|                 Ls[j] = MAX(0, MIN(15, l));
 | |
|             }
 | |
|         } else {
 | |
|             memset(Ls, 0, QK_K/16);
 | |
|         }
 | |
|         if (max_min) {
 | |
|             float id = 1/mm;
 | |
|             for (int j = 0; j < QK_K/16; ++j) {
 | |
|                 int l = nearest_int(id*mins[j]);
 | |
|                 Lm[j] = MAX(0, MIN(15, l));
 | |
|             }
 | |
|         } else {
 | |
|             memset(Lm, 0, QK_K/16);
 | |
|         }
 | |
| #else
 | |
|         dm  = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
 | |
|         mm  = make_qp_quants(QK_K/16, 15, mins,   Lm, sw);
 | |
| #endif
 | |
|         y[i].d    = GGML_FP32_TO_FP16(dm);
 | |
|         y[i].dmin = GGML_FP32_TO_FP16(mm);
 | |
|         dm        = GGML_FP16_TO_FP32(y[i].d);
 | |
|         mm        = GGML_FP16_TO_FP32(y[i].dmin);
 | |
| 
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             y[i].scales[j] = Ls[j] | (Lm[j] << 4);
 | |
|         }
 | |
| 
 | |
|         if (requantize) {
 | |
|             for (int j = 0; j < QK_K/16; ++j) {
 | |
|                 const float d = dm * (y[i].scales[j] & 0xF);
 | |
|                 if (!d) continue;
 | |
|                 const float m = mm * (y[i].scales[j] >> 4);
 | |
|                 for (int ii = 0; ii < 16; ++ii) {
 | |
|                     int l = nearest_int((x[16*j + ii] + m)/d);
 | |
|                     l = MAX(0, MIN(3, l));
 | |
|                     L[16*j + ii] = l;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
| #if QK_K == 256
 | |
|         for (int j = 0; j < QK_K; j += 128) {
 | |
|             for (int l = 0; l < 32; ++l) {
 | |
|                 y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
 | |
|             }
 | |
|         }
 | |
| #else
 | |
|         for (int l = 0; l < 16; ++l) {
 | |
|             y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         x += QK_K;
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t quantize_q2_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
 | |
|     if (!quant_weights) {
 | |
|         quantize_row_q2_K_reference(src, dst, nrow*n_per_row);
 | |
|     }
 | |
|     else {
 | |
|         char * qrow = (char *)dst;
 | |
|         for (int row = 0; row < nrow; ++row) {
 | |
|             quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
 | |
|             src += n_per_row;
 | |
|             qrow += row_size;
 | |
|         }
 | |
|     }
 | |
|     return nrow * row_size;
 | |
| }
 | |
| 
 | |
| //========================= 3-bit (de)-quantization
 | |
| 
 | |
| void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     int8_t L[QK_K];
 | |
|     float scales[QK_K / 16];
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         float max_scale = 0;
 | |
|         float amax = 0;
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
 | |
|             float scale = fabsf(scales[j]);
 | |
|             if (scale > amax) {
 | |
|                 amax = scale; max_scale = scales[j];
 | |
|             }
 | |
|         }
 | |
| 
 | |
| #if QK_K == 256
 | |
|         memset(y[i].scales, 0, 12);
 | |
|         if (max_scale) {
 | |
|             float iscale = -32.f/max_scale;
 | |
|             for (int j = 0; j < QK_K/16; ++j) {
 | |
|                 int8_t l = nearest_int(iscale*scales[j]);
 | |
|                 l = MAX(-32, MIN(31, l)) + 32;
 | |
|                 if (j < 8) {
 | |
|                     y[i].scales[j] = l & 0xF;
 | |
|                 } else {
 | |
|                     y[i].scales[j-8] |= ((l & 0xF) << 4);
 | |
|                 }
 | |
|                 l >>= 4;
 | |
|                 y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
 | |
|             }
 | |
|             y[i].d = GGML_FP32_TO_FP16(1/iscale);
 | |
|         } else {
 | |
|             y[i].d = GGML_FP32_TO_FP16(0.f);
 | |
|         }
 | |
| 
 | |
|         int8_t sc;
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
 | |
|             sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
 | |
|             float d = GGML_FP16_TO_FP32(y[i].d) * sc;
 | |
|             if (!d) {
 | |
|                 continue;
 | |
|             }
 | |
|             for (int ii = 0; ii < 16; ++ii) {
 | |
|                 int l = nearest_int(x[16*j + ii]/d);
 | |
|                 l = MAX(-4, MIN(3, l));
 | |
|                 L[16*j + ii] = l + 4;
 | |
|             }
 | |
|         }
 | |
| #else
 | |
|         if (max_scale) {
 | |
|             float iscale = -8.f/max_scale;
 | |
|             for (int j = 0; j < QK_K/16; j+=2) {
 | |
|                 int l1 = nearest_int(iscale*scales[j]);
 | |
|                 l1 = 8 + MAX(-8, MIN(7, l1));
 | |
|                 int l2 = nearest_int(iscale*scales[j+1]);
 | |
|                 l2 = 8 + MAX(-8, MIN(7, l2));
 | |
|                 y[i].scales[j/2] = l1 | (l2 << 4);
 | |
|             }
 | |
|             y[i].d = GGML_FP32_TO_FP16(1/iscale);
 | |
|         } else {
 | |
|             for (int j = 0; j < QK_K/16; j+=2) {
 | |
|                 y[i].scales[j/2] = 0;
 | |
|             }
 | |
|             y[i].d = GGML_FP32_TO_FP16(0.f);
 | |
|         }
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
 | |
|             float d = GGML_FP16_TO_FP32(y[i].d) * (s - 8);
 | |
|             if (!d) {
 | |
|                 continue;
 | |
|             }
 | |
|             for (int ii = 0; ii < 16; ++ii) {
 | |
|                 int l = nearest_int(x[16*j + ii]/d);
 | |
|                 l = MAX(-4, MIN(3, l));
 | |
|                 L[16*j + ii] = l + 4;
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         memset(y[i].hmask, 0, QK_K/8);
 | |
|         // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
 | |
|         int m = 0;
 | |
|         uint8_t hm = 1;
 | |
|         for (int j = 0; j < QK_K; ++j) {
 | |
|             if (L[j] > 3) {
 | |
|                 y[i].hmask[m] |= hm;
 | |
|                 L[j] -= 4;
 | |
|             }
 | |
|             if (++m == QK_K/8) {
 | |
|                 m = 0; hm <<= 1;
 | |
|             }
 | |
|         }
 | |
| #if QK_K == 256
 | |
|         for (int j = 0; j < QK_K; j += 128) {
 | |
|             for (int l = 0; l < 32; ++l) {
 | |
|                 y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
 | |
|             }
 | |
|         }
 | |
| #else
 | |
|         for (int l = 0; l < 16; ++l) {
 | |
|             y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         x += QK_K;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if QK_K == 256
 | |
| void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     const uint32_t kmask1 = 0x03030303;
 | |
|     const uint32_t kmask2 = 0x0f0f0f0f;
 | |
| 
 | |
|     uint32_t aux[4];
 | |
|     const int8_t * scales = (const int8_t*)aux;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const float d_all = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict q = x[i].qs;
 | |
|         const uint8_t * restrict hm = x[i].hmask;
 | |
|         uint8_t m = 1;
 | |
| 
 | |
|         memcpy(aux, x[i].scales, 12);
 | |
|         uint32_t tmp = aux[2];
 | |
|         aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
 | |
|         aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
 | |
|         aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
 | |
|         aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
 | |
| 
 | |
|         int is = 0;
 | |
|         float dl;
 | |
|         for (int n = 0; n < QK_K; n += 128) {
 | |
|             int shift = 0;
 | |
|             for (int j = 0; j < 4; ++j) {
 | |
| 
 | |
|                 dl = d_all * (scales[is++] - 32);
 | |
|                 for (int l = 0; l < 16; ++l) {
 | |
|                     *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
 | |
|                 }
 | |
| 
 | |
|                 dl = d_all * (scales[is++] - 32);
 | |
|                 for (int l = 0; l < 16; ++l) {
 | |
|                     *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
 | |
|                 }
 | |
| 
 | |
|                 shift += 2;
 | |
|                 m <<= 1;
 | |
|             }
 | |
|             q += 32;
 | |
|         }
 | |
| 
 | |
|     }
 | |
| }
 | |
| #else
 | |
| void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     assert(QK_K == 64);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const float d_all = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict q = x[i].qs;
 | |
|         const uint8_t * restrict hm = x[i].hmask;
 | |
| 
 | |
|         const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
 | |
|         const float d2 = d_all * ((x[i].scales[0] >>  4) - 8);
 | |
|         const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
 | |
|         const float d4 = d_all * ((x[i].scales[1] >>  4) - 8);
 | |
| 
 | |
|         for (int l=0; l<8; ++l) {
 | |
|             uint8_t h = hm[l];
 | |
|             y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
 | |
|             y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
 | |
|             y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
 | |
|             y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
 | |
|             y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
 | |
|             y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
 | |
|             y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
 | |
|             y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
 | |
|         }
 | |
|         y += QK_K;
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
 | |
|     quantize_row_q3_K_reference(x, vy, k);
 | |
| }
 | |
| 
 | |
| static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int n_per_row, const float * restrict quant_weights) {
 | |
| #if QK_K != 256
 | |
|     (void)quant_weights;
 | |
|     quantize_row_q3_K_reference(x, y, n_per_row);
 | |
| #else
 | |
|     assert(n_per_row % QK_K == 0);
 | |
|     const int nb = n_per_row / QK_K;
 | |
| 
 | |
|     int8_t L[QK_K];
 | |
|     float scales[QK_K / 16];
 | |
|     float weight[16];
 | |
|     float sw[QK_K / 16];
 | |
|     int8_t Ls[QK_K / 16];
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         float sumx2 = 0;
 | |
|         for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
 | |
|         float sigma2 = 2*sumx2/QK_K;
 | |
| 
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             if (quant_weights) {
 | |
|                 const float * qw = quant_weights ? quant_weights + QK_K * i + 16*j : NULL;
 | |
|                 for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
 | |
|             } else {
 | |
|                 for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
 | |
|             }
 | |
|             float sumw = 0;
 | |
|             for (int l = 0; l < 16; ++l) sumw += weight[l];
 | |
|             sw[j] = sumw;
 | |
| 
 | |
|             scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
 | |
| 
 | |
|         }
 | |
| 
 | |
|         memset(y[i].scales, 0, 12);
 | |
| 
 | |
|         float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             int l = Ls[j];
 | |
|             if (j < 8) {
 | |
|                 y[i].scales[j] = l & 0xF;
 | |
|             } else {
 | |
|                 y[i].scales[j-8] |= ((l & 0xF) << 4);
 | |
|             }
 | |
|             l >>= 4;
 | |
|             y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
 | |
|         }
 | |
|         y[i].d = GGML_FP32_TO_FP16(d_block);
 | |
| 
 | |
|         int8_t sc;
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
 | |
|             sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
 | |
|             float d = GGML_FP16_TO_FP32(y[i].d) * sc;
 | |
|             if (!d) {
 | |
|                 continue;
 | |
|             }
 | |
|             for (int ii = 0; ii < 16; ++ii) {
 | |
|                 int l = nearest_int(x[16*j + ii]/d);
 | |
|                 l = MAX(-4, MIN(3, l));
 | |
|                 L[16*j + ii] = l + 4;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         memset(y[i].hmask, 0, QK_K/8);
 | |
|         // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
 | |
|         int m = 0;
 | |
|         uint8_t hm = 1;
 | |
|         for (int j = 0; j < QK_K; ++j) {
 | |
|             if (L[j] > 3) {
 | |
|                 y[i].hmask[m] |= hm;
 | |
|                 L[j] -= 4;
 | |
|             }
 | |
|             if (++m == QK_K/8) {
 | |
|                 m = 0; hm <<= 1;
 | |
|             }
 | |
|         }
 | |
|         for (int j = 0; j < QK_K; j += 128) {
 | |
|             for (int l = 0; l < 32; ++l) {
 | |
|                 y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         x += QK_K;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| size_t quantize_q3_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
 | |
|     if (!quant_weights) {
 | |
|         quantize_row_q3_K_reference(src, dst, nrow*n_per_row);
 | |
|     }
 | |
|     else {
 | |
|         char * qrow = (char *)dst;
 | |
|         for (int row = 0; row < nrow; ++row) {
 | |
|             quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
 | |
|             src += n_per_row;
 | |
|             qrow += row_size;
 | |
|         }
 | |
|     }
 | |
|     return nrow * row_size;
 | |
| }
 | |
| 
 | |
| // ====================== 4-bit (de)-quantization
 | |
| 
 | |
| void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     uint8_t L[QK_K];
 | |
|     uint8_t Laux[32];
 | |
|     float   weights[32];
 | |
|     float mins[QK_K/32];
 | |
|     float scales[QK_K/32];
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         float max_scale = 0; // as we are deducting the min, scales are always positive
 | |
|         float max_min = 0;
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
 | |
|             float sum_x2 = 0;
 | |
|             for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
 | |
|             float av_x = sqrtf(sum_x2/32);
 | |
|             for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
 | |
|             scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
 | |
|             float scale = scales[j];
 | |
|             if (scale > max_scale) {
 | |
|                 max_scale = scale;
 | |
|             }
 | |
|             float min = mins[j];
 | |
|             if (min > max_min) {
 | |
|                 max_min = min;
 | |
|             }
 | |
|         }
 | |
| 
 | |
| #if QK_K == 256
 | |
|         float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
 | |
|         float inv_min   = max_min   > 0 ? 63.f/max_min   : 0.f;
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             uint8_t ls = nearest_int(inv_scale*scales[j]);
 | |
|             uint8_t lm = nearest_int(inv_min*mins[j]);
 | |
|             ls = MIN(63, ls);
 | |
|             lm = MIN(63, lm);
 | |
|             if (j < 4) {
 | |
|                 y[i].scales[j] = ls;
 | |
|                 y[i].scales[j+4] = lm;
 | |
|             } else {
 | |
|                 y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
 | |
|                 y[i].scales[j-4] |= ((ls >> 4) << 6);
 | |
|                 y[i].scales[j-0] |= ((lm >> 4) << 6);
 | |
|             }
 | |
|         }
 | |
|         y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
 | |
|         y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
 | |
| 
 | |
|         uint8_t sc, m;
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             get_scale_min_k4(j, y[i].scales, &sc, &m);
 | |
|             const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
 | |
|             if (!d) continue;
 | |
|             const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
 | |
|             for (int ii = 0; ii < 32; ++ii) {
 | |
|                 int l = nearest_int((x[32*j + ii] + dm)/d);
 | |
|                 l = MAX(0, MIN(15, l));
 | |
|                 L[32*j + ii] = l;
 | |
|             }
 | |
|         }
 | |
| #else
 | |
|         const float s_factor = 15.f;
 | |
|         float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
 | |
|         float inv_min   = max_min   > 0 ? s_factor/max_min   : 0.f;
 | |
|         int d1 = nearest_int(inv_scale*scales[0]);
 | |
|         int m1 = nearest_int(inv_min*mins[0]);
 | |
|         int d2 = nearest_int(inv_scale*scales[1]);
 | |
|         int m2 = nearest_int(inv_min*mins[1]);
 | |
|         y[i].scales[0] = d1 | (m1 << 4);
 | |
|         y[i].scales[1] = d2 | (m2 << 4);
 | |
|         y[i].d[0] = GGML_FP32_TO_FP16(max_scale/s_factor);
 | |
|         y[i].d[1] = GGML_FP32_TO_FP16(max_min/s_factor);
 | |
| 
 | |
|         float sumlx = 0;
 | |
|         int   suml2 = 0;
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             const uint8_t sd = y[i].scales[j] & 0xF;
 | |
|             const uint8_t sm = y[i].scales[j] >>  4;
 | |
|             const float d = GGML_FP16_TO_FP32(y[i].d[0]) * sd;
 | |
|             if (!d) continue;
 | |
|             const float m = GGML_FP16_TO_FP32(y[i].d[1]) * sm;
 | |
|             for (int ii = 0; ii < 32; ++ii) {
 | |
|                 int l = nearest_int((x[32*j + ii] + m)/d);
 | |
|                 l = MAX(0, MIN(15, l));
 | |
|                 L[32*j + ii] = l;
 | |
|                 sumlx += (x[32*j + ii] + m)*l*sd;
 | |
|                 suml2 += l*l*sd*sd;
 | |
|             }
 | |
|         }
 | |
|         if (suml2) {
 | |
|             y[i].d[0] = GGML_FP32_TO_FP16(sumlx/suml2);
 | |
|         }
 | |
| #endif
 | |
|         uint8_t * q = y[i].qs;
 | |
|         for (int j = 0; j < QK_K; j += 64) {
 | |
|             for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
 | |
|             q += 32;
 | |
|         }
 | |
| 
 | |
|         x += QK_K;
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const uint8_t * q = x[i].qs;
 | |
| 
 | |
| #if QK_K == 256
 | |
| 
 | |
|         const float d   = GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float min = GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         int is = 0;
 | |
|         uint8_t sc, m;
 | |
|         for (int j = 0; j < QK_K; j += 64) {
 | |
|             get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
 | |
|             const float d1 = d * sc; const float m1 = min * m;
 | |
|             get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
 | |
|             const float d2 = d * sc; const float m2 = min * m;
 | |
|             for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
 | |
|             for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l]  >> 4) - m2;
 | |
|             q += 32; is += 2;
 | |
|         }
 | |
| #else
 | |
|         const float dall = GGML_FP16_TO_FP32(x[i].d[0]);
 | |
|         const float mall = GGML_FP16_TO_FP32(x[i].d[1]);
 | |
|         const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
 | |
|         const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
 | |
|         for (int l = 0; l < 32; ++l) {
 | |
|             y[l+ 0] = d1 * (q[l] & 0xF) - m1;
 | |
|             y[l+32] = d2 * (q[l] >>  4) - m2;
 | |
|         }
 | |
|         y += QK_K;
 | |
| #endif
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     block_q4_K * restrict y = vy;
 | |
|     quantize_row_q4_K_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int n_per_row, const float * quant_weights) {
 | |
| #if QK_K != 256
 | |
|     (void)quant_weights;
 | |
|     quantize_row_q4_K_reference(x, y, n_per_row);
 | |
| #else
 | |
|     assert(n_per_row % QK_K == 0);
 | |
|     const int nb = n_per_row / QK_K;
 | |
| 
 | |
|     uint8_t L[QK_K];
 | |
|     uint8_t Laux[32];
 | |
|     uint8_t Ls[QK_K/32];
 | |
|     uint8_t Lm[QK_K/32];
 | |
|     float   weights[32];
 | |
|     float   sw[QK_K/32];
 | |
|     float   mins[QK_K/32];
 | |
|     float   scales[QK_K/32];
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         float sum_x2 = 0;
 | |
|         for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
 | |
|         float sigma2 = 2*sum_x2/QK_K;
 | |
|         float av_x = sqrtf(sigma2);
 | |
| 
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             if (quant_weights) {
 | |
|                 const float * qw = quant_weights + QK_K*i + 32*j;
 | |
|                 for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
 | |
|             } else {
 | |
|                 for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
 | |
|             }
 | |
|             float sumw = 0;
 | |
|             for (int l = 0; l < 32; ++l) sumw += weights[l];
 | |
|             sw[j] = sumw;
 | |
|             scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
 | |
|         }
 | |
| 
 | |
|         float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
 | |
|         float m_block = make_qp_quants(QK_K/32, 63, mins,   Lm, sw);
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             uint8_t ls = Ls[j];
 | |
|             uint8_t lm = Lm[j];
 | |
|             if (j < 4) {
 | |
|                 y[i].scales[j] = ls;
 | |
|                 y[i].scales[j+4] = lm;
 | |
|             } else {
 | |
|                 y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
 | |
|                 y[i].scales[j-4] |= ((ls >> 4) << 6);
 | |
|                 y[i].scales[j-0] |= ((lm >> 4) << 6);
 | |
|             }
 | |
|         }
 | |
|         y[i].d = GGML_FP32_TO_FP16(d_block);
 | |
|         y[i].dmin = GGML_FP32_TO_FP16(m_block);
 | |
| 
 | |
|         uint8_t sc, m;
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             get_scale_min_k4(j, y[i].scales, &sc, &m);
 | |
|             const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
 | |
|             if (!d) continue;
 | |
|             const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
 | |
|             for (int ii = 0; ii < 32; ++ii) {
 | |
|                 int l = nearest_int((x[32*j + ii] + dm)/d);
 | |
|                 l = MAX(0, MIN(15, l));
 | |
|                 L[32*j + ii] = l;
 | |
|             }
 | |
|         }
 | |
|         uint8_t * q = y[i].qs;
 | |
|         for (int j = 0; j < QK_K; j += 64) {
 | |
|             for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
 | |
|             q += 32;
 | |
|         }
 | |
| 
 | |
|         x += QK_K;
 | |
| 
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| size_t quantize_q4_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
 | |
|     if (!quant_weights) {
 | |
|         quantize_row_q4_K_reference(src, dst, nrow*n_per_row);
 | |
|     }
 | |
|     else {
 | |
|         char * qrow = (char *)dst;
 | |
|         for (int row = 0; row < nrow; ++row) {
 | |
|             quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
 | |
|             src += n_per_row;
 | |
|             qrow += row_size;
 | |
|         }
 | |
|     }
 | |
|     return nrow * row_size;
 | |
| }
 | |
| 
 | |
| // ====================== 5-bit (de)-quantization
 | |
| 
 | |
| void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
| #if QK_K == 256
 | |
|     uint8_t L[QK_K];
 | |
|     float mins[QK_K/32];
 | |
|     float scales[QK_K/32];
 | |
|     float weights[32];
 | |
|     uint8_t Laux[32];
 | |
| #else
 | |
|     int8_t L[QK_K];
 | |
|     float scales[QK_K/16];
 | |
| #endif
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
| #if QK_K == 256
 | |
| 
 | |
|         float max_scale = 0; // as we are deducting the min, scales are always positive
 | |
|         float max_min = 0;
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
 | |
|             float sum_x2 = 0;
 | |
|             for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
 | |
|             float av_x = sqrtf(sum_x2/32);
 | |
|             for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
 | |
|             scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
 | |
|             float scale = scales[j];
 | |
|             if (scale > max_scale) {
 | |
|                 max_scale = scale;
 | |
|             }
 | |
|             float min = mins[j];
 | |
|             if (min > max_min) {
 | |
|                 max_min = min;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
 | |
|         float inv_min   = max_min   > 0 ? 63.f/max_min   : 0.f;
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             uint8_t ls = nearest_int(inv_scale*scales[j]);
 | |
|             uint8_t lm = nearest_int(inv_min*mins[j]);
 | |
|             ls = MIN(63, ls);
 | |
|             lm = MIN(63, lm);
 | |
|             if (j < 4) {
 | |
|                 y[i].scales[j] = ls;
 | |
|                 y[i].scales[j+4] = lm;
 | |
|             } else {
 | |
|                 y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
 | |
|                 y[i].scales[j-4] |= ((ls >> 4) << 6);
 | |
|                 y[i].scales[j-0] |= ((lm >> 4) << 6);
 | |
|             }
 | |
|         }
 | |
|         y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
 | |
|         y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
 | |
| 
 | |
|         uint8_t sc, m;
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             get_scale_min_k4(j, y[i].scales, &sc, &m);
 | |
|             const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
 | |
|             if (!d) continue;
 | |
|             const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
 | |
|             for (int ii = 0; ii < 32; ++ii) {
 | |
|                 int l = nearest_int((x[32*j + ii] + dm)/d);
 | |
|                 l = MAX(0, MIN(31, l));
 | |
|                 L[32*j + ii] = l;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         uint8_t * restrict qh = y[i].qh;
 | |
|         uint8_t * restrict ql = y[i].qs;
 | |
|         memset(qh, 0, QK_K/8);
 | |
| 
 | |
|         uint8_t m1 = 1, m2 = 2;
 | |
|         for (int n = 0; n < QK_K; n += 64) {
 | |
|             for (int j = 0; j < 32; ++j) {
 | |
|                 int l1 = L[n + j];
 | |
|                 if (l1 > 15) {
 | |
|                     l1 -= 16; qh[j] |= m1;
 | |
|                 }
 | |
|                 int l2 = L[n + j + 32];
 | |
|                 if (l2 > 15) {
 | |
|                     l2 -= 16; qh[j] |= m2;
 | |
|                 }
 | |
|                 ql[j] = l1 | (l2 << 4);
 | |
|             }
 | |
|             m1 <<= 2; m2 <<= 2;
 | |
|             ql += 32;
 | |
|         }
 | |
| #else
 | |
|         float max_scale = 0, amax = 0;
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL);
 | |
|             float abs_scale = fabsf(scales[j]);
 | |
|             if (abs_scale > amax) {
 | |
|                 amax = abs_scale;
 | |
|                 max_scale = scales[j];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         float iscale = -128.f/max_scale;
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             int l = nearest_int(iscale*scales[j]);
 | |
|             y[i].scales[j] = MAX(-128, MIN(127, l));
 | |
|         }
 | |
|         y[i].d = GGML_FP32_TO_FP16(1/iscale);
 | |
| 
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             const float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
 | |
|             if (!d) continue;
 | |
|             for (int ii = 0; ii < 16; ++ii) {
 | |
|                 int l = nearest_int(x[16*j + ii]/d);
 | |
|                 l = MAX(-16, MIN(15, l));
 | |
|                 L[16*j + ii] = l + 16;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         uint8_t * restrict qh = y[i].qh;
 | |
|         uint8_t * restrict ql = y[i].qs;
 | |
|         memset(qh, 0, QK_K/8);
 | |
| 
 | |
|         for (int j = 0; j < 32; ++j) {
 | |
|             int jm = j%8;
 | |
|             int is = j/8;
 | |
|             int l1 = L[j];
 | |
|             if (l1 > 15) {
 | |
|                 l1 -= 16; qh[jm] |= (1 << is);
 | |
|             }
 | |
|             int l2 = L[j + 32];
 | |
|             if (l2 > 15) {
 | |
|                 l2 -= 16; qh[jm] |= (1 << (4 + is));
 | |
|             }
 | |
|             ql[j] = l1 | (l2 << 4);
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         x += QK_K;
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const uint8_t * ql = x[i].qs;
 | |
|         const uint8_t * qh = x[i].qh;
 | |
| 
 | |
| #if QK_K == 256
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float min = GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         int is = 0;
 | |
|         uint8_t sc, m;
 | |
|         uint8_t u1 = 1, u2 = 2;
 | |
|         for (int j = 0; j < QK_K; j += 64) {
 | |
|             get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
 | |
|             const float d1 = d * sc; const float m1 = min * m;
 | |
|             get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
 | |
|             const float d2 = d * sc; const float m2 = min * m;
 | |
|             for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
 | |
|             for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l]  >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
 | |
|             ql += 32; is += 2;
 | |
|             u1 <<= 2; u2 <<= 2;
 | |
|         }
 | |
| #else
 | |
|         float d = GGML_FP16_TO_FP32(x[i].d);
 | |
|         const int8_t * restrict s = x[i].scales;
 | |
|         for (int l = 0; l < 8; ++l) {
 | |
|             y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
 | |
|             y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
 | |
|             y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
 | |
|             y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
 | |
|             y[l+32] = d * s[2] * ((ql[l+ 0] >>  4) - (qh[l] & 0x10 ? 0 : 16));
 | |
|             y[l+40] = d * s[2] * ((ql[l+ 8] >>  4) - (qh[l] & 0x20 ? 0 : 16));
 | |
|             y[l+48] = d * s[3] * ((ql[l+16] >>  4) - (qh[l] & 0x40 ? 0 : 16));
 | |
|             y[l+56] = d * s[3] * ((ql[l+24] >>  4) - (qh[l] & 0x80 ? 0 : 16));
 | |
|         }
 | |
|         y += QK_K;
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     block_q5_K * restrict y = vy;
 | |
|     quantize_row_q5_K_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int n_per_row, const float * quant_weights) {
 | |
| #if QK_K != 256
 | |
|     (void)quant_weights;
 | |
|     quantize_row_q5_K_reference(x, y, n_per_row);
 | |
| #else
 | |
|     assert(n_per_row % QK_K == 0);
 | |
|     const int nb = n_per_row / QK_K;
 | |
| 
 | |
|     uint8_t L[QK_K];
 | |
|     uint8_t Laux[32];
 | |
|     uint8_t Ls[QK_K/32];
 | |
|     uint8_t Lm[QK_K/32];
 | |
|     float   mins[QK_K/32];
 | |
|     float   scales[QK_K/32];
 | |
|     float   sw[QK_K/32];
 | |
|     float   weights[32];
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         float sum_x2 = 0;
 | |
|         for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
 | |
|         float sigma2 = 2*sum_x2/QK_K;
 | |
|         float av_x = sqrtf(sigma2);
 | |
| 
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             if (quant_weights) {
 | |
|                 const float * qw = quant_weights + QK_K*i + 32*j;
 | |
|                 for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
 | |
|             } else {
 | |
|                 for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
 | |
|             }
 | |
|             float sumw = 0;
 | |
|             for (int l = 0; l < 32; ++l) sumw += weights[l];
 | |
|             sw[j] = sumw;
 | |
| 
 | |
|             scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
 | |
|         }
 | |
| 
 | |
|         float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
 | |
|         float m_block = make_qp_quants(QK_K/32, 63, mins,   Lm, sw);
 | |
| 
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             uint8_t ls = Ls[j];
 | |
|             uint8_t lm = Lm[j];
 | |
|             ls = MIN(63, ls);
 | |
|             lm = MIN(63, lm);
 | |
|             if (j < 4) {
 | |
|                 y[i].scales[j] = ls;
 | |
|                 y[i].scales[j+4] = lm;
 | |
|             } else {
 | |
|                 y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
 | |
|                 y[i].scales[j-4] |= ((ls >> 4) << 6);
 | |
|                 y[i].scales[j-0] |= ((lm >> 4) << 6);
 | |
|             }
 | |
|         }
 | |
|         y[i].d = GGML_FP32_TO_FP16(d_block);
 | |
|         y[i].dmin = GGML_FP32_TO_FP16(m_block);
 | |
| 
 | |
|         uint8_t sc, m;
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             get_scale_min_k4(j, y[i].scales, &sc, &m);
 | |
|             const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
 | |
|             if (!d) continue;
 | |
|             const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
 | |
|             for (int ii = 0; ii < 32; ++ii) {
 | |
|                 int l = nearest_int((x[32*j + ii] + dm)/d);
 | |
|                 l = MAX(0, MIN(31, l));
 | |
|                 L[32*j + ii] = l;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         uint8_t * restrict qh = y[i].qh;
 | |
|         uint8_t * restrict ql = y[i].qs;
 | |
|         memset(qh, 0, QK_K/8);
 | |
| 
 | |
|         uint8_t m1 = 1, m2 = 2;
 | |
|         for (int n = 0; n < QK_K; n += 64) {
 | |
|             for (int j = 0; j < 32; ++j) {
 | |
|                 int l1 = L[n + j];
 | |
|                 if (l1 > 15) {
 | |
|                     l1 -= 16; qh[j] |= m1;
 | |
|                 }
 | |
|                 int l2 = L[n + j + 32];
 | |
|                 if (l2 > 15) {
 | |
|                     l2 -= 16; qh[j] |= m2;
 | |
|                 }
 | |
|                 ql[j] = l1 | (l2 << 4);
 | |
|             }
 | |
|             m1 <<= 2; m2 <<= 2;
 | |
|             ql += 32;
 | |
|         }
 | |
| 
 | |
|         x += QK_K;
 | |
| 
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| size_t quantize_q5_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
 | |
|     if (!quant_weights) {
 | |
|         quantize_row_q5_K_reference(src, dst, nrow*n_per_row);
 | |
|     }
 | |
|     else {
 | |
|         char * qrow = (char *)dst;
 | |
|         for (int row = 0; row < nrow; ++row) {
 | |
|             quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
 | |
|             src += n_per_row;
 | |
|             qrow += row_size;
 | |
|         }
 | |
|     }
 | |
|     return nrow * row_size;
 | |
| }
 | |
| 
 | |
| // ====================== 6-bit (de)-quantization
 | |
| 
 | |
| void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     int8_t L[QK_K];
 | |
|     float   scales[QK_K/16];
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         float max_scale = 0;
 | |
|         float max_abs_scale = 0;
 | |
| 
 | |
|         for (int ib = 0; ib < QK_K/16; ++ib) {
 | |
| 
 | |
|             const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
 | |
|             scales[ib] = scale;
 | |
| 
 | |
|             const float abs_scale = fabsf(scale);
 | |
|             if (abs_scale > max_abs_scale) {
 | |
|                 max_abs_scale = abs_scale;
 | |
|                 max_scale = scale;
 | |
|             }
 | |
| 
 | |
|         }
 | |
| 
 | |
|         if (!max_abs_scale) {
 | |
|             memset(&y[i], 0, sizeof(block_q6_K));
 | |
|             y[i].d = GGML_FP32_TO_FP16(0.f);
 | |
|             x += QK_K;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         float iscale = -128.f/max_scale;
 | |
|         y[i].d = GGML_FP32_TO_FP16(1/iscale);
 | |
|         for (int ib = 0; ib < QK_K/16; ++ib) {
 | |
|             y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
 | |
|         }
 | |
| 
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
 | |
|             if (!d) {
 | |
|                 continue;
 | |
|             }
 | |
|             for (int ii = 0; ii < 16; ++ii) {
 | |
|                 int l = nearest_int(x[16*j + ii]/d);
 | |
|                 l = MAX(-32, MIN(31, l));
 | |
|                 L[16*j + ii] = l + 32;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         uint8_t * restrict ql = y[i].ql;
 | |
|         uint8_t * restrict qh = y[i].qh;
 | |
| #if QK_K == 256
 | |
|         for (int j = 0; j < QK_K; j += 128) {
 | |
|             for (int l = 0; l < 32; ++l) {
 | |
|                 const uint8_t q1 = L[j + l +  0] & 0xF;
 | |
|                 const uint8_t q2 = L[j + l + 32] & 0xF;
 | |
|                 const uint8_t q3 = L[j + l + 64] & 0xF;
 | |
|                 const uint8_t q4 = L[j + l + 96] & 0xF;
 | |
|                 ql[l+ 0] = q1 | (q3 << 4);
 | |
|                 ql[l+32] = q2 | (q4 << 4);
 | |
|                 qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
 | |
|             }
 | |
|             ql += 64;
 | |
|             qh += 32;
 | |
|         }
 | |
| #else
 | |
|         for (int l = 0; l < 32; ++l) {
 | |
|             const uint8_t q1 = L[l +  0] & 0xF;
 | |
|             const uint8_t q2 = L[l + 32] & 0xF;
 | |
|             ql[l] = q1 | (q2 << 4);
 | |
|         }
 | |
|         for (int l = 0; l < 16; ++l) {
 | |
|             qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         x += QK_K;
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict ql = x[i].ql;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const int8_t  * restrict sc = x[i].scales;
 | |
| 
 | |
| #if QK_K == 256
 | |
|         for (int n = 0; n < QK_K; n += 128) {
 | |
|             for (int l = 0; l < 32; ++l) {
 | |
|                 int is = l/16;
 | |
|                 const int8_t q1 = (int8_t)((ql[l +  0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
 | |
|                 const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
 | |
|                 const int8_t q3 = (int8_t)((ql[l +  0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
 | |
|                 const int8_t q4 = (int8_t)((ql[l + 32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
 | |
|                 y[l +  0] = d * sc[is + 0] * q1;
 | |
|                 y[l + 32] = d * sc[is + 2] * q2;
 | |
|                 y[l + 64] = d * sc[is + 4] * q3;
 | |
|                 y[l + 96] = d * sc[is + 6] * q4;
 | |
|             }
 | |
|             y  += 128;
 | |
|             ql += 64;
 | |
|             qh += 32;
 | |
|             sc += 8;
 | |
|         }
 | |
| #else
 | |
|         for (int l = 0; l < 16; ++l) {
 | |
|             const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
 | |
|             const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
 | |
|             const int8_t q3 = (int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
 | |
|             const int8_t q4 = (int8_t)((ql[l+16]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
 | |
|             y[l+ 0] = d * sc[0] * q1;
 | |
|             y[l+16] = d * sc[1] * q2;
 | |
|             y[l+32] = d * sc[2] * q3;
 | |
|             y[l+48] = d * sc[3] * q4;
 | |
|         }
 | |
|         y  += 64;
 | |
| #endif
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     block_q6_K * restrict y = vy;
 | |
|     quantize_row_q6_K_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int n_per_row, const float * quant_weights) {
 | |
| #if QK_K != 256
 | |
|     (void)quant_weights;
 | |
|     quantize_row_q6_K_reference(x, y, n_per_row);
 | |
| #else
 | |
|     assert(n_per_row % QK_K == 0);
 | |
|     const int nb = n_per_row / QK_K;
 | |
| 
 | |
|     int8_t L[QK_K];
 | |
|     float   scales[QK_K/16];
 | |
|     //float   weights[16];
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         //float sum_x2 = 0;
 | |
|         //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
 | |
|         //float sigma2 = sum_x2/QK_K;
 | |
| 
 | |
|         float max_scale = 0;
 | |
|         float max_abs_scale = 0;
 | |
| 
 | |
|         for (int ib = 0; ib < QK_K/16; ++ib) {
 | |
| 
 | |
|             float scale;
 | |
|             if (quant_weights) {
 | |
|                 const float * qw = quant_weights + QK_K*i + 16*ib;
 | |
|                 //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
 | |
|                 //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
 | |
|                 scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
 | |
|             } else {
 | |
|                 scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
 | |
|             }
 | |
|             scales[ib] = scale;
 | |
| 
 | |
|             const float abs_scale = fabsf(scale);
 | |
|             if (abs_scale > max_abs_scale) {
 | |
|                 max_abs_scale = abs_scale;
 | |
|                 max_scale = scale;
 | |
|             }
 | |
| 
 | |
|         }
 | |
| 
 | |
|         if (!max_abs_scale) {
 | |
|             memset(&y[i], 0, sizeof(block_q6_K));
 | |
|             y[i].d = GGML_FP32_TO_FP16(0.f);
 | |
|             x += QK_K;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         float iscale = -128.f/max_scale;
 | |
|         y[i].d = GGML_FP32_TO_FP16(1/iscale);
 | |
|         for (int ib = 0; ib < QK_K/16; ++ib) {
 | |
|             y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
 | |
|         }
 | |
| 
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
 | |
|             if (!d) {
 | |
|                 continue;
 | |
|             }
 | |
|             for (int ii = 0; ii < 16; ++ii) {
 | |
|                 int l = nearest_int(x[16*j + ii]/d);
 | |
|                 l = MAX(-32, MIN(31, l));
 | |
|                 L[16*j + ii] = l + 32;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         uint8_t * restrict ql = y[i].ql;
 | |
|         uint8_t * restrict qh = y[i].qh;
 | |
|         for (int j = 0; j < QK_K; j += 128) {
 | |
|             for (int l = 0; l < 32; ++l) {
 | |
|                 const uint8_t q1 = L[j + l +  0] & 0xF;
 | |
|                 const uint8_t q2 = L[j + l + 32] & 0xF;
 | |
|                 const uint8_t q3 = L[j + l + 64] & 0xF;
 | |
|                 const uint8_t q4 = L[j + l + 96] & 0xF;
 | |
|                 ql[l+ 0] = q1 | (q3 << 4);
 | |
|                 ql[l+32] = q2 | (q4 << 4);
 | |
|                 qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
 | |
|             }
 | |
|             ql += 64;
 | |
|             qh += 32;
 | |
|         }
 | |
| 
 | |
|         x += QK_K;
 | |
| 
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| size_t quantize_q6_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
 | |
|     if (!quant_weights) {
 | |
|         quantize_row_q6_K_reference(src, dst, nrow*n_per_row);
 | |
|     }
 | |
|     else {
 | |
|         char * qrow = (char *)dst;
 | |
|         for (int row = 0; row < nrow; ++row) {
 | |
|             quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
 | |
|             src += n_per_row;
 | |
|             qrow += row_size;
 | |
|         }
 | |
|     }
 | |
|     return nrow * row_size;
 | |
| }
 | |
| 
 | |
| static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int n_per_row, const float * quant_weights) {
 | |
|     static_assert(QK4_0 == 32, "QK4_0 must be 32");
 | |
| 
 | |
|     if (!quant_weights) {
 | |
|         quantize_row_q4_0_reference(x, y, n_per_row);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     float weight[QK4_0];
 | |
|     int8_t L[QK4_0];
 | |
| 
 | |
|     float sum_x2 = 0;
 | |
|     for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
 | |
|     float sigma2 = sum_x2/n_per_row;
 | |
| 
 | |
|     const int nb = n_per_row/QK4_0;
 | |
|     for (int ib = 0; ib < nb; ++ib) {
 | |
|         const float * xb = x + QK4_0 * ib;
 | |
|         const float * qw = quant_weights + QK4_0 * ib;
 | |
|         for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
 | |
|         float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
 | |
|         y[ib].d = GGML_FP32_TO_FP16(d);
 | |
|         for (int j = 0; j < 16; ++j) {
 | |
|             y[ib].qs[j] = L[j] | (L[j+16] << 4);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t quantize_q4_0(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     if (!quant_weights) {
 | |
|         quantize_row_q4_0_reference(src, dst, nrow*n_per_row);
 | |
|         return nrow * ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
 | |
|     }
 | |
|     size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
 | |
|     char * qrow = (char *)dst;
 | |
|     for (int row = 0; row < nrow; ++row) {
 | |
|         quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
 | |
|         src += n_per_row;
 | |
|         qrow += row_size;
 | |
|     }
 | |
|     return nrow * row_size;
 | |
| }
 | |
| 
 | |
| static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int n_per_row, const float * quant_weights) {
 | |
|     static_assert(QK4_1 == 32, "QK4_1 must be 32");
 | |
| 
 | |
|     if (!quant_weights) {
 | |
|         quantize_row_q4_1_reference(x, y, n_per_row);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     float weight[QK4_1];
 | |
|     uint8_t L[QK4_1], Laux[QK4_1];
 | |
| 
 | |
|     float sum_x2 = 0;
 | |
|     for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
 | |
|     float sigma2 = sum_x2/n_per_row;
 | |
| 
 | |
|     const int nb = n_per_row/QK4_1;
 | |
|     for (int ib = 0; ib < nb; ++ib) {
 | |
|         const float * xb = x + QK4_1 * ib;
 | |
|         const float * qw = quant_weights + QK4_1 * ib;
 | |
|         for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
 | |
|         float min;
 | |
|         float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
 | |
|         y[ib].d = GGML_FP32_TO_FP16(d);
 | |
|         y[ib].m = GGML_FP32_TO_FP16(-min);
 | |
|         for (int j = 0; j < 16; ++j) {
 | |
|             y[ib].qs[j] = L[j] | (L[j+16] << 4);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t quantize_q4_1(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     if (!quant_weights) {
 | |
|         quantize_row_q4_1_reference(src, dst, nrow*n_per_row);
 | |
|         return nrow * ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
 | |
|     }
 | |
|     size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
 | |
|     char * qrow = (char *)dst;
 | |
|     for (int row = 0; row < nrow; ++row) {
 | |
|         quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
 | |
|         src += n_per_row;
 | |
|         qrow += row_size;
 | |
|     }
 | |
|     return nrow * row_size;
 | |
| }
 | |
| 
 | |
| static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int n_per_row, const float * quant_weights) {
 | |
|     static_assert(QK5_0 == 32, "QK5_0 must be 32");
 | |
| 
 | |
|     if (!quant_weights) {
 | |
|         quantize_row_q5_0_reference(x, y, n_per_row);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     float weight[QK5_0];
 | |
|     int8_t L[QK5_0];
 | |
| 
 | |
|     float sum_x2 = 0;
 | |
|     for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
 | |
|     float sigma2 = sum_x2/n_per_row;
 | |
| 
 | |
|     const int nb = n_per_row/QK5_0;
 | |
|     for (int ib = 0; ib < nb; ++ib) {
 | |
|         const float * xb = x + QK5_0 * ib;
 | |
|         const float * qw = quant_weights + QK5_0 * ib;
 | |
|         for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
 | |
|         float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
 | |
|         y[ib].d = GGML_FP32_TO_FP16(d);
 | |
| 
 | |
|         uint32_t qh = 0;
 | |
| 
 | |
|         for (int j = 0; j < 16; ++j) {
 | |
|             const uint8_t xi0 = L[j];
 | |
|             const uint8_t xi1 = L[j+16];
 | |
|             y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
 | |
| 
 | |
|             // get the 5-th bit and store it in qh at the right position
 | |
|             qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
 | |
|             qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
 | |
|         }
 | |
| 
 | |
|         memcpy(&y[ib].qh, &qh, sizeof(qh));
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t quantize_q5_0(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     if (!quant_weights) {
 | |
|         quantize_row_q5_0_reference(src, dst, nrow*n_per_row);
 | |
|         return nrow * ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
 | |
|     }
 | |
|     size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
 | |
|     char * qrow = (char *)dst;
 | |
|     for (int row = 0; row < nrow; ++row) {
 | |
|         quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
 | |
|         src += n_per_row;
 | |
|         qrow += row_size;
 | |
|     }
 | |
|     return nrow * row_size;
 | |
| }
 | |
| 
 | |
| static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int n_per_row, const float * quant_weights) {
 | |
|     static_assert(QK5_1 == 32, "QK5_1 must be 32");
 | |
| 
 | |
|     if (!quant_weights) {
 | |
|         quantize_row_q5_1_reference(x, y, n_per_row);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     float weight[QK5_1];
 | |
|     uint8_t L[QK5_1], Laux[QK5_1];
 | |
| 
 | |
|     float sum_x2 = 0;
 | |
|     for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
 | |
|     float sigma2 = sum_x2/n_per_row;
 | |
| 
 | |
|     const int nb = n_per_row/QK5_1;
 | |
|     for (int ib = 0; ib < nb; ++ib) {
 | |
|         const float * xb = x + QK5_1 * ib;
 | |
|         const float * qw = quant_weights + QK5_1 * ib;
 | |
|         for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
 | |
|         float min;
 | |
|         float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
 | |
|         y[ib].d = GGML_FP32_TO_FP16(d);
 | |
|         y[ib].m = GGML_FP32_TO_FP16(-min);
 | |
| 
 | |
|         uint32_t qh = 0;
 | |
|         for (int j = 0; j < 16; ++j) {
 | |
|             const uint8_t xi0 = L[j];
 | |
|             const uint8_t xi1 = L[j+16];
 | |
|             y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
 | |
|             // get the 5-th bit and store it in qh at the right position
 | |
|             qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
 | |
|             qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
 | |
|         }
 | |
|         memcpy(&y[ib].qh, &qh, sizeof(qh));
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t quantize_q5_1(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     if (!quant_weights) {
 | |
|         quantize_row_q5_1_reference(src, dst, nrow*n_per_row);
 | |
|         return nrow * ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
 | |
|     }
 | |
|     size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
 | |
|     char * qrow = (char *)dst;
 | |
|     for (int row = 0; row < nrow; ++row) {
 | |
|         quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
 | |
|         src += n_per_row;
 | |
|         qrow += row_size;
 | |
|     }
 | |
|     return nrow * row_size;
 | |
| }
 | |
| 
 | |
| size_t quantize_q8_0(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     (void)quant_weights; // not used
 | |
|     const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0, n_per_row);
 | |
|     quantize_row_q8_0_reference(src, dst, nrow*n_per_row);
 | |
|     return nrow * row_size;
 | |
| }
 | |
| 
 | |
| // ====================== "True" 2-bit (de)-quantization
 | |
| 
 | |
| void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     uint32_t aux32[2];
 | |
|     const uint8_t * aux8 = (const uint8_t *)aux32;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
 | |
|             memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
 | |
|             const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
 | |
|             for (int l = 0; l < 4; ++l) {
 | |
|                 const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
 | |
|                 const uint8_t  signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
 | |
|                 for (int j = 0; j < 8; ++j) {
 | |
|                     y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
 | |
|                 }
 | |
|                 y += 8;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ====================== 2.3125 bpw (de)-quantization
 | |
| 
 | |
| void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     float db[2];
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
 | |
|             db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
 | |
|             db[1] = d * (0.5f + (x[i].scales[ib32] >>  4)) * 0.25f;
 | |
|             for (int l = 0; l < 4; ++l) {
 | |
|                 const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
 | |
|                 const uint8_t  signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
 | |
|                 for (int j = 0; j < 8; ++j) {
 | |
|                     y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
 | |
|                 }
 | |
|                 y += 8;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ====================== 2.5625 bpw (de)-quantization
 | |
| 
 | |
| void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     float db[2];
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
|         const uint8_t * qs = x[i].qs;
 | |
|         const uint8_t * qh = x[i].qh;
 | |
|         const uint8_t * signs = qs + QK_K/8;
 | |
| 
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
 | |
|             db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
 | |
|             db[1] = d * (0.5f + (x[i].scales[ib32] >>  4)) * 0.25f;
 | |
|             for (int l = 0; l < 4; ++l) {
 | |
|                 const float dl = db[l/2];
 | |
|                 const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
 | |
|                 for (int j = 0; j < 8; ++j) {
 | |
|                     y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f);
 | |
|                 }
 | |
|                 y += 8;
 | |
|             }
 | |
|             qs += 4;
 | |
|             signs += 4;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ====================== 3.0625 bpw (de)-quantization
 | |
| 
 | |
| void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     uint32_t aux32;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
|         const uint8_t * qs = x[i].qs;
 | |
|         const uint8_t * scales_and_signs = qs + QK_K/4;
 | |
| 
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
 | |
|             memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
 | |
|             const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
 | |
|             for (int l = 0; l < 4; ++l) {
 | |
|                 const uint8_t  signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
 | |
|                 const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
 | |
|                 const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
 | |
|                 for (int j = 0; j < 4; ++j) {
 | |
|                     y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
 | |
|                     y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
 | |
|                 }
 | |
|                 y += 8;
 | |
|             }
 | |
|             qs += 8;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ====================== 3.3125 bpw (de)-quantization
 | |
| 
 | |
| void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
|         const uint8_t * qs = x[i].qs;
 | |
|         const uint8_t * qh = x[i].qh;
 | |
|         const uint8_t * signs = x[i].signs;
 | |
| 
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
 | |
|             const float db1 = d * (1 + 2*(x[i].scales[ib32/2] & 0xf));
 | |
|             const float db2 = d * (1 + 2*(x[i].scales[ib32/2] >>  4));
 | |
|             for (int l = 0; l < 4; ++l) {
 | |
|                 const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
 | |
|                 const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
 | |
|                 for (int j = 0; j < 4; ++j) {
 | |
|                     y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
 | |
|                     y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
 | |
|                 }
 | |
|                 y += 8;
 | |
|             }
 | |
|             qs += 8;
 | |
|             signs += 4;
 | |
|             for (int l = 0; l < 4; ++l) {
 | |
|                 const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
 | |
|                 const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
 | |
|                 for (int j = 0; j < 4; ++j) {
 | |
|                     y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
 | |
|                     y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
 | |
|                 }
 | |
|                 y += 8;
 | |
|             }
 | |
|             qh += 2;
 | |
|             qs += 8;
 | |
|             signs += 4;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ====================== 1.5625 bpw (de)-quantization
 | |
| 
 | |
| void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     float db[4];
 | |
|     uint16_t idx[4];
 | |
|     //const int8_t * grid[4];
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
|         const uint8_t * sc = x[i].scales;
 | |
|         const uint8_t * qs = x[i].qs;
 | |
| 
 | |
|         for (int i8 = 0; i8 < QK_K/8; i8 += 4) {
 | |
|             idx[0] = qs[0] | ((sc[0] & 0x08) << 5);
 | |
|             idx[1] = qs[1] | ((sc[0] & 0x80) << 1);
 | |
|             idx[2] = qs[2] | ((sc[1] & 0x08) << 5);
 | |
|             idx[3] = qs[3] | ((sc[1] & 0x80) << 1);
 | |
|             //grid[0] = (const int8_t *)(iq1s_grid + (qs[0] | ((sc[0] & 0x08) << 5)));
 | |
|             //grid[1] = (const int8_t *)(iq1s_grid + (qs[1] | ((sc[0] & 0x80) << 1)));
 | |
|             //grid[2] = (const int8_t *)(iq1s_grid + (qs[2] | ((sc[1] & 0x08) << 5)));
 | |
|             //grid[3] = (const int8_t *)(iq1s_grid + (qs[3] | ((sc[1] & 0x80) << 1)));
 | |
|             db[0] = d * (2*(sc[0] & 7) + 1);
 | |
|             db[1] = d * (2*((sc[0] >> 4) & 7) + 1);
 | |
|             db[2] = d * (2*(sc[1] & 7) + 1);
 | |
|             db[3] = d * (2*((sc[1] >> 4) & 7) + 1);
 | |
|             for (int l = 0; l < 4; ++l) {
 | |
|                 const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
 | |
|                 for (int j = 0; j < 8; ++j) {
 | |
|                     //y[j] = db[l] * grid[l][j];
 | |
|                     y[j] = db[l] * grid[j];
 | |
|                 }
 | |
|                 y += 8;
 | |
|             }
 | |
|             qs += 4;
 | |
|             sc += 2;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
 | |
| 
 | |
| void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK4_NL == 0);
 | |
|     const int nb = k / QK4_NL;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const uint8_t * qs = x[i].qs;
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
|         for (int j = 0; j < QK4_NL/2; ++j) {
 | |
|             y[j+       0] = d * kvalues_iq4nl[qs[j] & 0xf];
 | |
|             y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >>  4];
 | |
|         }
 | |
|         y  += QK4_NL;
 | |
|         qs += QK4_NL/2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
| #if QK_K == 64
 | |
|     dequantize_row_iq4_nl((const block_iq4_nl *)x, y, k);
 | |
| #else
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const uint8_t * qs = x[i].qs;
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         for (int ib = 0; ib < QK_K/32; ++ib) {
 | |
|             const int ls = ((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4);
 | |
|             const float dl = d * (ls - 32);
 | |
|             for (int j = 0; j < 16; ++j) {
 | |
|                 y[j+ 0] = dl * kvalues_iq4nl[qs[j] & 0xf];
 | |
|                 y[j+16] = dl * kvalues_iq4nl[qs[j] >>  4];
 | |
|             }
 | |
|             y  += 32;
 | |
|             qs += 16;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //===================================== Q8_K ==============================================
 | |
| 
 | |
| void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         float max = 0;
 | |
|         float amax = 0;
 | |
|         for (int j = 0; j < QK_K; ++j) {
 | |
|             float ax = fabsf(x[j]);
 | |
|             if (ax > amax) {
 | |
|                 amax = ax; max = x[j];
 | |
|             }
 | |
|         }
 | |
|         if (!amax) {
 | |
|             y[i].d = 0;
 | |
|             memset(y[i].qs, 0, QK_K);
 | |
|             x += QK_K;
 | |
|             continue;
 | |
|         }
 | |
|         //const float iscale = -128.f/max;
 | |
|         // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
 | |
|         const float iscale = -127.f/max;
 | |
|         for (int j = 0; j < QK_K; ++j) {
 | |
|             int v = nearest_int(iscale*x[j]);
 | |
|             y[i].qs[j] = MIN(127, v);
 | |
|         }
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             int sum = 0;
 | |
|             for (int ii = 0; ii < 16; ++ii) {
 | |
|                 sum += y[i].qs[j*16 + ii];
 | |
|             }
 | |
|             y[i].bsums[j] = sum;
 | |
|         }
 | |
|         y[i].d = 1/iscale;
 | |
|         x += QK_K;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     const int nb = k / QK_K;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         for (int j = 0; j < QK_K; ++j) {
 | |
|             *y++ = x[i].d * x[i].qs[j];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
 | |
|     quantize_row_q8_K_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| //===================================== Dot ptoducts =================================
 | |
| 
 | |
| //
 | |
| // Helper functions
 | |
| //
 | |
| #if __AVX__ || __AVX2__ || __AVX512F__
 | |
| 
 | |
| // shuffles to pick the required scales in dot products
 | |
| static inline __m256i get_scale_shuffle_q3k(int i) {
 | |
|     static const uint8_t k_shuffle[128] = {
 | |
|          0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,     2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
 | |
|          4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,     6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
 | |
|          8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,    10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
 | |
|         12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,    14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
 | |
|     };
 | |
|     return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
 | |
| }
 | |
| static inline __m256i get_scale_shuffle_k4(int i) {
 | |
|     static const uint8_t k_shuffle[256] = {
 | |
|          0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
 | |
|          2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
 | |
|          4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
 | |
|          6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
 | |
|          8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
 | |
|         10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
 | |
|         12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
 | |
|         14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
 | |
|     };
 | |
|     return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
 | |
| }
 | |
| static inline __m128i get_scale_shuffle(int i) {
 | |
|     static const uint8_t k_shuffle[128] = {
 | |
|          0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
 | |
|          2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
 | |
|          4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
 | |
|          6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
 | |
|          8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
 | |
|         10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
 | |
|         12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
 | |
|         14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
 | |
|     };
 | |
|     return _mm_loadu_si128((const __m128i*)k_shuffle + i);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     const int qk = QK8_0;
 | |
|     const int nb = n / qk;
 | |
| 
 | |
|     assert(n % qk == 0);
 | |
| #if defined(__ARM_FEATURE_MATMUL_INT8)
 | |
|     assert((nrc == 2) || (nrc == 1));
 | |
| #else
 | |
|     assert(nrc == 1);
 | |
| #endif
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_q4_0 * restrict x = vx;
 | |
|     const block_q8_0 * restrict y = vy;
 | |
| 
 | |
| #if defined(__ARM_FEATURE_MATMUL_INT8)
 | |
|     if (nrc == 2) {
 | |
|         const block_q4_0 * restrict vx0 = vx;
 | |
|         const block_q4_0 * restrict vx1 = vx + bx;
 | |
| 
 | |
|         const block_q8_0 * restrict vy0 = vy;
 | |
|         const block_q8_0 * restrict vy1 = vy + by;
 | |
| 
 | |
|         float32x4_t sumv0 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|         for (int i = 0; i < nb; i++) {
 | |
|             const block_q4_0 * restrict b_x0 = &vx0[i];
 | |
|             const block_q4_0 * restrict b_x1 = &vx1[i];
 | |
|             const block_q8_0 * restrict b_y0 = &vy0[i];
 | |
|             const block_q8_0 * restrict b_y1 = &vy1[i];
 | |
| 
 | |
|             const uint8x16_t m4b = vdupq_n_u8(0x0F);
 | |
|             const int8x16_t  s8b = vdupq_n_s8(0x8);
 | |
| 
 | |
|             const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
 | |
|             const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
 | |
| 
 | |
|             // 4-bit -> 8-bit
 | |
|             const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
 | |
|             const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
 | |
|             const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
 | |
|             const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
 | |
| 
 | |
|             // sub 8
 | |
|             const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
 | |
|             const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
 | |
|             const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
 | |
|             const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
 | |
| 
 | |
|             // load y
 | |
|             const int8x16_t y0_l = vld1q_s8(b_y0->qs);
 | |
|             const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
 | |
|             const int8x16_t y1_l = vld1q_s8(b_y1->qs);
 | |
|             const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
 | |
| 
 | |
|             float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
 | |
|                                  GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
 | |
|                                  GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
 | |
|                                  GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
 | |
| 
 | |
|             int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
 | |
|             int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
 | |
| 
 | |
|             int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
 | |
|             int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
 | |
| 
 | |
|             int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
 | |
|             int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
 | |
| 
 | |
|             int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
 | |
|             int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
 | |
| 
 | |
|             sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
 | |
|                                                                                 l1, r1)), l2, r2)), l3, r3))), scale);
 | |
|         }
 | |
|         float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
 | |
|         float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
 | |
| 
 | |
|         vst1_f32(s, vget_low_f32(sumv2));
 | |
|         vst1_f32(s + bs, vget_high_f32(sumv2));
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
| #if defined(__ARM_NEON)
 | |
|     float32x4_t sumv0 = vdupq_n_f32(0.0f);
 | |
|     float32x4_t sumv1 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|     assert(nb % 2 == 0); // TODO: handle odd nb
 | |
| 
 | |
|     for (int i = 0; i < nb; i += 2) {
 | |
|         const block_q4_0 * restrict x0 = &x[i + 0];
 | |
|         const block_q4_0 * restrict x1 = &x[i + 1];
 | |
|         const block_q8_0 * restrict y0 = &y[i + 0];
 | |
|         const block_q8_0 * restrict y1 = &y[i + 1];
 | |
| 
 | |
|         const uint8x16_t m4b = vdupq_n_u8(0x0F);
 | |
|         const int8x16_t  s8b = vdupq_n_s8(0x8);
 | |
| 
 | |
|         const uint8x16_t v0_0 = vld1q_u8(x0->qs);
 | |
|         const uint8x16_t v0_1 = vld1q_u8(x1->qs);
 | |
| 
 | |
|         // 4-bit -> 8-bit
 | |
|         const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
 | |
|         const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
 | |
|         const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
 | |
|         const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
 | |
| 
 | |
|         // sub 8
 | |
|         const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
 | |
|         const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
 | |
|         const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
 | |
|         const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
 | |
| 
 | |
|         // load y
 | |
|         const int8x16_t v1_0l = vld1q_s8(y0->qs);
 | |
|         const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
 | |
|         const int8x16_t v1_1l = vld1q_s8(y1->qs);
 | |
|         const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
 | |
| 
 | |
|         // dot product into int32x4_t
 | |
|         const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
 | |
|         const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
 | |
| 
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
 | |
|     }
 | |
| 
 | |
|     *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
 | |
| #elif defined(__AVX2__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         /* Compute combined scale for the block */
 | |
|         const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
 | |
| 
 | |
|         __m256i qx = bytes_from_nibbles_32(x[i].qs);
 | |
| 
 | |
|         // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
 | |
|         const __m256i off = _mm256_set1_epi8( 8 );
 | |
|         qx = _mm256_sub_epi8( qx, off );
 | |
| 
 | |
|         __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
 | |
| 
 | |
|         const __m256 q = mul_sum_i8_pairs_float(qx, qy);
 | |
| 
 | |
|         /* Multiply q with scale and accumulate */
 | |
|         acc = _mm256_fmadd_ps( d, q, acc );
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| #elif defined(__AVX__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         // Compute combined scale for the block
 | |
|         const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
 | |
| 
 | |
|         const __m128i lowMask = _mm_set1_epi8(0xF);
 | |
|         const __m128i off = _mm_set1_epi8(8);
 | |
| 
 | |
|         const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
 | |
| 
 | |
|         __m128i bx_0 = _mm_and_si128(lowMask, tmp);
 | |
|         __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
 | |
|         bx_0 = _mm_sub_epi8(bx_0, off);
 | |
|         const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
 | |
| 
 | |
|         bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
 | |
|         by_0 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
 | |
|         bx_0 = _mm_sub_epi8(bx_0, off);
 | |
|         const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0);
 | |
| 
 | |
|         // Convert int32_t to float
 | |
|         __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
 | |
| 
 | |
|         // Apply the scale, and accumulate
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| #elif defined(__SSSE3__)
 | |
|     // set constants
 | |
|     const __m128i lowMask = _mm_set1_epi8(0xF);
 | |
|     const __m128i off = _mm_set1_epi8(8);
 | |
| 
 | |
|     // Initialize accumulator with zeros
 | |
|     __m128 acc_0 = _mm_setzero_ps();
 | |
|     __m128 acc_1 = _mm_setzero_ps();
 | |
|     __m128 acc_2 = _mm_setzero_ps();
 | |
|     __m128 acc_3 = _mm_setzero_ps();
 | |
| 
 | |
|     // First round without accumulation
 | |
|     {
 | |
|         _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
 | |
|         _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
 | |
| 
 | |
|         // Compute combined scale for the block 0 and 1
 | |
|         const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
 | |
| 
 | |
|         const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
 | |
| 
 | |
|         __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
 | |
|         __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
 | |
|         bx_0 = _mm_sub_epi8(bx_0, off);
 | |
|         const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
 | |
| 
 | |
|         __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
 | |
|         __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
 | |
|         bx_1 = _mm_sub_epi8(bx_1, off);
 | |
|         const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
 | |
| 
 | |
|         _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
 | |
|         _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
 | |
| 
 | |
|         // Compute combined scale for the block 2 and 3
 | |
|         const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
 | |
| 
 | |
|         const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
 | |
| 
 | |
|         __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
 | |
|         __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
 | |
|         bx_2 = _mm_sub_epi8(bx_2, off);
 | |
|         const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
 | |
| 
 | |
|         __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
 | |
|         __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
 | |
|         bx_3 = _mm_sub_epi8(bx_3, off);
 | |
|         const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
 | |
| 
 | |
|         // Convert int32_t to float
 | |
|         __m128 p0 = _mm_cvtepi32_ps(i32_0);
 | |
|         __m128 p1 = _mm_cvtepi32_ps(i32_1);
 | |
|         __m128 p2 = _mm_cvtepi32_ps(i32_2);
 | |
|         __m128 p3 = _mm_cvtepi32_ps(i32_3);
 | |
| 
 | |
|         // Apply the scale
 | |
|         acc_0 = _mm_mul_ps( d_0_1, p0 );
 | |
|         acc_1 = _mm_mul_ps( d_0_1, p1 );
 | |
|         acc_2 = _mm_mul_ps( d_2_3, p2 );
 | |
|         acc_3 = _mm_mul_ps( d_2_3, p3 );
 | |
|     }
 | |
| 
 | |
|     assert(nb % 2 == 0); // TODO: handle odd nb
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 2; i < nb; i+=2) {
 | |
|         _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
 | |
|         _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
 | |
| 
 | |
|         // Compute combined scale for the block 0 and 1
 | |
|         const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
 | |
| 
 | |
|         const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
 | |
| 
 | |
|         __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
 | |
|         __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
 | |
|         bx_0 = _mm_sub_epi8(bx_0, off);
 | |
|         const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
 | |
| 
 | |
|         __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
 | |
|         __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
 | |
|         bx_1 = _mm_sub_epi8(bx_1, off);
 | |
|         const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
 | |
| 
 | |
|         _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
 | |
|         _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
 | |
| 
 | |
|         // Compute combined scale for the block 2 and 3
 | |
|         const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
 | |
| 
 | |
|         const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
 | |
| 
 | |
|         __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
 | |
|         __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
 | |
|         bx_2 = _mm_sub_epi8(bx_2, off);
 | |
|         const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
 | |
| 
 | |
|         __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
 | |
|         __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
 | |
|         bx_3 = _mm_sub_epi8(bx_3, off);
 | |
|         const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
 | |
| 
 | |
|         // Convert int32_t to float
 | |
|         __m128 p0 = _mm_cvtepi32_ps(i32_0);
 | |
|         __m128 p1 = _mm_cvtepi32_ps(i32_1);
 | |
|         __m128 p2 = _mm_cvtepi32_ps(i32_2);
 | |
|         __m128 p3 = _mm_cvtepi32_ps(i32_3);
 | |
| 
 | |
|         // Apply the scale
 | |
|         __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
 | |
|         __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
 | |
|         __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
 | |
|         __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
 | |
| 
 | |
|         // Acummulate
 | |
|         acc_0 = _mm_add_ps(p0_d, acc_0);
 | |
|         acc_1 = _mm_add_ps(p1_d, acc_1);
 | |
|         acc_2 = _mm_add_ps(p2_d, acc_2);
 | |
|         acc_3 = _mm_add_ps(p3_d, acc_3);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
 | |
| #elif defined(__riscv_v_intrinsic)
 | |
|     float sumf = 0.0;
 | |
| 
 | |
|     size_t vl = __riscv_vsetvl_e8m1(qk/2);
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         // load elements
 | |
|         vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
 | |
| 
 | |
|         vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
 | |
|         vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
 | |
| 
 | |
|         // mask and store lower part of x, and then upper part
 | |
|         vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
 | |
|         vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
 | |
| 
 | |
|         vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
 | |
|         vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
 | |
| 
 | |
|         // subtract offset
 | |
|         vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
 | |
|         vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
 | |
| 
 | |
|         vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
 | |
|         vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
 | |
| 
 | |
|         vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
 | |
| 
 | |
|         vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
 | |
|         vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
 | |
| 
 | |
|         int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
 | |
| 
 | |
|         sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #else
 | |
|     // scalar
 | |
|     float sumf = 0.0;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         int sumi = 0;
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const int v0 = (x[i].qs[j] & 0x0F) - 8;
 | |
|             const int v1 = (x[i].qs[j] >>   4) - 8;
 | |
| 
 | |
|             sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
 | |
|         }
 | |
| 
 | |
|         sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     const int qk = QK8_1;
 | |
|     const int nb = n / qk;
 | |
| 
 | |
|     assert(n % qk == 0);
 | |
| #if defined(__ARM_FEATURE_MATMUL_INT8)
 | |
|     assert((nrc == 2) || (nrc == 1));
 | |
| #else
 | |
|     assert(nrc == 1);
 | |
| #endif
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_q4_1 * restrict x = vx;
 | |
|     const block_q8_1 * restrict y = vy;
 | |
| 
 | |
| #if defined(__ARM_FEATURE_MATMUL_INT8)
 | |
|     if (nrc == 2) {
 | |
|         const block_q4_1 * restrict vx0 = vx;
 | |
|         const block_q4_1 * restrict vx1 = vx + bx;
 | |
|         const block_q8_1 * restrict vy0 = vy;
 | |
|         const block_q8_1 * restrict vy1 = vy + by;
 | |
| 
 | |
|         float32x4_t sumv0 = vdupq_n_f32(0.0f);
 | |
|         float32x4_t summs0 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|         for (int i = 0; i < nb; i++) {
 | |
|             const block_q4_1 * restrict b_x0 = &vx0[i];
 | |
|             const block_q4_1 * restrict b_x1 = &vx1[i];
 | |
|             const block_q8_1 * restrict b_y0 = &vy0[i];
 | |
|             const block_q8_1 * restrict b_y1 = &vy1[i];
 | |
| 
 | |
|             float32x4_t summs_t = {GGML_FP16_TO_FP32(b_x0->m) * b_y0->s,
 | |
|                                    GGML_FP16_TO_FP32(b_x1->m) * b_y0->s,
 | |
|                                    GGML_FP16_TO_FP32(b_x0->m) * b_y1->s,
 | |
|                                    GGML_FP16_TO_FP32(b_x1->m) * b_y1->s};
 | |
|             summs0 += summs_t;
 | |
| 
 | |
|             const uint8x16_t m4b = vdupq_n_u8(0x0F);
 | |
| 
 | |
|             const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
 | |
|             const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
 | |
| 
 | |
|             // 4-bit -> 8-bit
 | |
|             const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
 | |
|             const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
 | |
|             const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
 | |
|             const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
 | |
| 
 | |
|             // load y
 | |
|             const int8x16_t y0_l = vld1q_s8(b_y0->qs);
 | |
|             const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
 | |
|             const int8x16_t y1_l = vld1q_s8(b_y1->qs);
 | |
|             const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
 | |
| 
 | |
|             // mmla into int32x4_t
 | |
|             float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*b_y0->d,
 | |
|                                  GGML_FP16_TO_FP32(b_x0->d)*b_y1->d,
 | |
|                                  GGML_FP16_TO_FP32(b_x1->d)*b_y0->d,
 | |
|                                  GGML_FP16_TO_FP32(b_x1->d)*b_y1->d};
 | |
| 
 | |
|             int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
 | |
|             int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
 | |
| 
 | |
|             int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
 | |
|             int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
 | |
| 
 | |
|             int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
 | |
|             int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
 | |
| 
 | |
|             int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
 | |
|             int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
 | |
|             sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
 | |
|                                                                                 l1, r1)), l2, r2)), l3, r3))), scale);
 | |
|         }
 | |
| 
 | |
|         float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
 | |
|         float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
 | |
|         sumv2 = sumv2 + summs0;
 | |
| 
 | |
|         vst1_f32(s, vget_low_f32(sumv2));
 | |
|         vst1_f32(s + bs, vget_high_f32(sumv2));
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
|     // TODO: add WASM SIMD
 | |
| #if defined(__ARM_NEON)
 | |
|     float32x4_t sumv0 = vdupq_n_f32(0.0f);
 | |
|     float32x4_t sumv1 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|     float summs = 0;
 | |
| 
 | |
|     assert(nb % 2 == 0); // TODO: handle odd nb
 | |
| 
 | |
|     for (int i = 0; i < nb; i += 2) {
 | |
|         const block_q4_1 * restrict x0 = &x[i + 0];
 | |
|         const block_q4_1 * restrict x1 = &x[i + 1];
 | |
|         const block_q8_1 * restrict y0 = &y[i + 0];
 | |
|         const block_q8_1 * restrict y1 = &y[i + 1];
 | |
| 
 | |
|         summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
 | |
| 
 | |
|         const uint8x16_t m4b = vdupq_n_u8(0x0F);
 | |
| 
 | |
|         const uint8x16_t v0_0 = vld1q_u8(x0->qs);
 | |
|         const uint8x16_t v0_1 = vld1q_u8(x1->qs);
 | |
| 
 | |
|         // 4-bit -> 8-bit
 | |
|         const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
 | |
|         const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
 | |
|         const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
 | |
|         const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
 | |
| 
 | |
|         // load y
 | |
|         const int8x16_t v1_0l = vld1q_s8(y0->qs);
 | |
|         const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
 | |
|         const int8x16_t v1_1l = vld1q_s8(y1->qs);
 | |
|         const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
 | |
| 
 | |
|         // dot product into int32x4_t
 | |
|         const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
 | |
|         const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
 | |
| 
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
 | |
|     }
 | |
| 
 | |
|     *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
 | |
| #elif defined(__AVX2__) || defined(__AVX__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     float summs = 0;
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d0 = GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float d1 = y[i].d;
 | |
| 
 | |
|         summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
 | |
| 
 | |
|         const __m256 d0v = _mm256_set1_ps( d0 );
 | |
|         const __m256 d1v = _mm256_set1_ps( d1 );
 | |
| 
 | |
|         // Compute combined scales
 | |
|         const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
 | |
| 
 | |
|         // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
 | |
|         const __m256i qx = bytes_from_nibbles_32(x[i].qs);
 | |
|         const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs );
 | |
| 
 | |
|         const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
 | |
| 
 | |
|         // Accumulate d0*d1*x*y
 | |
| #if defined(__AVX2__)
 | |
|         acc = _mm256_fmadd_ps( d0d1, xy, acc );
 | |
| #else
 | |
|         acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc) + summs;
 | |
| #elif defined(__riscv_v_intrinsic)
 | |
|     float sumf = 0.0;
 | |
| 
 | |
|     size_t vl = __riscv_vsetvl_e8m1(qk/2);
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         // load elements
 | |
|         vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
 | |
| 
 | |
|         vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
 | |
|         vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
 | |
| 
 | |
|         // mask and store lower part of x, and then upper part
 | |
|         vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
 | |
|         vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
 | |
| 
 | |
|         vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
 | |
|         vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
 | |
| 
 | |
|         vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
 | |
|         vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
 | |
| 
 | |
|         vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
 | |
| 
 | |
|         vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
 | |
|         vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
 | |
| 
 | |
|         int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
 | |
| 
 | |
|         sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #else
 | |
|     // scalar
 | |
|     float sumf = 0.0;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         int sumi = 0;
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const int v0 = (x[i].qs[j] & 0x0F);
 | |
|             const int v1 = (x[i].qs[j] >>   4);
 | |
| 
 | |
|             sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
 | |
|         }
 | |
| 
 | |
|         sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     const int qk = QK8_0;
 | |
|     const int nb = n / qk;
 | |
| 
 | |
|     assert(n % qk == 0);
 | |
|     assert(qk == QK5_0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_q5_0 * restrict x = vx;
 | |
|     const block_q8_0 * restrict y = vy;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
|     float32x4_t sumv0 = vdupq_n_f32(0.0f);
 | |
|     float32x4_t sumv1 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|     uint32_t qh0;
 | |
|     uint32_t qh1;
 | |
| 
 | |
|     uint64_t tmp0[4];
 | |
|     uint64_t tmp1[4];
 | |
| 
 | |
|     assert(nb % 2 == 0); // TODO: handle odd nb
 | |
| 
 | |
|     for (int i = 0; i < nb; i += 2) {
 | |
|         const block_q5_0 * restrict x0 = &x[i];
 | |
|         const block_q5_0 * restrict x1 = &x[i + 1];
 | |
|         const block_q8_0 * restrict y0 = &y[i];
 | |
|         const block_q8_0 * restrict y1 = &y[i + 1];
 | |
| 
 | |
|         const uint8x16_t m4b = vdupq_n_u8(0x0F);
 | |
| 
 | |
|         // extract the 5th bit via lookup table ((!b) << 4)
 | |
|         memcpy(&qh0, x0->qh, sizeof(qh0));
 | |
|         memcpy(&qh1, x1->qh, sizeof(qh1));
 | |
| 
 | |
|         tmp0[0] = table_b2b_1[(qh0 >>  0) & 0xFF];
 | |
|         tmp0[1] = table_b2b_1[(qh0 >>  8) & 0xFF];
 | |
|         tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
 | |
|         tmp0[3] = table_b2b_1[(qh0 >> 24)       ];
 | |
| 
 | |
|         tmp1[0] = table_b2b_1[(qh1 >>  0) & 0xFF];
 | |
|         tmp1[1] = table_b2b_1[(qh1 >>  8) & 0xFF];
 | |
|         tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
 | |
|         tmp1[3] = table_b2b_1[(qh1 >> 24)       ];
 | |
| 
 | |
|         const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
 | |
|         const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
 | |
|         const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
 | |
|         const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
 | |
| 
 | |
|         const uint8x16_t v0_0 = vld1q_u8(x0->qs);
 | |
|         const uint8x16_t v0_1 = vld1q_u8(x1->qs);
 | |
| 
 | |
|         // 4-bit -> 8-bit
 | |
|         int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
 | |
|         int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
 | |
|         int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
 | |
|         int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
 | |
| 
 | |
|         // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
 | |
|         const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
 | |
|         const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
 | |
|         const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
 | |
|         const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
 | |
| 
 | |
|         // load y
 | |
|         const int8x16_t v1_0l = vld1q_s8(y0->qs);
 | |
|         const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
 | |
|         const int8x16_t v1_1l = vld1q_s8(y1->qs);
 | |
|         const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
 | |
| 
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
 | |
|                         ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
 | |
|                         ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
 | |
|                         ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
 | |
|                         ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
 | |
|     }
 | |
| 
 | |
|     *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
 | |
| #elif defined(__wasm_simd128__)
 | |
|     v128_t sumv = wasm_f32x4_splat(0.0f);
 | |
| 
 | |
|     uint32_t qh;
 | |
|     uint64_t tmp[4];
 | |
| 
 | |
|     // TODO: check if unrolling this is better
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const block_q5_0 * restrict x0 = &x[i];
 | |
|         const block_q8_0 * restrict y0 = &y[i];
 | |
| 
 | |
|         const v128_t m4b  = wasm_i8x16_splat(0x0F);
 | |
| 
 | |
|         // extract the 5th bit
 | |
|         memcpy(&qh, x0->qh, sizeof(qh));
 | |
| 
 | |
|         tmp[0] = table_b2b_1[(qh >>  0) & 0xFF];
 | |
|         tmp[1] = table_b2b_1[(qh >>  8) & 0xFF];
 | |
|         tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
 | |
|         tmp[3] = table_b2b_1[(qh >> 24)       ];
 | |
| 
 | |
|         const v128_t qhl = wasm_v128_load(tmp + 0);
 | |
|         const v128_t qhh = wasm_v128_load(tmp + 2);
 | |
| 
 | |
|         const v128_t v0 = wasm_v128_load(x0->qs);
 | |
| 
 | |
|         // 4-bit -> 8-bit
 | |
|         const v128_t v0l = wasm_v128_and (v0, m4b);
 | |
|         const v128_t v0h = wasm_u8x16_shr(v0, 4);
 | |
| 
 | |
|         // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
 | |
|         const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
 | |
|         const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
 | |
| 
 | |
|         // load y
 | |
|         const v128_t v1l = wasm_v128_load(y0->qs);
 | |
|         const v128_t v1h = wasm_v128_load(y0->qs + 16);
 | |
| 
 | |
|         // int8x16 -> int16x8
 | |
|         const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
 | |
|         const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
 | |
|         const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
 | |
|         const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
 | |
| 
 | |
|         const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
 | |
|         const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
 | |
|         const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
 | |
|         const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
 | |
| 
 | |
|         // dot product
 | |
|         sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
 | |
|                         wasm_i32x4_add(
 | |
|                             wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
 | |
|                                            wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
 | |
|                             wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
 | |
|                                            wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
 | |
|                     wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
 | |
|     }
 | |
| 
 | |
|     *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
 | |
|          wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
 | |
| #elif defined(__AVX2__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         /* Compute combined scale for the block */
 | |
|         const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
 | |
| 
 | |
|         __m256i qx = bytes_from_nibbles_32(x[i].qs);
 | |
|         __m256i bxhi = bytes_from_bits_32(x[i].qh);
 | |
|         bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
 | |
|         qx = _mm256_or_si256(qx, bxhi);
 | |
| 
 | |
|         __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
 | |
| 
 | |
|         const __m256 q = mul_sum_i8_pairs_float(qx, qy);
 | |
| 
 | |
|         /* Multiply q with scale and accumulate */
 | |
|         acc = _mm256_fmadd_ps(d, q, acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| #elif defined(__AVX__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
|     __m128i mask = _mm_set1_epi8((char)0xF0);
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         /* Compute combined scale for the block */
 | |
|         const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
 | |
| 
 | |
|         __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
 | |
|         const __m256i bxhi = bytes_from_bits_32(x[i].qh);
 | |
|         __m128i bxhil = _mm256_castsi256_si128(bxhi);
 | |
|         __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
 | |
|         bxhil = _mm_andnot_si128(bxhil, mask);
 | |
|         bxhih = _mm_andnot_si128(bxhih, mask);
 | |
|         __m128i bxl = _mm256_castsi256_si128(bx_0);
 | |
|         __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
 | |
|         bxl = _mm_or_si128(bxl, bxhil);
 | |
|         bxh = _mm_or_si128(bxh, bxhih);
 | |
|         bx_0 = MM256_SET_M128I(bxh, bxl);
 | |
| 
 | |
|         const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
 | |
| 
 | |
|         const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
 | |
| 
 | |
|         /* Multiply q with scale and accumulate */
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| #elif defined(__riscv_v_intrinsic)
 | |
|     float sumf = 0.0;
 | |
| 
 | |
|     uint32_t qh;
 | |
| 
 | |
|     size_t vl = __riscv_vsetvl_e8m1(qk/2);
 | |
| 
 | |
|     // These temporary registers are for masking and shift operations
 | |
|     vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
 | |
|     vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
 | |
| 
 | |
|     vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
 | |
|     vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         memcpy(&qh, x[i].qh, sizeof(uint32_t));
 | |
| 
 | |
|         // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
 | |
|         vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
 | |
|         vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
 | |
|         vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
 | |
| 
 | |
|         // ((qh & (1u << (j + 16))) >> (j + 12));
 | |
|         vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
 | |
|         vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
 | |
| 
 | |
|         // narrowing
 | |
|         vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
 | |
|         vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
 | |
| 
 | |
|         vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
 | |
|         vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
 | |
| 
 | |
|         // load
 | |
|         vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
 | |
| 
 | |
|         vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
 | |
|         vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
 | |
| 
 | |
|         vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
 | |
|         vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
 | |
| 
 | |
|         vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
 | |
|         vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
 | |
| 
 | |
|         vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
 | |
|         vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
 | |
| 
 | |
|         vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
 | |
|         vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
 | |
| 
 | |
|         vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
 | |
|         vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
 | |
| 
 | |
|         vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
 | |
| 
 | |
|         vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
 | |
|         vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
 | |
| 
 | |
|         int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
 | |
| 
 | |
|         sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #else
 | |
|     // scalar
 | |
|     float sumf = 0.0;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         uint32_t qh;
 | |
|         memcpy(&qh, x[i].qh, sizeof(qh));
 | |
| 
 | |
|         int sumi = 0;
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
 | |
|             const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
 | |
| 
 | |
|             const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
 | |
|             const int32_t x1 = ((x[i].qs[j] >>   4) | xh_1) - 16;
 | |
| 
 | |
|             sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
 | |
|         }
 | |
| 
 | |
|         sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     const int qk = QK8_1;
 | |
|     const int nb = n / qk;
 | |
| 
 | |
|     assert(n % qk == 0);
 | |
|     assert(qk == QK5_1);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_q5_1 * restrict x = vx;
 | |
|     const block_q8_1 * restrict y = vy;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
|     float32x4_t sumv0 = vdupq_n_f32(0.0f);
 | |
|     float32x4_t sumv1 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|     float summs0 = 0.0f;
 | |
|     float summs1 = 0.0f;
 | |
| 
 | |
|     uint32_t qh0;
 | |
|     uint32_t qh1;
 | |
| 
 | |
|     uint64_t tmp0[4];
 | |
|     uint64_t tmp1[4];
 | |
| 
 | |
|     assert(nb % 2 == 0); // TODO: handle odd nb
 | |
| 
 | |
|     for (int i = 0; i < nb; i += 2) {
 | |
|         const block_q5_1 * restrict x0 = &x[i];
 | |
|         const block_q5_1 * restrict x1 = &x[i + 1];
 | |
|         const block_q8_1 * restrict y0 = &y[i];
 | |
|         const block_q8_1 * restrict y1 = &y[i + 1];
 | |
| 
 | |
|         const uint8x16_t m4b = vdupq_n_u8(0x0F);
 | |
| 
 | |
|         summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
 | |
|         summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
 | |
| 
 | |
|         // extract the 5th bit via lookup table ((b) << 4)
 | |
|         memcpy(&qh0, x0->qh, sizeof(qh0));
 | |
|         memcpy(&qh1, x1->qh, sizeof(qh1));
 | |
| 
 | |
|         tmp0[0] = table_b2b_0[(qh0 >>  0) & 0xFF];
 | |
|         tmp0[1] = table_b2b_0[(qh0 >>  8) & 0xFF];
 | |
|         tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
 | |
|         tmp0[3] = table_b2b_0[(qh0 >> 24)       ];
 | |
| 
 | |
|         tmp1[0] = table_b2b_0[(qh1 >>  0) & 0xFF];
 | |
|         tmp1[1] = table_b2b_0[(qh1 >>  8) & 0xFF];
 | |
|         tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
 | |
|         tmp1[3] = table_b2b_0[(qh1 >> 24)       ];
 | |
| 
 | |
|         const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
 | |
|         const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
 | |
|         const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
 | |
|         const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
 | |
| 
 | |
|         const uint8x16_t v0_0 = vld1q_u8(x0->qs);
 | |
|         const uint8x16_t v0_1 = vld1q_u8(x1->qs);
 | |
| 
 | |
|         // 4-bit -> 8-bit
 | |
|         const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
 | |
|         const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
 | |
|         const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
 | |
|         const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
 | |
| 
 | |
|         // add high bit
 | |
|         const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
 | |
|         const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
 | |
|         const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
 | |
|         const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
 | |
| 
 | |
|         // load y
 | |
|         const int8x16_t v1_0l = vld1q_s8(y0->qs);
 | |
|         const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
 | |
|         const int8x16_t v1_1l = vld1q_s8(y1->qs);
 | |
|         const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
 | |
| 
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
 | |
|                         ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
 | |
|                         ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
 | |
|                         ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
 | |
|                         ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
 | |
|     }
 | |
| 
 | |
|     *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
 | |
| #elif defined(__wasm_simd128__)
 | |
|     v128_t sumv = wasm_f32x4_splat(0.0f);
 | |
| 
 | |
|     float summs = 0.0f;
 | |
| 
 | |
|     uint32_t qh;
 | |
|     uint64_t tmp[4];
 | |
| 
 | |
|     // TODO: check if unrolling this is better
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const block_q5_1 * restrict x0 = &x[i];
 | |
|         const block_q8_1 * restrict y0 = &y[i];
 | |
| 
 | |
|         summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
 | |
| 
 | |
|         const v128_t m4b = wasm_i8x16_splat(0x0F);
 | |
| 
 | |
|         // extract the 5th bit
 | |
|         memcpy(&qh, x0->qh, sizeof(qh));
 | |
| 
 | |
|         tmp[0] = table_b2b_0[(qh >>  0) & 0xFF];
 | |
|         tmp[1] = table_b2b_0[(qh >>  8) & 0xFF];
 | |
|         tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
 | |
|         tmp[3] = table_b2b_0[(qh >> 24)       ];
 | |
| 
 | |
|         const v128_t qhl = wasm_v128_load(tmp + 0);
 | |
|         const v128_t qhh = wasm_v128_load(tmp + 2);
 | |
| 
 | |
|         const v128_t v0 = wasm_v128_load(x0->qs);
 | |
| 
 | |
|         // 4-bit -> 8-bit
 | |
|         const v128_t v0l = wasm_v128_and (v0, m4b);
 | |
|         const v128_t v0h = wasm_u8x16_shr(v0, 4);
 | |
| 
 | |
|         // add high bit
 | |
|         const v128_t v0lf = wasm_v128_or(v0l, qhl);
 | |
|         const v128_t v0hf = wasm_v128_or(v0h, qhh);
 | |
| 
 | |
|         // load y
 | |
|         const v128_t v1l = wasm_v128_load(y0->qs);
 | |
|         const v128_t v1h = wasm_v128_load(y0->qs + 16);
 | |
| 
 | |
|         // int8x16 -> int16x8
 | |
|         const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
 | |
|         const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
 | |
|         const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
 | |
|         const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
 | |
| 
 | |
|         const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
 | |
|         const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
 | |
|         const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
 | |
|         const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
 | |
| 
 | |
|         // dot product
 | |
|         sumv = wasm_f32x4_add(sumv,
 | |
|                 wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
 | |
|                             wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
 | |
|                                            wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
 | |
|                             wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
 | |
|                                            wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
 | |
|                     wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
 | |
|     }
 | |
| 
 | |
|     *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
 | |
|          wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
 | |
| #elif defined(__AVX2__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     float summs = 0.0f;
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
 | |
| 
 | |
|         summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
 | |
| 
 | |
|         __m256i qx = bytes_from_nibbles_32(x[i].qs);
 | |
|         __m256i bxhi = bytes_from_bits_32(x[i].qh);
 | |
|         bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
 | |
|         qx = _mm256_or_si256(qx, bxhi);
 | |
| 
 | |
|         const __m256 dy = _mm256_set1_ps(y[i].d);
 | |
|         const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
 | |
| 
 | |
|         const __m256 q = mul_sum_us8_pairs_float(qx, qy);
 | |
| 
 | |
|         acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc) + summs;
 | |
| #elif defined(__AVX__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
|     __m128i mask = _mm_set1_epi8(0x10);
 | |
| 
 | |
|     float summs = 0.0f;
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
 | |
| 
 | |
|         summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
 | |
| 
 | |
|         __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
 | |
|         const __m256i bxhi = bytes_from_bits_32(x[i].qh);
 | |
|         __m128i bxhil = _mm256_castsi256_si128(bxhi);
 | |
|         __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
 | |
|         bxhil = _mm_and_si128(bxhil, mask);
 | |
|         bxhih = _mm_and_si128(bxhih, mask);
 | |
|         __m128i bxl = _mm256_castsi256_si128(bx_0);
 | |
|         __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
 | |
|         bxl = _mm_or_si128(bxl, bxhil);
 | |
|         bxh = _mm_or_si128(bxh, bxhih);
 | |
|         bx_0 = MM256_SET_M128I(bxh, bxl);
 | |
| 
 | |
|         const __m256 dy = _mm256_set1_ps(y[i].d);
 | |
|         const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
 | |
| 
 | |
|         const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
 | |
| 
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc) + summs;
 | |
| #elif defined(__riscv_v_intrinsic)
 | |
|     float sumf = 0.0;
 | |
| 
 | |
|     uint32_t qh;
 | |
| 
 | |
|     size_t vl = __riscv_vsetvl_e8m1(qk/2);
 | |
| 
 | |
|     // temporary registers for shift operations
 | |
|     vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
 | |
|     vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         memcpy(&qh, x[i].qh, sizeof(uint32_t));
 | |
| 
 | |
|         // load qh
 | |
|         vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
 | |
| 
 | |
|         // ((qh >> (j +  0)) << 4) & 0x10;
 | |
|         vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
 | |
|         vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
 | |
|         vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
 | |
| 
 | |
|         // ((qh >> (j + 12))     ) & 0x10;
 | |
|         vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
 | |
|         vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
 | |
| 
 | |
|         // narrowing
 | |
|         vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
 | |
|         vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
 | |
| 
 | |
|         vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
 | |
|         vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
 | |
| 
 | |
|         // load
 | |
|         vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
 | |
| 
 | |
|         vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
 | |
|         vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
 | |
| 
 | |
|         vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
 | |
|         vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
 | |
| 
 | |
|         vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
 | |
|         vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
 | |
| 
 | |
|         vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
 | |
|         vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
 | |
| 
 | |
|         vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
 | |
|         vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
 | |
| 
 | |
|         vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
 | |
| 
 | |
|         vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
 | |
|         vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
 | |
| 
 | |
|         int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
 | |
| 
 | |
|         sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #else
 | |
|     // scalar
 | |
|     float sumf = 0.0;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         uint32_t qh;
 | |
|         memcpy(&qh, x[i].qh, sizeof(qh));
 | |
| 
 | |
|         int sumi = 0;
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
 | |
|             const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;
 | |
| 
 | |
|             const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
 | |
|             const int32_t x1 = (x[i].qs[j] >>  4) | xh_1;
 | |
| 
 | |
|             sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
 | |
|         }
 | |
| 
 | |
|         sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     const int qk = QK8_0;
 | |
|     const int nb = n / qk;
 | |
| 
 | |
|     assert(n % qk == 0);
 | |
| #if defined(__ARM_FEATURE_MATMUL_INT8)
 | |
|     assert((nrc == 2) || (nrc == 1));
 | |
| #else
 | |
|     assert(nrc == 1);
 | |
| #endif
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_q8_0 * restrict x = vx;
 | |
|     const block_q8_0 * restrict y = vy;
 | |
| 
 | |
| #if defined(__ARM_FEATURE_MATMUL_INT8)
 | |
|     if (nrc == 2) {
 | |
|         const block_q8_0 * restrict vx0 = vx;
 | |
|         const block_q8_0 * restrict vx1 = vx + bx;
 | |
|         const block_q8_0 * restrict vy0 = vy;
 | |
|         const block_q8_0 * restrict vy1 = vy + by;
 | |
| 
 | |
|         float32x4_t sumv0 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|         for (int i = 0; i < nb; i++) {
 | |
|             const block_q8_0 * restrict b_x0 = &vx0[i];
 | |
|             const block_q8_0 * restrict b_y0 = &vy0[i];
 | |
| 
 | |
|             const block_q8_0 * restrict b_x1 = &vx1[i];
 | |
|             const block_q8_0 * restrict b_y1 = &vy1[i];
 | |
| 
 | |
|             const int8x16_t x0_l = vld1q_s8(b_x0->qs);
 | |
|             const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
 | |
|             const int8x16_t x1_l = vld1q_s8(b_x1->qs);
 | |
|             const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
 | |
| 
 | |
|             // load y
 | |
|             const int8x16_t y0_l = vld1q_s8(b_y0->qs);
 | |
|             const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
 | |
|             const int8x16_t y1_l = vld1q_s8(b_y1->qs);
 | |
|             const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
 | |
| 
 | |
|             float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
 | |
|                              GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
 | |
|                              GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
 | |
|                              GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
 | |
| 
 | |
|             int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
 | |
|             int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
 | |
| 
 | |
|             int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
 | |
|             int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
 | |
| 
 | |
|             int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
 | |
|             int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
 | |
| 
 | |
|             int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
 | |
|             int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
 | |
| 
 | |
|             sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
 | |
|                                                                                        l1, r1)), l2, r2)), l3, r3))), scale);
 | |
|         }
 | |
|         float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
 | |
|         float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
 | |
| 
 | |
|         vst1_f32(s, vget_low_f32(sumv2));
 | |
|         vst1_f32(s + bs, vget_high_f32(sumv2));
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
| #if defined(__ARM_NEON)
 | |
|     float32x4_t sumv0 = vdupq_n_f32(0.0f);
 | |
|     float32x4_t sumv1 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|     assert(nb % 2 == 0); // TODO: handle odd nb
 | |
| 
 | |
|     for (int i = 0; i < nb; i += 2) {
 | |
|         const block_q8_0 * restrict x0 = &x[i + 0];
 | |
|         const block_q8_0 * restrict x1 = &x[i + 1];
 | |
|         const block_q8_0 * restrict y0 = &y[i + 0];
 | |
|         const block_q8_0 * restrict y1 = &y[i + 1];
 | |
| 
 | |
|         const int8x16_t x0_0 = vld1q_s8(x0->qs);
 | |
|         const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
 | |
|         const int8x16_t x1_0 = vld1q_s8(x1->qs);
 | |
|         const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
 | |
| 
 | |
|         // load y
 | |
|         const int8x16_t y0_0 = vld1q_s8(y0->qs);
 | |
|         const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
 | |
|         const int8x16_t y1_0 = vld1q_s8(y1->qs);
 | |
|         const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
 | |
| 
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
 | |
|                         ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
 | |
|                         ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
 | |
| 
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
 | |
|                         ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
 | |
|                         ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
 | |
|     }
 | |
| 
 | |
|     *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
 | |
| #elif defined(__AVX2__) || defined(__AVX__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         // Compute combined scale for the block
 | |
|         const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
 | |
|         __m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs);
 | |
|         __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
 | |
| 
 | |
|         const __m256 q = mul_sum_i8_pairs_float(qx, qy);
 | |
| 
 | |
|         // Multiply q with scale and accumulate
 | |
| #if defined(__AVX2__)
 | |
|         acc = _mm256_fmadd_ps( d, q, acc );
 | |
| #else
 | |
|         acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| #elif defined(__riscv_v_intrinsic)
 | |
|     float sumf = 0.0;
 | |
|     size_t vl = __riscv_vsetvl_e8m1(qk);
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         // load elements
 | |
|         vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[i].qs, vl);
 | |
|         vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
 | |
| 
 | |
|         vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
 | |
| 
 | |
|         vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
 | |
|         vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
 | |
| 
 | |
|         int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
 | |
| 
 | |
|         sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #else
 | |
|     // scalar
 | |
|     float sumf = 0.0;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         int sumi = 0;
 | |
| 
 | |
|         for (int j = 0; j < qk; j++) {
 | |
|             sumi += x[i].qs[j]*y[i].qs[j];
 | |
|         }
 | |
| 
 | |
|         sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if QK_K == 256
 | |
| void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_q2_K * restrict x = vx;
 | |
|     const block_q8_K * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
| #ifdef __ARM_NEON
 | |
|     const uint8x16_t m3 = vdupq_n_u8(0x3);
 | |
|     const uint8x16_t m4 = vdupq_n_u8(0xF);
 | |
| 
 | |
|     const int32x4_t vzero = vdupq_n_s32(0);
 | |
| 
 | |
|     ggml_int8x16x2_t q2bytes;
 | |
|     uint8_t aux[16];
 | |
| 
 | |
|     float sum = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         const uint8_t * restrict q2 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
|         const uint8_t * restrict sc = x[i].scales;
 | |
| 
 | |
|         const uint8x16_t mins_and_scales = vld1q_u8(sc);
 | |
|         const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
 | |
|         vst1q_u8(aux, scales);
 | |
| 
 | |
|         const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
 | |
|         const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
 | |
|         const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
 | |
|         const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
 | |
|                                        vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
 | |
|         const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
 | |
|                                        vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
 | |
|         sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
 | |
| 
 | |
|         int isum = 0;
 | |
|         int is = 0;
 | |
| 
 | |
| // We use this macro instead of a function call because for some reason
 | |
| // the code runs 2-3% slower, even if the function is declared inline
 | |
| #define MULTIPLY_ACCUM_WITH_SCALE(index)\
 | |
|         isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
 | |
|         isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
 | |
| 
 | |
| #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
 | |
|         q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
 | |
|         q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
 | |
|         q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
 | |
|         MULTIPLY_ACCUM_WITH_SCALE((index));
 | |
| 
 | |
|         for (int j = 0; j < QK_K/128; ++j) {
 | |
|             const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
 | |
| 
 | |
|             ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
 | |
|             q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
 | |
|             q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
 | |
| 
 | |
|             MULTIPLY_ACCUM_WITH_SCALE(0);
 | |
| 
 | |
|             SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
 | |
|             SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
 | |
|             SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
 | |
| 
 | |
|             is += 8;
 | |
|         }
 | |
| 
 | |
|         sum += d * isum;
 | |
|     }
 | |
| 
 | |
|     *s = sum;
 | |
| 
 | |
| #elif defined __AVX2__
 | |
| 
 | |
|     const __m256i m3 = _mm256_set1_epi8(3);
 | |
|     const __m128i m4 = _mm_set1_epi8(0xF);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         const uint8_t * restrict q2 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
 | |
|         const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
 | |
|         const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
 | |
|         const __m256i mins = _mm256_cvtepi8_epi16(mins8);
 | |
|         const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
 | |
| 
 | |
|         acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
 | |
| 
 | |
|         const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
 | |
|         const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
 | |
|         const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
 | |
|         const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
 | |
| 
 | |
|         __m256i sumi = _mm256_setzero_si256();
 | |
| 
 | |
|         for (int j = 0; j < QK_K/128; ++j) {
 | |
| 
 | |
|             const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
 | |
| 
 | |
|             const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
|             const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
|             const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
|             const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
| 
 | |
|             const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
 | |
|             const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
 | |
|             const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
 | |
|             const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
 | |
| 
 | |
|             __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
 | |
|             __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
 | |
|             __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
 | |
|             __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
 | |
| 
 | |
|             p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
 | |
|             p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
 | |
|             p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
 | |
|             p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
 | |
| 
 | |
|             p0 = _mm256_add_epi32(p0, p1);
 | |
|             p2 = _mm256_add_epi32(p2, p3);
 | |
| 
 | |
|             sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
 | |
|         }
 | |
| 
 | |
|         acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| 
 | |
| #elif defined __AVX__
 | |
| 
 | |
|     const __m128i m3 = _mm_set1_epi8(0x3);
 | |
|     const __m128i m4 = _mm_set1_epi8(0xF);
 | |
|     const __m128i m2 = _mm_set1_epi8(0x2);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         const uint8_t * restrict q2 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         // load mins and scales from block_q2_K.scales[QK_K/16]
 | |
|         const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
 | |
|         const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
 | |
|         const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
 | |
|         const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
 | |
|         const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
 | |
| 
 | |
|         // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
 | |
|         const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
 | |
|         const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
 | |
| 
 | |
|         // sumf += -dmin * summs in 32bits*8
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
 | |
| 
 | |
|         const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
 | |
|         const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
 | |
|         const __m128i scales[2] = { scales_0, scales_1 };
 | |
| 
 | |
|         __m128i sumi_0 = _mm_setzero_si128();
 | |
|         __m128i sumi_1 = _mm_setzero_si128();
 | |
| 
 | |
|         for (int j = 0; j < QK_K/128; ++j) {
 | |
| 
 | |
|             // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
 | |
|             const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
| 
 | |
|             // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
 | |
|             __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
 | |
|             const __m128i q2_0 = _mm_and_si128(q2bits, m3);
 | |
|             const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
 | |
|             const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
 | |
|             const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
 | |
|             q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
 | |
|             const __m128i q2_1 = _mm_and_si128(q2bits, m3);
 | |
|             const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
 | |
|             const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
 | |
|             const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
 | |
| 
 | |
|             // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
 | |
|             __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
 | |
|             __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
 | |
|             __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
 | |
|             __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
 | |
|             __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
 | |
|             __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
 | |
|             __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
 | |
|             __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
 | |
| 
 | |
|             // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
 | |
|             __m128i shuffle = _mm_set1_epi16(0x0100);
 | |
|             p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
 | |
| 
 | |
|             p0 = _mm_add_epi32(p0, p1);
 | |
|             p2 = _mm_add_epi32(p2, p3);
 | |
|             p4 = _mm_add_epi32(p4, p5);
 | |
|             p6 = _mm_add_epi32(p6, p7);
 | |
| 
 | |
|             // isum in 32bits*4*2
 | |
|             sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
 | |
|             sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
 | |
|         }
 | |
| 
 | |
|         // sumf += dall * isum - dmin * summs in 32bits
 | |
|         __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| 
 | |
| #elif defined __riscv_v_intrinsic
 | |
| 
 | |
|     float sumf = 0;
 | |
|     uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|                             1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const uint8_t * q2 = x[i].qs;
 | |
|         const  int8_t * q8 = y[i].qs;
 | |
|         const uint8_t * sc = x[i].scales;
 | |
| 
 | |
|         const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         size_t vl = 16;
 | |
| 
 | |
|         vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
 | |
|         vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
 | |
| 
 | |
|         vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
 | |
| 
 | |
|         vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
 | |
|         vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
 | |
|         vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
 | |
|         vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
 | |
|         vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
 | |
| 
 | |
|         sumf  += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
 | |
| 
 | |
|         vl = 32;
 | |
| 
 | |
|         vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
 | |
|         vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
 | |
| 
 | |
|         uint8_t is=0;
 | |
|         int isum=0;
 | |
| 
 | |
|         for (int j = 0; j < QK_K/128; ++j) {
 | |
|             // load Q2
 | |
|             vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
 | |
| 
 | |
|             vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
 | |
|             vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
 | |
|             vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
 | |
|             vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
 | |
| 
 | |
|             // duplicate scale elements for product
 | |
|             vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
 | |
|             vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
 | |
|             vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
 | |
|             vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
 | |
| 
 | |
|             vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
 | |
|             vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
 | |
|             vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
 | |
|             vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
 | |
| 
 | |
|             // load Q8
 | |
|             vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
 | |
|             vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
 | |
|             vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
 | |
|             vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
 | |
| 
 | |
|             vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
 | |
|             vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
 | |
|             vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
 | |
|             vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
 | |
| 
 | |
|             vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
 | |
|             vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
 | |
| 
 | |
|             isum += __riscv_vmv_x_s_i32m1_i32(isum1);
 | |
| 
 | |
|             q2+=32;  q8+=128;  is=8;
 | |
| 
 | |
|         }
 | |
| 
 | |
|         sumf += dall * isum;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #else
 | |
| 
 | |
|     float sumf = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const uint8_t * q2 = x[i].qs;
 | |
|         const  int8_t * q8 = y[i].qs;
 | |
|         const uint8_t * sc = x[i].scales;
 | |
| 
 | |
|         int summs = 0;
 | |
|         for (int j = 0; j < 16; ++j) {
 | |
|             summs += y[i].bsums[j] * (sc[j] >> 4);
 | |
|         }
 | |
| 
 | |
|         const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         int isum = 0;
 | |
|         int is = 0;
 | |
|         int d;
 | |
|         for (int k = 0; k < QK_K/128; ++k) {
 | |
|             int shift = 0;
 | |
|             for (int j = 0; j < 4; ++j) {
 | |
|                 d = sc[is++] & 0xF;
 | |
|                 int isuml = 0;
 | |
|                 for (int l =  0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
 | |
|                 isum += d * isuml;
 | |
|                 d = sc[is++] & 0xF;
 | |
|                 isuml = 0;
 | |
|                 for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
 | |
|                 isum += d * isuml;
 | |
|                 shift += 2;
 | |
|                 q8 += 32;
 | |
|             }
 | |
|             q2 += 32;
 | |
|         }
 | |
|         sumf += dall * isum - dmin * summs;
 | |
|     }
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_q2_K * restrict x = vx;
 | |
|     const block_q8_K * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
| #ifdef __ARM_NEON
 | |
|     const uint8x16_t m3 = vdupq_n_u8(0x3);
 | |
| 
 | |
|     const int32x4_t vzero = vdupq_n_s32(0);
 | |
| 
 | |
|     ggml_int8x16x4_t q2bytes;
 | |
| 
 | |
|     uint32_t aux32[2];
 | |
|     const uint8_t * scales = (const uint8_t *)aux32;
 | |
| 
 | |
|     float sum = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d    =  y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         const uint8_t * restrict q2 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
|         const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
 | |
| 
 | |
|         aux32[0] = sc[0] & 0x0f0f0f0f;
 | |
|         aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
 | |
| 
 | |
|         sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
 | |
| 
 | |
|         int isum1 = 0, isum2 = 0;
 | |
| 
 | |
|         const uint8x16_t q2bits = vld1q_u8(q2);
 | |
| 
 | |
|         const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
 | |
| 
 | |
|         q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
 | |
|         q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
 | |
|         q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
 | |
|         q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
 | |
| 
 | |
|         isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
 | |
|         isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
 | |
|         isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
 | |
|         isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
 | |
| 
 | |
|         sum += d * (isum1 + isum2);
 | |
|     }
 | |
| 
 | |
|     *s = sum;
 | |
| 
 | |
| #elif defined __AVX2__
 | |
| 
 | |
|     const __m256i m3 = _mm256_set1_epi8(3);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     uint32_t ud, um;
 | |
|     const uint8_t * restrict db = (const uint8_t *)&ud;
 | |
|     const uint8_t * restrict mb = (const uint8_t *)&um;
 | |
| 
 | |
|     float summs = 0;
 | |
| 
 | |
|     // TODO: optimize this
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         const uint8_t * restrict q2 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
 | |
|         ud = (sc[0] >> 0) & 0x0f0f0f0f;
 | |
|         um = (sc[0] >> 4) & 0x0f0f0f0f;
 | |
| 
 | |
|         int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
 | |
|         summs += dmin * smin;
 | |
| 
 | |
|         const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
 | |
|         const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
 | |
|         const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
 | |
| 
 | |
|         const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
 | |
|         const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
 | |
| 
 | |
|         const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
 | |
|         const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
 | |
| 
 | |
|         const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
 | |
|         const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
 | |
|         const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
 | |
|         const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
 | |
| 
 | |
|         acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
 | |
|         acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
 | |
|         acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
 | |
|         acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc) + summs;
 | |
| 
 | |
| #elif defined __AVX__
 | |
| 
 | |
|     const __m128i m3 = _mm_set1_epi8(3);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     uint32_t ud, um;
 | |
|     const uint8_t * restrict db = (const uint8_t *)&ud;
 | |
|     const uint8_t * restrict mb = (const uint8_t *)&um;
 | |
| 
 | |
|     float summs = 0;
 | |
| 
 | |
|     // TODO: optimize this
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         const uint8_t * restrict q2 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
 | |
|         ud = (sc[0] >> 0) & 0x0f0f0f0f;
 | |
|         um = (sc[0] >> 4) & 0x0f0f0f0f;
 | |
| 
 | |
|         int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
 | |
|         summs += dmin * smin;
 | |
| 
 | |
|         const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
 | |
|         const __m128i q2_0 = _mm_and_si128(q2bits, m3);
 | |
|         const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
 | |
|         const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
 | |
|         const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
 | |
| 
 | |
|         const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
 | |
|         const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
 | |
| 
 | |
|         const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
 | |
|         const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
 | |
|         const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
 | |
|         const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
 | |
| 
 | |
|         const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
 | |
|         const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
 | |
|         const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
 | |
|         const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
 | |
| 
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc) + summs;
 | |
| 
 | |
| #elif defined __riscv_v_intrinsic
 | |
| 
 | |
|     uint32_t aux32[2];
 | |
|     const uint8_t * scales = (const uint8_t *)aux32;
 | |
| 
 | |
|     float sumf = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d    =  y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         const uint8_t * restrict q2 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
|         const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
 | |
| 
 | |
|         aux32[0] = sc[0] & 0x0f0f0f0f;
 | |
|         aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
 | |
| 
 | |
|         sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
 | |
| 
 | |
|         int isum1 = 0;
 | |
|         int isum2 = 0;
 | |
| 
 | |
|         size_t vl = 16;
 | |
| 
 | |
|         vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
 | |
| 
 | |
|         // load Q2
 | |
|         vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl);
 | |
| 
 | |
|         vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl));
 | |
|         vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl));
 | |
|         vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl));
 | |
|         vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl));
 | |
| 
 | |
|         // load Q8, and take product with Q2
 | |
|         vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
 | |
|         vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
 | |
|         vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
 | |
|         vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
 | |
| 
 | |
|         vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl);
 | |
|         vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl);
 | |
|         vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl);
 | |
|         vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl);
 | |
| 
 | |
|         isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0];
 | |
|         isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1];
 | |
|         isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2];
 | |
|         isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3];
 | |
| 
 | |
|         sumf += d * (isum1 + isum2);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #else
 | |
| 
 | |
|     float sumf = 0;
 | |
| 
 | |
|     int isum[QK_K/16];
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const uint8_t * q2 = x[i].qs;
 | |
|         const  int8_t * q8 = y[i].qs;
 | |
|         const uint8_t * sc = x[i].scales;
 | |
| 
 | |
|         int summs = 0;
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             summs += y[i].bsums[j] * (sc[j] >> 4);
 | |
|         }
 | |
| 
 | |
|         const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         memset(isum, 0, (QK_K/16)*sizeof(int));
 | |
|         for (int l =  0; l < 16; ++l) {
 | |
|             isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
 | |
|             isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
 | |
|             isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
 | |
|             isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
 | |
|         }
 | |
|         for (int l = 0; l < QK_K/16; ++l) {
 | |
|             isum[l] *= (sc[l] & 0xF);
 | |
|         }
 | |
|         sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
 | |
|     }
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if QK_K == 256
 | |
| void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(n % QK_K == 0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const uint32_t kmask1 = 0x03030303;
 | |
|     const uint32_t kmask2 = 0x0f0f0f0f;
 | |
| 
 | |
|     const block_q3_K * restrict x = vx;
 | |
|     const block_q8_K * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
| #ifdef __ARM_NEON
 | |
| 
 | |
|     uint32_t aux[3];
 | |
|     uint32_t utmp[4];
 | |
| 
 | |
|     const uint8x16_t m3b = vdupq_n_u8(0x3);
 | |
|     const int32x4_t  vzero = vdupq_n_s32(0);
 | |
| 
 | |
|     const uint8x16_t m0 = vdupq_n_u8(1);
 | |
|     const uint8x16_t m1 = vshlq_n_u8(m0, 1);
 | |
|     const uint8x16_t m2 = vshlq_n_u8(m0, 2);
 | |
|     const uint8x16_t m3 = vshlq_n_u8(m0, 3);
 | |
|     const int8_t m32 = 32;
 | |
| 
 | |
|     ggml_int8x16x4_t q3bytes;
 | |
| 
 | |
|     float sum = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict q3 = x[i].qs;
 | |
|         const uint8_t * restrict qh = x[i].hmask;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
 | |
| 
 | |
|         ggml_uint8x16x4_t q3h;
 | |
| 
 | |
|         int32_t isum = 0;
 | |
| 
 | |
|         // Set up scales
 | |
|         memcpy(aux, x[i].scales, 12);
 | |
|         utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
 | |
|         utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
 | |
|         utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
 | |
|         utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
 | |
| 
 | |
|         int8_t * scale = (int8_t *)utmp;
 | |
|         for (int j = 0; j < 16; ++j) scale[j] -= m32;
 | |
| 
 | |
|         for (int j = 0; j < QK_K/128; ++j) {
 | |
| 
 | |
|             const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
 | |
|             const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
 | |
|             const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
 | |
| 
 | |
|             q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
 | |
|             q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
 | |
|             q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
 | |
|             q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
 | |
| 
 | |
|             q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
 | |
|             q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
 | |
|             q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
 | |
|             q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
 | |
| 
 | |
|             isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
 | |
|             isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
 | |
|             isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
 | |
|             isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
 | |
| 
 | |
|             scale += 4;
 | |
| 
 | |
|             q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
 | |
|             q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
 | |
|             q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
 | |
|             q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
 | |
| 
 | |
|             q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
 | |
|             q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
 | |
|             q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
 | |
|             q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
 | |
| 
 | |
|             isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
 | |
|             isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
 | |
|             isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
 | |
|             isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
 | |
| 
 | |
|             scale += 4;
 | |
| 
 | |
|             if (j == 0) {
 | |
|                 qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
 | |
|                 qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
 | |
|             }
 | |
| 
 | |
|         }
 | |
|         sum += d * isum;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = sum;
 | |
| 
 | |
| #elif defined __AVX2__
 | |
| 
 | |
|     const __m256i m3 = _mm256_set1_epi8(3);
 | |
|     const __m256i mone = _mm256_set1_epi8(1);
 | |
|     const __m128i m32 = _mm_set1_epi8(32);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     uint32_t aux[3];
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict q3 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         // Set up scales
 | |
|         memcpy(aux, x[i].scales, 12);
 | |
|         __m128i scales128 = _mm_set_epi32(
 | |
|                 ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
 | |
|                 ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
 | |
|                 (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
 | |
|                 (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
 | |
|         scales128 = _mm_sub_epi8(scales128, m32);
 | |
|         const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
 | |
|         const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
 | |
|         const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
 | |
|         const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
 | |
| 
 | |
|         // high bit
 | |
|         const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
 | |
| 
 | |
|         // integer accumulator
 | |
|         __m256i sumi = _mm256_setzero_si256();
 | |
| 
 | |
|         int bit = 0;
 | |
|         int is  = 0;
 | |
| 
 | |
|         for (int j = 0; j < QK_K/128; ++j) {
 | |
|             // load low 2 bits
 | |
|             const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
 | |
| 
 | |
|             // prepare low and high bits
 | |
|             const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
 | |
|             const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
 | |
|             ++bit;
 | |
| 
 | |
|             const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
 | |
|             const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
 | |
|             ++bit;
 | |
| 
 | |
|             const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
 | |
|             const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
 | |
|             ++bit;
 | |
| 
 | |
|             const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
 | |
|             const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
 | |
|             ++bit;
 | |
| 
 | |
|             // load Q8 quants
 | |
|             const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
|             const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
|             const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
|             const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
| 
 | |
|             // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
 | |
|             // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
 | |
|             // and 2 if the high bit was set)
 | |
|             __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
 | |
|             __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
 | |
|             __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
 | |
|             __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
 | |
| 
 | |
|             __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
 | |
|             __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
 | |
|             __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
 | |
|             __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
 | |
| 
 | |
|             p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
 | |
|             p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
 | |
|             p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
 | |
|             p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
 | |
| 
 | |
|             // multiply with scales
 | |
|             p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
 | |
|             p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
 | |
|             p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
 | |
|             p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
 | |
| 
 | |
|             // accumulate
 | |
|             p16_0 = _mm256_add_epi32(p16_0, p16_1);
 | |
|             p16_2 = _mm256_add_epi32(p16_2, p16_3);
 | |
|             sumi  = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
 | |
| 
 | |
|         }
 | |
| 
 | |
|         // multiply with block scale and accumulate
 | |
|         acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| 
 | |
| #elif defined __AVX__
 | |
| 
 | |
|     const __m128i m3 = _mm_set1_epi8(3);
 | |
|     const __m128i mone = _mm_set1_epi8(1);
 | |
|     const __m128i m32 = _mm_set1_epi8(32);
 | |
|     const __m128i m2 = _mm_set1_epi8(2);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     const uint32_t *aux;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict q3 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         // Set up scales
 | |
|         aux = (const uint32_t *)x[i].scales;
 | |
|         __m128i scales128 = _mm_set_epi32(
 | |
|                 ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
 | |
|                 ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
 | |
|                 (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
 | |
|                 (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
 | |
|         scales128 = _mm_sub_epi8(scales128, m32);
 | |
|         const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
 | |
|         const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
 | |
|         const __m128i scales[2] = { scales_0, scales_1 };
 | |
| 
 | |
|         // high bit *128*2 from block_q3_K.hmask[QK_K/8]
 | |
|         const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
 | |
|         const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
 | |
| 
 | |
|         // integer accumulator
 | |
|         __m128i sumi_0 = _mm_setzero_si128();
 | |
|         __m128i sumi_1 = _mm_setzero_si128();
 | |
| 
 | |
|         for (int j = 0; j < QK_K/128; ++j) {
 | |
|             // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
 | |
|             const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
 | |
|             const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
 | |
| 
 | |
|             // prepare low and high bits
 | |
|             const int bit = j << 2;
 | |
| 
 | |
|             const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
 | |
|             const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
 | |
|             const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
 | |
|             const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
 | |
| 
 | |
|             const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
 | |
|             const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
 | |
|             const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
 | |
|             const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
 | |
| 
 | |
|             const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
 | |
|             const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
 | |
|             const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
 | |
|             const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
 | |
| 
 | |
|             const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
 | |
|             const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
 | |
|             const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
 | |
|             const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
 | |
| 
 | |
|             // load Q8 quants from block_q8_K.qs[QK_K]
 | |
|             const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
| 
 | |
|             // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
 | |
|             // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
 | |
|             // and 2 if the high bit was set)
 | |
|             __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
 | |
|             __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
 | |
|             __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
 | |
|             __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
 | |
|             __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
 | |
|             __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
 | |
|             __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
 | |
|             __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
 | |
| 
 | |
|             __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
 | |
|             __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
 | |
|             __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
 | |
|             __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
 | |
|             __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
 | |
|             __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
 | |
|             __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
 | |
|             __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
 | |
| 
 | |
|             p16_0 = _mm_sub_epi16(p16_0, q8s_0);
 | |
|             p16_1 = _mm_sub_epi16(p16_1, q8s_1);
 | |
|             p16_2 = _mm_sub_epi16(p16_2, q8s_2);
 | |
|             p16_3 = _mm_sub_epi16(p16_3, q8s_3);
 | |
|             p16_4 = _mm_sub_epi16(p16_4, q8s_4);
 | |
|             p16_5 = _mm_sub_epi16(p16_5, q8s_5);
 | |
|             p16_6 = _mm_sub_epi16(p16_6, q8s_6);
 | |
|             p16_7 = _mm_sub_epi16(p16_7, q8s_7);
 | |
| 
 | |
|             // multiply with scales
 | |
|             __m128i shuffle = _mm_set1_epi16(0x0100);
 | |
|             p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
 | |
| 
 | |
|             // accumulate
 | |
|             p16_0 = _mm_add_epi32(p16_0, p16_1);
 | |
|             p16_2 = _mm_add_epi32(p16_2, p16_3);
 | |
|             p16_4 = _mm_add_epi32(p16_4, p16_5);
 | |
|             p16_6 = _mm_add_epi32(p16_6, p16_7);
 | |
|             sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
 | |
|             sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
 | |
| 
 | |
|         }
 | |
| 
 | |
|         // multiply with block scale and accumulate
 | |
|         __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| 
 | |
| #elif defined __riscv_v_intrinsic
 | |
| 
 | |
|     uint32_t aux[3];
 | |
|     uint32_t utmp[4];
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const uint8_t * restrict q3 = x[i].qs;
 | |
|         const uint8_t * restrict qh = x[i].hmask;
 | |
|         const  int8_t * restrict q8 = y[i].qs;
 | |
| 
 | |
|         memcpy(aux, x[i].scales, 12);
 | |
|         utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
 | |
|         utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
 | |
|         utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
 | |
|         utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
 | |
| 
 | |
|         int8_t * scale = (int8_t *)utmp;
 | |
|         for (int j = 0; j < 16; ++j) scale[j] -= 32;
 | |
| 
 | |
| 
 | |
|         size_t vl = 32;
 | |
|         uint8_t m =  1;
 | |
| 
 | |
|         vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
 | |
|         vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
 | |
| 
 | |
|         int sum_t = 0;
 | |
| 
 | |
|         for (int j = 0; j < QK_K; j += 128) {
 | |
| 
 | |
|             vl = 32;
 | |
| 
 | |
|             // load Q3
 | |
|             vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
 | |
| 
 | |
|             vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
 | |
|             vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
 | |
|             vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
 | |
|             vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
 | |
| 
 | |
|             // compute mask for subtraction
 | |
|             vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
 | |
|             vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
 | |
|             vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
 | |
|             m <<= 1;
 | |
| 
 | |
|             vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
 | |
|             vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
 | |
|             vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
 | |
|             m <<= 1;
 | |
| 
 | |
|             vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
 | |
|             vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
 | |
|             vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
 | |
|             m <<= 1;
 | |
| 
 | |
|             vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
 | |
|             vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
 | |
|             vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
 | |
|             m <<= 1;
 | |
| 
 | |
|             // load Q8 and take product with Q3
 | |
|             vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
 | |
|             vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
 | |
|             vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
 | |
|             vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
 | |
| 
 | |
|             vl = 16;
 | |
| 
 | |
|             // retrieve lane to multiply with scale
 | |
|             vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
 | |
|             vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
 | |
|             vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
 | |
|             vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
 | |
|             vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
 | |
|             vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
 | |
|             vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
 | |
|             vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
 | |
| 
 | |
|             vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
 | |
|             vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
 | |
|             vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
 | |
|             vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
 | |
| 
 | |
|             sum_t +=  __riscv_vmv_x_s_i32m1_i32(isum3);
 | |
| 
 | |
|             q3 += 32;    q8 += 128;   scale += 8;
 | |
| 
 | |
|         }
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
| 
 | |
|         sumf += d*sum_t;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #else
 | |
|     // scalar version
 | |
|     // This function is written like this so the compiler can manage to vectorize most of it
 | |
|     // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
 | |
|     // manually vectorized version above. Every other version I tried would run at least 4 times slower.
 | |
|     // The ideal situation would be if we could just write the code once, and the compiler would
 | |
|     // automatically produce the best possible set of machine instructions, instead of us having to manually
 | |
|     // write vectorized versions for AVX, ARM_NEON, etc.
 | |
| 
 | |
|     int8_t  aux8[QK_K];
 | |
|     int16_t aux16[8];
 | |
|     float   sums [8];
 | |
|     int32_t aux32[8];
 | |
|     memset(sums, 0, 8*sizeof(float));
 | |
| 
 | |
|     uint32_t auxs[4];
 | |
|     const int8_t * scales = (const int8_t*)auxs;
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const uint8_t * restrict q3 = x[i].qs;
 | |
|         const uint8_t * restrict hm = x[i].hmask;
 | |
|         const  int8_t * restrict q8 = y[i].qs;
 | |
|         memset(aux32, 0, 8*sizeof(int32_t));
 | |
|         int8_t * restrict a = aux8;
 | |
|         uint8_t m = 1;
 | |
|         for (int j = 0; j < QK_K; j += 128) {
 | |
|             for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
 | |
|             for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
 | |
|             a += 32; m <<= 1;
 | |
|             for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
 | |
|             for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
 | |
|             a += 32; m <<= 1;
 | |
|             for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
 | |
|             for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
 | |
|             a += 32; m <<= 1;
 | |
|             for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
 | |
|             for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
 | |
|             a += 32; m <<= 1;
 | |
|             q3 += 32;
 | |
|         }
 | |
|         a = aux8;
 | |
| 
 | |
|         memcpy(auxs, x[i].scales, 12);
 | |
|         uint32_t tmp = auxs[2];
 | |
|         auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
 | |
|         auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
 | |
|         auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
 | |
|         auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
 | |
|             q8 += 8; a += 8;
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
 | |
|             q8 += 8; a += 8;
 | |
|         }
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
 | |
|     }
 | |
|     for (int l = 0; l < 8; ++l) sumf += sums[l];
 | |
|     *s = sumf;
 | |
| 
 | |
| #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(n % QK_K == 0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_q3_K * restrict x = vx;
 | |
|     const block_q8_K * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
| #ifdef __ARM_NEON
 | |
|     const int32x4_t vzero = vdupq_n_s32(0);
 | |
| 
 | |
|     const uint8x16_t m3b = vdupq_n_u8(0x3);
 | |
|     const uint8x16_t mh  = vdupq_n_u8(4);
 | |
| 
 | |
|     ggml_int8x16x4_t q3bytes;
 | |
| 
 | |
|     uint16_t aux16[2];
 | |
|     int8_t * scales = (int8_t *)aux16;
 | |
| 
 | |
|     float sum = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         ggml_uint8x16x4_t q3h;
 | |
| 
 | |
|         const uint8x8_t  hbits    = vld1_u8(x[i].hmask);
 | |
|         const uint8x16_t q3bits   = vld1q_u8(x[i].qs);
 | |
|         const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs);
 | |
| 
 | |
|         const uint16_t a = *(const uint16_t *)x[i].scales;
 | |
|         aux16[0] = a & 0x0f0f;
 | |
|         aux16[1] = (a >> 4) & 0x0f0f;
 | |
| 
 | |
|         for (int j = 0; j < 4; ++j) scales[j] -= 8;
 | |
| 
 | |
|         int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
 | |
|         q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
 | |
|         q3h.val[1] = vandq_u8(mh, htmp);
 | |
|         q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
 | |
|         q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
 | |
| 
 | |
|         q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b),                q3h.val[0]));
 | |
|         q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
 | |
|         q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
 | |
|         q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6),                q3h.val[3]));
 | |
| 
 | |
|         isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
 | |
|         isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
 | |
|         isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
 | |
|         isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
 | |
| 
 | |
|         sum += d * isum;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = sum;
 | |
| 
 | |
| #elif defined __AVX2__
 | |
| 
 | |
|     const __m256i m3 = _mm256_set1_epi8(3);
 | |
|     const __m256i m1 = _mm256_set1_epi8(1);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     uint64_t aux64;
 | |
| 
 | |
|     uint16_t aux16[2];
 | |
|     const int8_t * aux8 = (const int8_t *)aux16;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict q3 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const uint16_t a = *(const uint16_t *)x[i].scales;
 | |
|         aux16[0] = a & 0x0f0f;
 | |
|         aux16[1] = (a >> 4) & 0x0f0f;
 | |
| 
 | |
|         const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
 | |
|         const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
 | |
| 
 | |
|         memcpy(&aux64, x[i].hmask, 8);
 | |
| 
 | |
|         const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
 | |
|         __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
 | |
|         __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
 | |
|         q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
 | |
|         q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
 | |
| 
 | |
|         // load low 2 bits
 | |
|         const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
 | |
| 
 | |
|         // prepare low and high bits
 | |
|         const __m256i q3aux  = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
 | |
|         const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
 | |
|         const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
 | |
| 
 | |
|         // load Q8 quants
 | |
|         const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
 | |
|         const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
 | |
| 
 | |
|         // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
 | |
|         // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
 | |
|         // and 2 if the high bit was set)
 | |
|         const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
 | |
|         const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
 | |
| 
 | |
|         __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
 | |
|         __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
 | |
| 
 | |
|         p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
 | |
|         p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
 | |
| 
 | |
|         // multiply with scales
 | |
|         p16_0 = _mm256_madd_epi16(scale_0, p16_0);
 | |
|         p16_1 = _mm256_madd_epi16(scale_1, p16_1);
 | |
| 
 | |
|         p16_0 = _mm256_add_epi32(p16_0, p16_1);
 | |
| 
 | |
|         // multiply with block scale and accumulate
 | |
|         acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| 
 | |
| #elif defined __AVX__
 | |
| 
 | |
|     const __m128i m3 = _mm_set1_epi8(3);
 | |
|     const __m128i m1 = _mm_set1_epi8(1);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     uint64_t aux64;
 | |
| 
 | |
|     uint16_t aux16[2];
 | |
|     const int8_t * aux8 = (const int8_t *)aux16;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict q3 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const uint16_t a = *(const uint16_t *)x[i].scales;
 | |
|         aux16[0] = a & 0x0f0f;
 | |
|         aux16[1] = (a >> 4) & 0x0f0f;
 | |
| 
 | |
|         const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
 | |
|         const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
 | |
|         const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
 | |
|         const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
 | |
| 
 | |
|         memcpy(&aux64, x[i].hmask, 8);
 | |
| 
 | |
|         __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
 | |
|         __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
 | |
|         __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
 | |
|         __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
 | |
|         q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
 | |
|         q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
 | |
|         q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
 | |
|         q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
 | |
| 
 | |
|         // load low 2 bits
 | |
|         const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
 | |
| 
 | |
|         // prepare low and high bits
 | |
|         const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
 | |
|         const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
 | |
|         const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
 | |
|         const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
 | |
| 
 | |
|         // load Q8 quants
 | |
|         const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
 | |
|         const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
 | |
| 
 | |
|         // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
 | |
|         // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
 | |
|         // and 2 if the high bit was set)
 | |
|         const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
 | |
|         const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
 | |
|         const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
 | |
|         const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
 | |
| 
 | |
|         __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
 | |
|         __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
 | |
|         __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
 | |
|         __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
 | |
| 
 | |
|         p16_0 = _mm_sub_epi16(p16_0, q8s_0);
 | |
|         p16_1 = _mm_sub_epi16(p16_1, q8s_1);
 | |
|         p16_2 = _mm_sub_epi16(p16_2, q8s_2);
 | |
|         p16_3 = _mm_sub_epi16(p16_3, q8s_3);
 | |
| 
 | |
|         // multiply with scales
 | |
|         p16_0 = _mm_madd_epi16(scale_0, p16_0);
 | |
|         p16_1 = _mm_madd_epi16(scale_1, p16_1);
 | |
|         p16_2 = _mm_madd_epi16(scale_2, p16_2);
 | |
|         p16_3 = _mm_madd_epi16(scale_3, p16_3);
 | |
| 
 | |
|         p16_0 = _mm_add_epi32(p16_0, p16_2);
 | |
|         p16_1 = _mm_add_epi32(p16_1, p16_3);
 | |
|         __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
 | |
| 
 | |
|         // multiply with block scale and accumulate
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| 
 | |
| #elif defined __riscv_v_intrinsic
 | |
| 
 | |
|     uint16_t aux16[2];
 | |
|     int8_t * scales = (int8_t *)aux16;
 | |
| 
 | |
|     float sumf = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const uint8_t * restrict q3 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const uint16_t a = *(const uint16_t *)x[i].scales;
 | |
|         aux16[0] = a & 0x0f0f;
 | |
|         aux16[1] = (a >> 4) & 0x0f0f;
 | |
| 
 | |
|         for (int j = 0; j < 4; ++j) scales[j] -= 8;
 | |
| 
 | |
|         int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
 | |
| 
 | |
|         // load qh
 | |
|         vuint8mf4_t qh_x1   = __riscv_vle8_v_u8mf4(x[i].hmask, 8);
 | |
|         vuint8mf2_t qh_x2   = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
 | |
| 
 | |
|         size_t vl = 16;
 | |
| 
 | |
|         // extend and combine both qh_x1 and qh_x2
 | |
|         vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
 | |
| 
 | |
|         vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
 | |
|         vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl);
 | |
|         vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
 | |
|         vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl);
 | |
| 
 | |
|         // load Q3
 | |
|         vuint8mf2_t q3_x  = __riscv_vle8_v_u8mf2(q3, vl);
 | |
| 
 | |
|         vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl);
 | |
|         vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl);
 | |
|         vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl);
 | |
|         vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl);
 | |
| 
 | |
|         vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0);
 | |
|         vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1);
 | |
|         vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2);
 | |
|         vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3);
 | |
| 
 | |
|         // load Q8 and take product with Q3
 | |
|         vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
 | |
|         vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
 | |
|         vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
 | |
|         vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
 | |
| 
 | |
|         vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
 | |
|         vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
 | |
|         vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
 | |
|         vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
 | |
| 
 | |
|         isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0];
 | |
|         isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2];
 | |
|         isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1];
 | |
|         isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3];
 | |
| 
 | |
|         sumf += d * isum;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #else
 | |
| 
 | |
|     int8_t  aux8[QK_K];
 | |
|     int16_t aux16[8];
 | |
|     float   sums [8];
 | |
|     int32_t aux32[8];
 | |
|     int32_t scales[4];
 | |
|     memset(sums, 0, 8*sizeof(float));
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const uint8_t * restrict q3 = x[i].qs;
 | |
|         const uint8_t * restrict hm = x[i].hmask;
 | |
|         const  int8_t * restrict q8 = y[i].qs;
 | |
|         int8_t * restrict a = aux8;
 | |
|         for (int l = 0; l < 8; ++l) {
 | |
|             a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
 | |
|             a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
 | |
|             a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
 | |
|             a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
 | |
|             a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
 | |
|             a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
 | |
|             a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
 | |
|             a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
 | |
|         }
 | |
| 
 | |
|         scales[0] = (x[i].scales[0] & 0xF) - 8;
 | |
|         scales[1] = (x[i].scales[0] >>  4) - 8;
 | |
|         scales[2] = (x[i].scales[1] & 0xF) - 8;
 | |
|         scales[3] = (x[i].scales[1] >>  4) - 8;
 | |
| 
 | |
|         memset(aux32, 0, 8*sizeof(int32_t));
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             q8 += 8; a += 8;
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
 | |
|             q8 += 8; a += 8;
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
 | |
|         }
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
 | |
|     }
 | |
|     for (int l = 0; l < 8; ++l) sumf += sums[l];
 | |
|     *s = sumf;
 | |
| 
 | |
| #endif
 | |
| 
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if QK_K == 256
 | |
| void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(n % QK_K == 0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_q4_K * restrict x = vx;
 | |
|     const block_q8_K * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
|     static const uint32_t kmask1 = 0x3f3f3f3f;
 | |
|     static const uint32_t kmask2 = 0x0f0f0f0f;
 | |
|     static const uint32_t kmask3 = 0x03030303;
 | |
| 
 | |
|     uint32_t utmp[4];
 | |
| 
 | |
| #ifdef __ARM_NEON
 | |
|     const uint8x16_t m4b = vdupq_n_u8(0xf);
 | |
|     const int32x4_t mzero = vdupq_n_s32(0);
 | |
| 
 | |
|     ggml_int8x16x2_t q4bytes;
 | |
|     ggml_int8x16x2_t q8bytes;
 | |
| 
 | |
|     float sumf = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
 | |
| 
 | |
|         memcpy(utmp, x[i].scales, 12);
 | |
| 
 | |
|         uint32x2_t mins8 = { 0 };
 | |
|         mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
 | |
|         mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
 | |
| 
 | |
|         utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
 | |
|         utmp[0] &= kmask1;
 | |
| 
 | |
|         const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
 | |
|         const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
 | |
|                                          vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
 | |
|         sumf -= dmin * vaddvq_s32(prod);
 | |
| 
 | |
|         const uint8_t * scales = (const uint8_t *)utmp;
 | |
| 
 | |
|         const uint8_t * restrict q4 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         int32_t sumi1 = 0;
 | |
|         int32_t sumi2 = 0;
 | |
| 
 | |
|         for (int j = 0; j < QK_K/64; ++j) {
 | |
|             const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
 | |
| 
 | |
|             q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
 | |
|             q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[0], m4b));
 | |
|             q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[1], m4b));
 | |
| 
 | |
|             const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
 | |
|             sumi1 += vaddvq_s32(p1) * scales[2*j+0];
 | |
| 
 | |
|             q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
 | |
|             q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
 | |
|             q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
 | |
| 
 | |
|             const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
 | |
| 
 | |
|             sumi2 += vaddvq_s32(p2) * scales[2*j+1];
 | |
|         }
 | |
| 
 | |
|         sumf += d * (sumi1 + sumi2);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #elif defined __AVX2__
 | |
| 
 | |
|     const __m256i m4 = _mm256_set1_epi8(0xF);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
|     __m128 acc_m = _mm_setzero_ps();
 | |
| 
 | |
|    for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         memcpy(utmp, x[i].scales, 12);
 | |
|         utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
 | |
|         const uint32_t uaux = utmp[1] & kmask1;
 | |
|         utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
 | |
|         utmp[2] = uaux;
 | |
|         utmp[0] &= kmask1;
 | |
| 
 | |
|         const uint8_t * restrict q4 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
 | |
| 
 | |
|         const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
 | |
|         const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
 | |
|         const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
 | |
|         acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
 | |
| 
 | |
|         const __m128i sc128  = _mm256_extracti128_si256(mins_and_scales, 0);
 | |
|         const __m256i scales = MM256_SET_M128I(sc128, sc128);
 | |
| 
 | |
|         __m256i sumi = _mm256_setzero_si256();
 | |
| 
 | |
|         for (int j = 0; j < QK_K/64; ++j) {
 | |
| 
 | |
|             const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
 | |
|             const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
 | |
| 
 | |
|             const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
 | |
|             const __m256i q4l = _mm256_and_si256(q4bits, m4);
 | |
|             const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
 | |
| 
 | |
|             const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
|             __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
 | |
|             p16l = _mm256_madd_epi16(scale_l, p16l);
 | |
| 
 | |
|             const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
|             __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
 | |
|             p16h = _mm256_madd_epi16(scale_h, p16h);
 | |
|             const __m256i sumj = _mm256_add_epi32(p16l, p16h);
 | |
| 
 | |
|             sumi = _mm256_add_epi32(sumi, sumj);
 | |
|         }
 | |
| 
 | |
|         __m256 vd = _mm256_set1_ps(d);
 | |
|         acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
 | |
|     acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
 | |
| 
 | |
|     *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
 | |
| 
 | |
| #elif defined __AVX__
 | |
| 
 | |
|     const __m128i m4 = _mm_set1_epi8(0xF);
 | |
|     const __m128i m2 = _mm_set1_epi8(0x2);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
|     __m128 acc_m = _mm_setzero_ps();
 | |
| 
 | |
|    for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         const uint8_t * restrict q4 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         memcpy(utmp, x[i].scales, 12);
 | |
|         utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
 | |
|         const uint32_t uaux = utmp[1] & kmask1;
 | |
|         utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
 | |
|         utmp[2] = uaux;
 | |
|         utmp[0] &= kmask1;
 | |
| 
 | |
|         const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
 | |
|         const __m128i scales = _mm_cvtepu8_epi16(utmps);
 | |
|         const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
 | |
| 
 | |
|         const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
 | |
|         const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
 | |
|         const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
 | |
|         const __m128i prod = _mm_madd_epi16(mins, q8s);
 | |
|         acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
 | |
| 
 | |
|         __m128i sumi_0 = _mm_setzero_si128();
 | |
|         __m128i sumi_1 = _mm_setzero_si128();
 | |
| 
 | |
|         __m128i shuffle = _mm_set1_epi16(0x0100);
 | |
|         for (int j = 0; j < QK_K/64; ++j) {
 | |
| 
 | |
|             const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
| 
 | |
|             __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
 | |
|             const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
 | |
|             const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
 | |
|             q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
 | |
|             const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
 | |
|             const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
 | |
| 
 | |
|             const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
 | |
|             p16l = _mm_madd_epi16(scale_l, p16l);
 | |
|             sumi_0 = _mm_add_epi32(sumi_0, p16l);
 | |
|             const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
 | |
|             p16l = _mm_madd_epi16(scale_l, p16l);
 | |
|             sumi_1 = _mm_add_epi32(sumi_1, p16l);
 | |
| 
 | |
|             const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
 | |
|             p16h = _mm_madd_epi16(scale_h, p16h);
 | |
|             sumi_0 = _mm_add_epi32(sumi_0, p16h);
 | |
|             const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
 | |
|             p16h = _mm_madd_epi16(scale_h, p16h);
 | |
|             sumi_1 = _mm_add_epi32(sumi_1, p16h);
 | |
| 
 | |
|         }
 | |
| 
 | |
|         __m256 vd = _mm256_set1_ps(d);
 | |
|         __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
 | |
|     acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
 | |
| 
 | |
|     *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
 | |
| 
 | |
| #elif defined __riscv_v_intrinsic
 | |
| 
 | |
|     const uint8_t * scales = (const uint8_t*)&utmp[0];
 | |
|     const uint8_t * mins   = (const uint8_t*)&utmp[2];
 | |
| 
 | |
|     float sumf = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         size_t vl = 8;
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
 | |
|         vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
 | |
|         vint16mf2_t q8sums   = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
 | |
| 
 | |
|         memcpy(utmp, x[i].scales, 12);
 | |
|         utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
 | |
|         const uint32_t uaux = utmp[1] & kmask1;
 | |
|         utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
 | |
|         utmp[2] = uaux;
 | |
|         utmp[0] &= kmask1;
 | |
| 
 | |
|         vuint8mf4_t mins8  = __riscv_vle8_v_u8mf4(mins, vl);
 | |
|         vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
 | |
|         vint32m1_t  prod   = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
 | |
| 
 | |
|         vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
 | |
|         sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
 | |
| 
 | |
|         const uint8_t * restrict q4 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         vl = 32;
 | |
| 
 | |
|         int32_t sum_1 = 0;
 | |
|         int32_t sum_2 = 0;
 | |
| 
 | |
|         vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
 | |
| 
 | |
|         for (int j = 0; j < QK_K/64; ++j) {
 | |
|             // load Q4
 | |
|             vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
 | |
| 
 | |
|             // load Q8 and multiply it with lower Q4 nibble
 | |
|             vint8m1_t  q8_0 = __riscv_vle8_v_i8m1(q8, vl);
 | |
|             vint8m1_t  q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
 | |
|             vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
 | |
|             vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
 | |
| 
 | |
|             sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
 | |
| 
 | |
|             // load Q8 and multiply it with upper Q4 nibble
 | |
|             vint8m1_t  q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
 | |
|             vint8m1_t  q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
 | |
|             vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
 | |
|             vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
 | |
| 
 | |
|             sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
 | |
| 
 | |
|             q4 += 32;    q8 += 64;
 | |
| 
 | |
|         }
 | |
| 
 | |
|         sumf += d*(sum_1 + sum_2);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #else
 | |
| 
 | |
| 
 | |
|     const uint8_t * scales = (const uint8_t*)&utmp[0];
 | |
|     const uint8_t * mins   = (const uint8_t*)&utmp[2];
 | |
| 
 | |
|     int8_t  aux8[QK_K];
 | |
|     int16_t aux16[8];
 | |
|     float   sums [8];
 | |
|     int32_t aux32[8];
 | |
|     memset(sums, 0, 8*sizeof(float));
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const uint8_t * restrict q4 = x[i].qs;
 | |
|         const  int8_t * restrict q8 = y[i].qs;
 | |
|         memset(aux32, 0, 8*sizeof(int32_t));
 | |
|         int8_t * restrict a = aux8;
 | |
|         for (int j = 0; j < QK_K/64; ++j) {
 | |
|             for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
 | |
|             a += 32;
 | |
|             for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l]  >> 4);
 | |
|             a += 32; q4 += 32;
 | |
|         }
 | |
|         memcpy(utmp, x[i].scales, 12);
 | |
|         utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
 | |
|         const uint32_t uaux = utmp[1] & kmask1;
 | |
|         utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
 | |
|         utmp[2] = uaux;
 | |
|         utmp[0] &= kmask1;
 | |
| 
 | |
|         int sumi = 0;
 | |
|         for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
 | |
|         a = aux8;
 | |
|         int is = 0;
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             int32_t scale = scales[is++];
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
 | |
|             q8 += 8; a += 8;
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
 | |
|             q8 += 8; a += 8;
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
 | |
|             q8 += 8; a += 8;
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
 | |
|             q8 += 8; a += 8;
 | |
|         }
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
 | |
|         const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
 | |
|         sumf -= dmin * sumi;
 | |
|     }
 | |
|     for (int l = 0; l < 8; ++l) sumf += sums[l];
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| #else
 | |
| void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(n % QK_K == 0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_q4_K * restrict x = vx;
 | |
|     const block_q8_K * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
| #ifdef __ARM_NEON
 | |
|     const uint8x16_t m4b = vdupq_n_u8(0xf);
 | |
| 
 | |
|     const int32x4_t mzero = vdupq_n_s32(0);
 | |
| 
 | |
|     float sumf = 0;
 | |
| 
 | |
|     ggml_int8x16x2_t q4bytes;
 | |
|     ggml_int8x16x4_t q8bytes;
 | |
| 
 | |
|     float sum_mins = 0.f;
 | |
| 
 | |
|     uint16_t aux16[2];
 | |
|     const uint8_t * restrict scales = (const uint8_t *)aux16;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const uint8_t * restrict q4 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const uint16_t * restrict a = (const uint16_t *)x[i].scales;
 | |
|         aux16[0] = a[0] & 0x0f0f;
 | |
|         aux16[1] = (a[0] >> 4) & 0x0f0f;
 | |
| 
 | |
|         const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
 | |
|         sum_mins += y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * summi;
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
 | |
| 
 | |
|         const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
 | |
| 
 | |
|         q8bytes = ggml_vld1q_s8_x4(q8);
 | |
|         q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[0], m4b));
 | |
|         q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[1], m4b));
 | |
| 
 | |
|         const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
 | |
|         const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
 | |
| 
 | |
|         q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
 | |
|         q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
 | |
| 
 | |
|         const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
 | |
|         const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
 | |
| 
 | |
|         sumf += d * (sumi1 + sumi2);
 | |
|     }
 | |
| 
 | |
|     *s = sumf - sum_mins;
 | |
| 
 | |
| #elif defined __AVX2__
 | |
| 
 | |
|     const __m256i m4 = _mm256_set1_epi8(0xF);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     float summs = 0;
 | |
| 
 | |
|     uint16_t aux16[2];
 | |
|     const uint8_t * scales = (const uint8_t *)aux16;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
 | |
|         const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
 | |
|         const __m256 vd = _mm256_set1_ps(d);
 | |
| 
 | |
|         const uint16_t * a = (const uint16_t *)x[i].scales;
 | |
|         aux16[0] = a[0] & 0x0f0f;
 | |
|         aux16[1] = (a[0] >> 4) & 0x0f0f;
 | |
| 
 | |
|         summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
 | |
| 
 | |
|         const uint8_t * restrict q4 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
 | |
|         const __m256i q4l = _mm256_and_si256(q4bits, m4);
 | |
|         const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
 | |
| 
 | |
|         const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
 | |
|         const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
 | |
| 
 | |
|         const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
 | |
|         const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
 | |
| 
 | |
|         const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
 | |
|         acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
 | |
| 
 | |
|         const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
 | |
|         acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc) - summs;
 | |
| 
 | |
| #elif defined __AVX__
 | |
| 
 | |
|     const __m128i m4 = _mm_set1_epi8(0xF);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     float summs = 0;
 | |
| 
 | |
|     uint16_t aux16[2];
 | |
|     const uint8_t * scales = (const uint8_t *)aux16;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
 | |
|         const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
 | |
|         const __m256 vd = _mm256_set1_ps(d);
 | |
| 
 | |
|         const uint16_t * a = (const uint16_t *)x[i].scales;
 | |
|         aux16[0] = a[0] & 0x0f0f;
 | |
|         aux16[1] = (a[0] >> 4) & 0x0f0f;
 | |
| 
 | |
|         summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
 | |
| 
 | |
|         const uint8_t * restrict q4 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
 | |
|         const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
 | |
|         const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
 | |
|         const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
 | |
|         const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
 | |
|         const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
 | |
|         const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
 | |
| 
 | |
|         const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
 | |
|         const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
 | |
| 
 | |
|         const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
 | |
|         const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
 | |
|         const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
 | |
|         const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
 | |
| 
 | |
|         const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
 | |
|         const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
 | |
| 
 | |
|         const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
 | |
|         const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc) - summs;
 | |
| 
 | |
| #elif defined __riscv_v_intrinsic
 | |
| 
 | |
|     uint16_t s16[2];
 | |
|     const uint8_t * restrict scales = (const uint8_t *)s16;
 | |
| 
 | |
|     float sumf = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const uint8_t * restrict q4 = x[i].qs;
 | |
|         const  int8_t * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const uint16_t * restrict b = (const uint16_t *)x[i].scales;
 | |
|         s16[0] = b[0] & 0x0f0f;
 | |
|         s16[1] = (b[0] >> 4) & 0x0f0f;
 | |
| 
 | |
|         sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
 | |
| 
 | |
|         size_t vl = 32;
 | |
| 
 | |
|         vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
 | |
| 
 | |
|         // load Q4
 | |
|         vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
 | |
| 
 | |
|         // load Q8 and multiply it with lower Q4 nibble
 | |
|         vint8m1_t  q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
 | |
|         vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl);
 | |
|         vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl);
 | |
| 
 | |
|         sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1);
 | |
| 
 | |
|         // load Q8 and multiply it with upper Q4 nibble
 | |
|         vint8m1_t  q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
 | |
|         vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl);
 | |
|         vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl);
 | |
| 
 | |
|         sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #else
 | |
| 
 | |
|     uint8_t aux8[QK_K];
 | |
|     int16_t aux16[16];
 | |
|     float   sums [8];
 | |
|     memset(sums, 0, 8*sizeof(float));
 | |
| 
 | |
|     uint16_t s16[2];
 | |
|     const uint8_t * restrict scales = (const uint8_t *)s16;
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const uint8_t * restrict q4 = x[i].qs;
 | |
|         const  int8_t * restrict q8 = y[i].qs;
 | |
|         uint8_t * restrict a = aux8;
 | |
|         for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
 | |
|         for (int l = 0; l < 32; ++l) a[l+32] = q4[l]  >> 4;
 | |
| 
 | |
|         const uint16_t * restrict b = (const uint16_t *)x[i].scales;
 | |
|         s16[0] = b[0] & 0x0f0f;
 | |
|         s16[1] = (b[0] >> 4) & 0x0f0f;
 | |
| 
 | |
|         sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
 | |
| 
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
 | |
|             q8 += 16; a += 16;
 | |
|             for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
 | |
|             q8 += 16; a += 16;
 | |
|             const float dl = d * scales[j];
 | |
|             for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
 | |
|         }
 | |
|     }
 | |
|     for (int l = 0; l < 8; ++l) sumf += sums[l];
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if QK_K == 256
 | |
| void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy,  size_t by, int nrc) {
 | |
|     assert(n % QK_K == 0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_q5_K * restrict x = vx;
 | |
|     const block_q8_K * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
|     static const uint32_t kmask1 = 0x3f3f3f3f;
 | |
|     static const uint32_t kmask2 = 0x0f0f0f0f;
 | |
|     static const uint32_t kmask3 = 0x03030303;
 | |
| 
 | |
|     uint32_t utmp[4];
 | |
| 
 | |
| #ifdef __ARM_NEON
 | |
|     const uint8x16_t m4b = vdupq_n_u8(0xf);
 | |
|     const uint8x16_t mone = vdupq_n_u8(1);
 | |
|     const uint8x16_t mtwo = vdupq_n_u8(2);
 | |
|     const int32x4_t mzero = vdupq_n_s32(0);
 | |
| 
 | |
|     ggml_int8x16x4_t q5bytes;
 | |
| 
 | |
|     float sumf = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
 | |
| 
 | |
|         memcpy(utmp, x[i].scales, 12);
 | |
|         utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
 | |
|         const uint32_t uaux = utmp[1] & kmask1;
 | |
|         utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
 | |
|         utmp[2] = uaux;
 | |
|         utmp[0] &= kmask1;
 | |
| 
 | |
|         const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
 | |
|         const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
 | |
|         const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
 | |
|                                          vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
 | |
|         int32_t sumi_mins = vaddvq_s32(prod);
 | |
| 
 | |
|         const uint8_t * scales = (const uint8_t *)utmp;
 | |
| 
 | |
|         const uint8_t * restrict q5 = x[i].qs;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
 | |
| 
 | |
|         ggml_uint8x16x4_t q5h;
 | |
| 
 | |
|         int32_t sumi = 0;
 | |
| 
 | |
|         for (int j = 0; j < QK_K/64; ++j) {
 | |
| 
 | |
|             const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
 | |
|             const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
 | |
| 
 | |
|             q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
 | |
|             q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
 | |
|             q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
 | |
|             q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
 | |
|             qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
 | |
|             qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
 | |
| 
 | |
|             q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
 | |
|             q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
 | |
|             q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
 | |
|             q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
 | |
| 
 | |
|             sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
 | |
|             sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
 | |
|         }
 | |
| 
 | |
|         sumf += d * sumi - dmin * sumi_mins;
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #elif defined __AVX2__
 | |
| 
 | |
|     const __m256i m4 = _mm256_set1_epi8(0xF);
 | |
|     const __m128i mzero = _mm_setzero_si128();
 | |
|     const __m256i mone  = _mm256_set1_epi8(1);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     float summs = 0.f;
 | |
| 
 | |
|    for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const uint8_t * restrict q5 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
| #if QK_K == 256
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         memcpy(utmp, x[i].scales, 12);
 | |
|         utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
 | |
|         const uint32_t uaux = utmp[1] & kmask1;
 | |
|         utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
 | |
|         utmp[2] = uaux;
 | |
|         utmp[0] &= kmask1;
 | |
| #else
 | |
|         // TODO
 | |
|         const float d = 0, dmin = 0;
 | |
| #endif
 | |
| 
 | |
|         const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
 | |
| 
 | |
|         const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
 | |
|         const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
 | |
|         const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
 | |
|         const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
 | |
|         summs += dmin * _mm_extract_epi32(hsum, 0);
 | |
| 
 | |
|         const __m128i sc128  = _mm256_extracti128_si256(mins_and_scales, 0);
 | |
|         const __m256i scales = MM256_SET_M128I(sc128, sc128);
 | |
| 
 | |
|         const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
 | |
|         __m256i hmask = mone;
 | |
| 
 | |
|         __m256i sumi = _mm256_setzero_si256();
 | |
| 
 | |
|         int bit = 0;
 | |
| 
 | |
|         for (int j = 0; j < QK_K/64; ++j) {
 | |
| 
 | |
|             const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
 | |
|             const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
 | |
| 
 | |
|             const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
 | |
| 
 | |
|             const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
 | |
|             const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
 | |
|             const __m256i q5_0  = _mm256_add_epi8(q5l_0, q5h_0);
 | |
|             hmask = _mm256_slli_epi16(hmask, 1);
 | |
| 
 | |
|             const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
 | |
|             const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
 | |
|             const __m256i q5_1  = _mm256_add_epi8(q5l_1, q5h_1);
 | |
|             hmask = _mm256_slli_epi16(hmask, 1);
 | |
| 
 | |
|             const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
|             const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
| 
 | |
|             __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
 | |
|             __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
 | |
| 
 | |
|             p16_0 = _mm256_madd_epi16(scale_0, p16_0);
 | |
|             p16_1 = _mm256_madd_epi16(scale_1, p16_1);
 | |
| 
 | |
|             sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
 | |
| 
 | |
|         }
 | |
| 
 | |
|         __m256 vd = _mm256_set1_ps(d);
 | |
|         acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc) + summs;
 | |
| 
 | |
| #elif defined __AVX__
 | |
| 
 | |
|     const __m128i m4 = _mm_set1_epi8(0xF);
 | |
|     const __m128i mzero = _mm_setzero_si128();
 | |
|     const __m128i mone  = _mm_set1_epi8(1);
 | |
|     const __m128i m2 = _mm_set1_epi8(2);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     float summs = 0.f;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
 | |
| 
 | |
|         const uint8_t * restrict q5 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         memcpy(utmp, x[i].scales, 12);
 | |
|         utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
 | |
|         const uint32_t uaux = utmp[1] & kmask1;
 | |
|         utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
 | |
|         utmp[2] = uaux;
 | |
|         utmp[0] &= kmask1;
 | |
| 
 | |
|         const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
 | |
|         const __m128i scales = _mm_cvtepu8_epi16(utmps);
 | |
|         const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
 | |
| 
 | |
|         const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
 | |
|         const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
 | |
|         const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
 | |
|         const __m128i prod = _mm_madd_epi16(mins, q8s);
 | |
|         const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
 | |
|         summs += dmin * _mm_extract_epi32(hsum, 0);
 | |
| 
 | |
|         const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
 | |
|         const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
 | |
|         __m128i hmask = mone;
 | |
| 
 | |
|         __m128i sumi_0 = _mm_setzero_si128();
 | |
|         __m128i sumi_1 = _mm_setzero_si128();
 | |
| 
 | |
|         int bit = 0;
 | |
| 
 | |
|         __m128i shuffle = _mm_set1_epi16(0x0100);
 | |
|         for (int j = 0; j < QK_K/64; ++j) {
 | |
| 
 | |
|             const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
|             const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
 | |
|             shuffle = _mm_add_epi16(shuffle, m2);
 | |
| 
 | |
|             const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
 | |
|             const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
 | |
| 
 | |
|             __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
 | |
|             __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
 | |
|             __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
 | |
|             __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
 | |
|             __m128i q5_0  = _mm_add_epi8(q5l_0, q5h_0);
 | |
|             __m128i q5_1  = _mm_add_epi8(q5l_1, q5h_1);
 | |
|             hmask = _mm_slli_epi16(hmask, 1);
 | |
| 
 | |
|             __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
 | |
|             __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
 | |
|             p16_0 = _mm_madd_epi16(scale_0, p16_0);
 | |
|             p16_1 = _mm_madd_epi16(scale_0, p16_1);
 | |
| 
 | |
|             q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
 | |
|             q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
 | |
|             q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
 | |
|             q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
 | |
|             q5_0  = _mm_add_epi8(q5l_0, q5h_0);
 | |
|             q5_1  = _mm_add_epi8(q5l_1, q5h_1);
 | |
|             hmask = _mm_slli_epi16(hmask, 1);
 | |
| 
 | |
|             q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
 | |
|             __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
 | |
|             p16_2 = _mm_madd_epi16(scale_1, p16_2);
 | |
|             p16_3 = _mm_madd_epi16(scale_1, p16_3);
 | |
| 
 | |
|             sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
 | |
|             sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
 | |
| 
 | |
|         }
 | |
| 
 | |
|         __m256 vd = _mm256_set1_ps(d);
 | |
|         __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc) + summs;
 | |
| 
 | |
| #elif defined __riscv_v_intrinsic
 | |
| 
 | |
|     const uint8_t * scales = (const uint8_t*)&utmp[0];
 | |
|     const uint8_t * mins   = (const uint8_t*)&utmp[2];
 | |
| 
 | |
|     float sumf = 0;
 | |
|     float sums = 0.0;
 | |
| 
 | |
|     size_t vl;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         vl = 8;
 | |
| 
 | |
|         const uint8_t * restrict q5 = x[i].qs;
 | |
|         const uint8_t * restrict hm = x[i].qh;
 | |
|         const  int8_t * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
 | |
| 
 | |
|         vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
 | |
|         vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
 | |
|         vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
 | |
| 
 | |
|         memcpy(utmp, x[i].scales, 12);
 | |
|         utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
 | |
|         const uint32_t uaux = utmp[1] & kmask1;
 | |
|         utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
 | |
|         utmp[2] = uaux;
 | |
|         utmp[0] &= kmask1;
 | |
| 
 | |
|         vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
 | |
|         vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
 | |
|         vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
 | |
| 
 | |
|         vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
 | |
|         sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
 | |
| 
 | |
|         vl = 32;
 | |
|         int32_t aux32 = 0;
 | |
|         int is = 0;
 | |
| 
 | |
|         uint8_t m = 1;
 | |
|         vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
 | |
|         vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
 | |
| 
 | |
|         for (int j = 0; j < QK_K/64; ++j) {
 | |
|             // load Q5 and Q8
 | |
|             vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
 | |
|             vint8m1_t  q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
 | |
|             vint8m1_t  q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
 | |
| 
 | |
|             // compute mask for addition
 | |
|             vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
 | |
|             vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
 | |
|             vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
 | |
|             vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
 | |
|             m <<= 1;
 | |
| 
 | |
|             vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
 | |
|             vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
 | |
|             vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
 | |
|             vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
 | |
|             m <<= 1;
 | |
| 
 | |
|             vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
 | |
|             vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
 | |
| 
 | |
|             vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
 | |
|             vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
 | |
| 
 | |
|             vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
 | |
|             vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
 | |
| 
 | |
|             aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
 | |
|             q5 += 32;    q8 += 64;
 | |
| 
 | |
|         }
 | |
| 
 | |
|         vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
 | |
|         sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = sumf+sums;
 | |
| 
 | |
| #else
 | |
| 
 | |
|     const uint8_t * scales = (const uint8_t*)&utmp[0];
 | |
|     const uint8_t * mins   = (const uint8_t*)&utmp[2];
 | |
| 
 | |
|     int8_t  aux8[QK_K];
 | |
|     int16_t aux16[8];
 | |
|     float   sums [8];
 | |
|     int32_t aux32[8];
 | |
|     memset(sums, 0, 8*sizeof(float));
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const uint8_t * restrict q4 = x[i].qs;
 | |
|         const uint8_t * restrict hm = x[i].qh;
 | |
|         const  int8_t * restrict q8 = y[i].qs;
 | |
|         memset(aux32, 0, 8*sizeof(int32_t));
 | |
|         int8_t * restrict a = aux8;
 | |
|         uint8_t m = 1;
 | |
|         for (int j = 0; j < QK_K/64; ++j) {
 | |
|             for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
 | |
|             for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
 | |
|             a += 32; m <<= 1;
 | |
|             for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l]  >> 4);
 | |
|             for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
 | |
|             a += 32; m <<= 1;
 | |
|             q4 += 32;
 | |
|         }
 | |
|         memcpy(utmp, x[i].scales, 12);
 | |
|         utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
 | |
|         const uint32_t uaux = utmp[1] & kmask1;
 | |
|         utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
 | |
|         utmp[2] = uaux;
 | |
|         utmp[0] &= kmask1;
 | |
| 
 | |
|         int sumi = 0;
 | |
|         for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
 | |
|         a = aux8;
 | |
|         int is = 0;
 | |
|         for (int j = 0; j < QK_K/32; ++j) {
 | |
|             int32_t scale = scales[is++];
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
 | |
|             q8 += 8; a += 8;
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
 | |
|             q8 += 8; a += 8;
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
 | |
|             q8 += 8; a += 8;
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
 | |
|             q8 += 8; a += 8;
 | |
|         }
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
 | |
|         const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
 | |
|         sumf -= dmin * sumi;
 | |
|     }
 | |
|     for (int l = 0; l < 8; ++l) sumf += sums[l];
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(n % QK_K == 0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_q5_K * restrict x = vx;
 | |
|     const block_q8_K * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
| #ifdef __ARM_NEON
 | |
|     const uint8x16_t m4b = vdupq_n_u8(0xf);
 | |
|     const uint8x16_t mh = vdupq_n_u8(16);
 | |
|     const int32x4_t mzero = vdupq_n_s32(0);
 | |
| 
 | |
|     ggml_int8x16x4_t q5bytes;
 | |
|     ggml_uint8x16x4_t q5h;
 | |
| 
 | |
|     float sumf = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const int8_t * sc = x[i].scales;
 | |
| 
 | |
|         const uint8_t * restrict q5 = x[i].qs;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const uint8x8_t qhbits = vld1_u8(qh);
 | |
| 
 | |
|         const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5);
 | |
|         const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
 | |
| 
 | |
|         const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
 | |
|         q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
 | |
|         q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
 | |
|         q5h.val[2] = vbicq_u8(mh, htmp);
 | |
|         q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
 | |
| 
 | |
|         q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
 | |
|         q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
 | |
|         q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
 | |
|         q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
 | |
| 
 | |
|         int32_t sumi1 = sc[0] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
 | |
|         int32_t sumi2 = sc[1] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
 | |
|         int32_t sumi3 = sc[2] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
 | |
|         int32_t sumi4 = sc[3] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
 | |
| 
 | |
|         sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #elif defined __AVX2__
 | |
| 
 | |
|     const __m256i m4 = _mm256_set1_epi8(0xF);
 | |
|     const __m256i mone  = _mm256_set1_epi8(1);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const uint8_t * restrict q5 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
 | |
| 
 | |
|         const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
 | |
|         const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
 | |
| 
 | |
|         int64_t aux64;
 | |
|         memcpy(&aux64, x[i].qh, 8);
 | |
|         const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
 | |
|         const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
 | |
| 
 | |
|         const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
 | |
|         const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
 | |
| 
 | |
|         const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
 | |
|         const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
 | |
| 
 | |
|         const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
 | |
|         const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
 | |
| 
 | |
|         const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
 | |
|         const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
 | |
|         const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
 | |
|         const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
 | |
| 
 | |
|         const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
 | |
| 
 | |
|         acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| 
 | |
| #elif defined __AVX__
 | |
| 
 | |
|     const __m128i m4 = _mm_set1_epi8(0xF);
 | |
|     const __m128i mone  = _mm_set1_epi8(1);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const uint8_t * restrict q5 = x[i].qs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
 | |
| 
 | |
|         const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
 | |
|         const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
 | |
|         const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
 | |
|         const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
 | |
| 
 | |
|         int64_t aux64;
 | |
|         memcpy(&aux64, x[i].qh, 8);
 | |
|         const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
 | |
|         const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
 | |
| 
 | |
|         const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
 | |
|         const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
 | |
|         const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
 | |
|         const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
 | |
| 
 | |
|         const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
 | |
|         const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
 | |
|         const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
 | |
|         const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
 | |
| 
 | |
|         const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
 | |
|         const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
 | |
| 
 | |
|         const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
 | |
|         const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
 | |
|         const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
 | |
|         const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
 | |
|         const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
 | |
|         const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
 | |
|         const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
 | |
|         const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
 | |
| 
 | |
|         const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
 | |
|         const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
 | |
| 
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| 
 | |
| #elif defined __riscv_v_intrinsic
 | |
| 
 | |
|     float sumf = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const int8_t * sc = x[i].scales;
 | |
| 
 | |
|         const uint8_t * restrict q5 = x[i].qs;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
 | |
| 
 | |
|         // load qh
 | |
|         vuint8mf4_t qh_x1   = __riscv_vle8_v_u8mf4(qh, 8);
 | |
|         vuint8mf2_t qh_x2   = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
 | |
| 
 | |
|         size_t vl = 16;
 | |
| 
 | |
|         // combine both qh_1 and qh_2
 | |
|         vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
 | |
| 
 | |
|         vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
 | |
|         vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl);
 | |
|         vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl);
 | |
|         vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
 | |
| 
 | |
|         vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0);
 | |
|         vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1);
 | |
|         vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2);
 | |
|         vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3);
 | |
| 
 | |
|         // load q5
 | |
|         vuint8mf2_t q5_x1  = __riscv_vle8_v_u8mf2(q5, vl);
 | |
|         vuint8mf2_t q5_x2  = __riscv_vle8_v_u8mf2(q5+16, vl);
 | |
| 
 | |
|         vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl));
 | |
|         vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl));
 | |
|         vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl));
 | |
|         vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl));
 | |
| 
 | |
|         vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl);
 | |
|         vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl);
 | |
|         vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl);
 | |
|         vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl);
 | |
| 
 | |
|         // load Q8 and multiply it with Q5
 | |
|         vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
 | |
|         vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
 | |
|         vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
 | |
|         vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
 | |
| 
 | |
|         vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
 | |
|         vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
 | |
|         vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
 | |
|         vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
 | |
| 
 | |
|         int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0);
 | |
|         int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1);
 | |
|         int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2);
 | |
|         int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3);
 | |
| 
 | |
|         sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #else
 | |
| 
 | |
|     int8_t aux8[QK_K];
 | |
|     int16_t aux16[16];
 | |
|     float   sums [8];
 | |
|     memset(sums, 0, 8*sizeof(float));
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const uint8_t * restrict q4 = x[i].qs;
 | |
|         const uint8_t * restrict hm = x[i].qh;
 | |
|         const  int8_t * restrict q8 = y[i].qs;
 | |
|         int8_t * restrict a = aux8;
 | |
|         for (int l = 0; l < 32; ++l) {
 | |
|             a[l+ 0] = q4[l] & 0xF;
 | |
|             a[l+32] = q4[l]  >> 4;
 | |
|         }
 | |
|         for (int is = 0; is < 8; ++is) {
 | |
|             uint8_t m = 1 << is;
 | |
|             for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
 | |
|         }
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
|         const int8_t * restrict sc = x[i].scales;
 | |
| 
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             const float dl = d * sc[j];
 | |
|             for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l <  8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
 | |
|             q8 += 16; a += 16;
 | |
|         }
 | |
|     }
 | |
|     for (int l = 0; l < 8; ++l) sumf += sums[l];
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if QK_K == 256
 | |
| void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(n % QK_K == 0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_q6_K * restrict x = vx;
 | |
|     const block_q8_K * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
| #ifdef __ARM_NEON
 | |
|     float sum = 0;
 | |
| 
 | |
|     const uint8x16_t m4b = vdupq_n_u8(0xF);
 | |
|     const int32x4_t  vzero = vdupq_n_s32(0);
 | |
|     //const int8x16_t  m32s = vdupq_n_s8(32);
 | |
| 
 | |
|     const uint8x16_t mone = vdupq_n_u8(3);
 | |
| 
 | |
|     ggml_int8x16x4_t q6bytes;
 | |
|     ggml_uint8x16x4_t q6h;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d_all = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict q6 = x[i].ql;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const int8_t * restrict scale = x[i].scales;
 | |
| 
 | |
|         const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
 | |
|         const int8x16_t scales = vld1q_s8(scale);
 | |
|         const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
 | |
| 
 | |
|         const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
 | |
|                                                    vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
 | |
|                                          vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
 | |
|                                                    vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
 | |
|         int32_t isum_mins = vaddvq_s32(prod);
 | |
| 
 | |
|         int32_t isum = 0;
 | |
| 
 | |
|         for (int j = 0; j < QK_K/128; ++j) {
 | |
| 
 | |
|             ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
 | |
|             ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
 | |
|             ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
 | |
| 
 | |
|             q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
 | |
|             q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
 | |
|             uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
 | |
|             q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
 | |
|             shifted = vshrq_n_u8(qhbits.val[1], 2);
 | |
|             q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
 | |
| 
 | |
|             //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
 | |
|             //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
 | |
|             //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
 | |
|             //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
 | |
|             q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
 | |
|             q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
 | |
|             q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
 | |
|             q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
 | |
| 
 | |
|             isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
 | |
|                     vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
 | |
|                     vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
 | |
|                     vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
 | |
| 
 | |
|             scale += 4;
 | |
| 
 | |
|             q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
 | |
| 
 | |
|             shifted = vshrq_n_u8(qhbits.val[0], 4);
 | |
|             q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
 | |
|             shifted = vshrq_n_u8(qhbits.val[1], 4);
 | |
|             q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
 | |
|             shifted = vshrq_n_u8(qhbits.val[0], 6);
 | |
|             q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
 | |
|             shifted = vshrq_n_u8(qhbits.val[1], 6);
 | |
|             q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
 | |
| 
 | |
|             //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
 | |
|             //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
 | |
|             //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
 | |
|             //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
 | |
|             q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
 | |
|             q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
 | |
|             q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
 | |
|             q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
 | |
| 
 | |
|             isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
 | |
|                     vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
 | |
|                     vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
 | |
|                     vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
 | |
|             scale += 4;
 | |
|         }
 | |
|         //sum += isum * d_all * y[i].d;
 | |
|         sum += d_all * y[i].d * (isum - 32 * isum_mins);
 | |
| 
 | |
|     }
 | |
|     *s = sum;
 | |
| 
 | |
| #elif defined __AVX2__
 | |
| 
 | |
|     const __m256i m4 = _mm256_set1_epi8(0xF);
 | |
|     const __m256i m2 = _mm256_set1_epi8(3);
 | |
|     const __m256i m32s = _mm256_set1_epi8(32);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict q4 = x[i].ql;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
 | |
| 
 | |
|         __m256i sumi = _mm256_setzero_si256();
 | |
| 
 | |
|         int is = 0;
 | |
| 
 | |
|         for (int j = 0; j < QK_K/128; ++j) {
 | |
| 
 | |
|             const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
 | |
|             const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
 | |
|             const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
 | |
|             const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
 | |
|             is += 4;
 | |
| 
 | |
|             const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
 | |
|             const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
 | |
|             const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
 | |
| 
 | |
|             const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
 | |
|             const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
 | |
|             const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
 | |
|             const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
 | |
| 
 | |
|             const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
 | |
|             const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
 | |
|             const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
 | |
|             const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
 | |
| 
 | |
|             const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
|             const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
|             const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
|             const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
| 
 | |
|             __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
 | |
|             __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
 | |
|             __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
 | |
|             __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
 | |
| 
 | |
|             __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
 | |
|             __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
 | |
|             __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
 | |
|             __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
 | |
| 
 | |
|             p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
 | |
|             p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
 | |
|             p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
 | |
|             p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
 | |
| 
 | |
|             p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
 | |
|             p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
 | |
|             p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
 | |
|             p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
 | |
| 
 | |
|             sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
 | |
|             sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
 | |
| 
 | |
|         }
 | |
| 
 | |
|         acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| 
 | |
| #elif defined __AVX__
 | |
| 
 | |
|     const __m128i m4 = _mm_set1_epi8(0xF);
 | |
|     const __m128i m3 = _mm_set1_epi8(3);
 | |
|     const __m128i m32s = _mm_set1_epi8(32);
 | |
|     const __m128i m2 = _mm_set1_epi8(2);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict q4 = x[i].ql;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
 | |
| 
 | |
|         __m128i sumi_0 = _mm_setzero_si128();
 | |
|         __m128i sumi_1 = _mm_setzero_si128();
 | |
| 
 | |
|         __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
 | |
|         for (int j = 0; j < QK_K/128; ++j) {
 | |
| 
 | |
|             const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
 | |
|             const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
 | |
| 
 | |
|             const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
 | |
|             const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
 | |
|             const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
 | |
|             const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
 | |
|             const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
 | |
|             const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
 | |
|             const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
 | |
|             const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
 | |
| 
 | |
|             const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
 | |
|             const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
 | |
|             const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
 | |
|             const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
 | |
| 
 | |
|             const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
 | |
|             const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
 | |
|             const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
 | |
|             const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
 | |
|             const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
 | |
|             const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
 | |
|             const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
 | |
|             const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
 | |
| 
 | |
|             const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
|             const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
 | |
| 
 | |
|             __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
 | |
|             __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
 | |
|             __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
 | |
|             __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
 | |
|             __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
 | |
|             __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
 | |
|             __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
 | |
|             __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
 | |
| 
 | |
|             __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
 | |
|             __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
 | |
|             __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
 | |
|             __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
 | |
|             __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
 | |
|             __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
 | |
|             __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
 | |
|             __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
 | |
| 
 | |
|             p16_0 = _mm_sub_epi16(p16_0, q8s_0);
 | |
|             p16_1 = _mm_sub_epi16(p16_1, q8s_1);
 | |
|             p16_2 = _mm_sub_epi16(p16_2, q8s_2);
 | |
|             p16_3 = _mm_sub_epi16(p16_3, q8s_3);
 | |
|             p16_4 = _mm_sub_epi16(p16_4, q8s_4);
 | |
|             p16_5 = _mm_sub_epi16(p16_5, q8s_5);
 | |
|             p16_6 = _mm_sub_epi16(p16_6, q8s_6);
 | |
|             p16_7 = _mm_sub_epi16(p16_7, q8s_7);
 | |
| 
 | |
|             const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
 | |
|             shuffle = _mm_add_epi8(shuffle, m2);
 | |
|             const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
 | |
|             shuffle = _mm_add_epi8(shuffle, m2);
 | |
|             const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
 | |
|             shuffle = _mm_add_epi8(shuffle, m2);
 | |
|             const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
 | |
|             shuffle = _mm_add_epi8(shuffle, m2);
 | |
| 
 | |
|             p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
 | |
|             p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
 | |
|             p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
 | |
|             p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
 | |
|             p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
 | |
|             p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
 | |
|             p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
 | |
|             p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
 | |
| 
 | |
|             sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
 | |
|             sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
 | |
|             sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
 | |
|             sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
 | |
| 
 | |
|         }
 | |
| 
 | |
|         __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| 
 | |
| #elif defined __riscv_v_intrinsic
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
| 
 | |
|         const uint8_t * restrict q6 = x[i].ql;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const  int8_t * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const int8_t * restrict scale = x[i].scales;
 | |
| 
 | |
|         size_t vl;
 | |
| 
 | |
|         vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
 | |
| 
 | |
|         int sum_t = 0;
 | |
|         int is = 0;
 | |
| 
 | |
|         for (int j = 0; j < QK_K/128; ++j) {
 | |
| 
 | |
|             vl = 32;
 | |
| 
 | |
|             // load qh
 | |
|             vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
 | |
| 
 | |
|             // load Q6
 | |
|             vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
 | |
|             vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
 | |
| 
 | |
|             vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
 | |
|             vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
 | |
|             vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
 | |
|             vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
 | |
| 
 | |
|             vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
 | |
|             vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
 | |
|             vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
 | |
|             vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
 | |
| 
 | |
|             vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
 | |
|             vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
 | |
|             vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
 | |
|             vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
 | |
| 
 | |
|             vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
 | |
|             vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
 | |
|             vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
 | |
|             vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
 | |
| 
 | |
|             // load Q8 and take product
 | |
|             vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
 | |
|             vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
 | |
|             vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
 | |
|             vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
 | |
| 
 | |
|             vl = 16;
 | |
| 
 | |
|             vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
 | |
|             vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
 | |
|             vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
 | |
|             vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
 | |
|             vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
 | |
|             vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
 | |
|             vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
 | |
|             vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
 | |
| 
 | |
|             vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
 | |
|             vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
 | |
|             vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
 | |
|             vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
 | |
| 
 | |
|             sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
 | |
| 
 | |
|             q6 += 64;   qh += 32;   q8 += 128;   is=8;
 | |
| 
 | |
|         }
 | |
| 
 | |
|         sumf += d * sum_t;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #else
 | |
| 
 | |
|     int8_t  aux8[QK_K];
 | |
|     int16_t aux16[8];
 | |
|     float   sums [8];
 | |
|     int32_t aux32[8];
 | |
|     memset(sums, 0, 8*sizeof(float));
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const uint8_t * restrict q4 = x[i].ql;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const  int8_t * restrict q8 = y[i].qs;
 | |
|         memset(aux32, 0, 8*sizeof(int32_t));
 | |
|         int8_t * restrict a = aux8;
 | |
|         for (int j = 0; j < QK_K; j += 128) {
 | |
|             for (int l = 0; l < 32; ++l) {
 | |
|                 a[l +  0] = (int8_t)((q4[l +  0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
 | |
|                 a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
 | |
|                 a[l + 64] = (int8_t)((q4[l +  0] >>  4) | (((qh[l] >> 4) & 3) << 4)) - 32;
 | |
|                 a[l + 96] = (int8_t)((q4[l + 32] >>  4) | (((qh[l] >> 6) & 3) << 4)) - 32;
 | |
|             }
 | |
|             a  += 128;
 | |
|             q4 += 64;
 | |
|             qh += 32;
 | |
|         }
 | |
|         a = aux8;
 | |
|         int is = 0;
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             int scale = x[i].scales[is++];
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
 | |
|             q8 += 8; a += 8;
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
 | |
|             q8 += 8; a += 8;
 | |
|         }
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
 | |
|     }
 | |
|     for (int l = 0; l < 8; ++l) sumf += sums[l];
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(n % QK_K == 0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_q6_K * restrict x = vx;
 | |
|     const block_q8_K * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
| #ifdef __ARM_NEON
 | |
|     float sum = 0;
 | |
| 
 | |
|     const uint8x16_t m4b = vdupq_n_u8(0xF);
 | |
|     const int8x16_t  m32s = vdupq_n_s8(32);
 | |
|     const int32x4_t  vzero = vdupq_n_s32(0);
 | |
| 
 | |
|     const uint8x16_t mone = vdupq_n_u8(3);
 | |
| 
 | |
|     ggml_int8x16x4_t q6bytes;
 | |
|     ggml_uint8x16x4_t q6h;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d_all = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict q6 = x[i].ql;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const int8_t * restrict scale = x[i].scales;
 | |
| 
 | |
|         int32_t isum = 0;
 | |
| 
 | |
|         uint8x16_t qhbits = vld1q_u8(qh);
 | |
|         ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6);
 | |
|         ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
 | |
| 
 | |
|         q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
 | |
|         uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
 | |
|         q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
 | |
|         shifted = vshrq_n_u8(qhbits, 4);
 | |
|         q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
 | |
|         shifted = vshrq_n_u8(qhbits, 6);
 | |
|         q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
 | |
| 
 | |
|         q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
 | |
|         q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
 | |
|         q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
 | |
|         q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
 | |
| 
 | |
|         isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
 | |
|                 vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
 | |
|                 vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
 | |
|                 vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
 | |
| 
 | |
|         sum += isum * d_all * y[i].d;
 | |
| 
 | |
|     }
 | |
|     *s = sum;
 | |
| 
 | |
| #elif defined __AVX2__
 | |
| 
 | |
|     const __m256i m4 = _mm256_set1_epi8(0xF);
 | |
|     const __m256i m2 = _mm256_set1_epi8(3);
 | |
|     const __m256i m32s = _mm256_set1_epi8(32);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict q4 = x[i].ql;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
 | |
|         const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
 | |
|         const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
 | |
|         const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
 | |
| 
 | |
|         __m256i sumi = _mm256_setzero_si256();
 | |
| 
 | |
|         const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
 | |
|         const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
 | |
| 
 | |
|         const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
 | |
|         const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
 | |
| 
 | |
|         const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
 | |
|         const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
 | |
| 
 | |
|         const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
 | |
|         const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
 | |
| 
 | |
|         const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
 | |
|         const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
 | |
| 
 | |
|         __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
 | |
|         __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
 | |
| 
 | |
|         __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
 | |
|         __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
 | |
| 
 | |
|         p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
 | |
|         p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
 | |
| 
 | |
|         p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
 | |
|         p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
 | |
| 
 | |
|         sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
 | |
| 
 | |
|         acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| 
 | |
| #elif defined __AVX__
 | |
| 
 | |
|     const __m128i m4 = _mm_set1_epi8(0xF);
 | |
|     const __m128i m2 = _mm_set1_epi8(3);
 | |
|     const __m128i m32s = _mm_set1_epi8(32);
 | |
| 
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict q4 = x[i].ql;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
 | |
|         const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
 | |
|         const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
 | |
|         const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
 | |
| 
 | |
|         __m128i sumi_0 = _mm_setzero_si128();
 | |
|         __m128i sumi_1 = _mm_setzero_si128();
 | |
| 
 | |
|         const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
 | |
|         const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
 | |
| 
 | |
|         const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
 | |
|         const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
 | |
| 
 | |
|         const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
 | |
|         const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
 | |
|         const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
 | |
|         const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
 | |
| 
 | |
|         const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
 | |
|         const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
 | |
|         const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
 | |
|         const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
 | |
| 
 | |
|         const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
 | |
|         const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
 | |
| 
 | |
|         __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
 | |
|         __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
 | |
|         __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
 | |
|         __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
 | |
| 
 | |
|         __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
 | |
|         __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
 | |
|         __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
 | |
|         __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
 | |
| 
 | |
|         p16_0 = _mm_sub_epi16(p16_0, q8s_0);
 | |
|         p16_1 = _mm_sub_epi16(p16_1, q8s_1);
 | |
|         p16_2 = _mm_sub_epi16(p16_2, q8s_2);
 | |
|         p16_3 = _mm_sub_epi16(p16_3, q8s_3);
 | |
| 
 | |
|         p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
 | |
|         p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
 | |
|         p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
 | |
|         p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
 | |
| 
 | |
|         sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
 | |
|         sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
 | |
| 
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| 
 | |
| #elif defined __riscv_v_intrinsic
 | |
| 
 | |
|     float sumf = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d_all = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         const uint8_t * restrict q6 = x[i].ql;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         const int8_t * restrict scale = x[i].scales;
 | |
| 
 | |
|         int32_t isum = 0;
 | |
| 
 | |
|         size_t vl = 16;
 | |
| 
 | |
|         vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
 | |
| 
 | |
|         // load Q6
 | |
|         vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl);
 | |
|         vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl);
 | |
| 
 | |
|         // load qh
 | |
|         vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl);
 | |
| 
 | |
|         vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
 | |
|         qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
 | |
|         vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
 | |
|         qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
 | |
|         vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
 | |
|         qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
 | |
|         vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
 | |
| 
 | |
|         vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl);
 | |
|         vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl);
 | |
|         vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl);
 | |
|         vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl);
 | |
| 
 | |
|         vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl);
 | |
|         vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl);
 | |
|         vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl);
 | |
|         vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl);
 | |
| 
 | |
|         // load Q8 and take product
 | |
|         vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
 | |
|         vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
 | |
|         vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
 | |
|         vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
 | |
| 
 | |
|         vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
 | |
|         vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
 | |
|         vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
 | |
|         vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
 | |
| 
 | |
|         isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0];
 | |
|         isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1];
 | |
|         isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2];
 | |
|         isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3];
 | |
| 
 | |
|         sumf += isum * d_all * y[i].d;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #else
 | |
| 
 | |
|     int8_t  aux8[QK_K];
 | |
|     int16_t aux16[8];
 | |
|     float   sums [8];
 | |
|     int32_t aux32[8];
 | |
|     memset(sums, 0, 8*sizeof(float));
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const uint8_t * restrict q4 = x[i].ql;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const  int8_t * restrict q8 = y[i].qs;
 | |
|         memset(aux32, 0, 8*sizeof(int32_t));
 | |
|         int8_t * restrict a = aux8;
 | |
|         for (int l = 0; l < 16; ++l) {
 | |
|             a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
 | |
|             a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
 | |
|             a[l+32] = (int8_t)((q4[l+ 0] >>  4) | (((qh[l] >> 4) & 3) << 4)) - 32;
 | |
|             a[l+48] = (int8_t)((q4[l+16] >>  4) | (((qh[l] >> 6) & 3) << 4)) - 32;
 | |
|         }
 | |
|         int is = 0;
 | |
|         for (int j = 0; j < QK_K/16; ++j) {
 | |
|             int scale = x[i].scales[is++];
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
 | |
|             q8 += 8; a += 8;
 | |
|             for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
 | |
|             for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
 | |
|             q8 += 8; a += 8;
 | |
|         }
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
 | |
|     }
 | |
|     for (int l = 0; l < 8; ++l) sumf += sums[l];
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if defined (__AVX2__) || defined (__ARM_NEON)
 | |
| static const int8_t keven_signs_q2xs[1024] = {
 | |
|      1,  1,  1,  1,  1,  1,  1,  1, -1,  1,  1,  1,  1,  1,  1, -1,  1, -1,  1,  1,  1,  1,  1, -1, -1, -1,  1,  1,  1,  1,  1,  1,
 | |
|      1,  1, -1,  1,  1,  1,  1, -1, -1,  1, -1,  1,  1,  1,  1,  1,  1, -1, -1,  1,  1,  1,  1,  1, -1, -1, -1,  1,  1,  1,  1, -1,
 | |
|      1,  1,  1, -1,  1,  1,  1, -1, -1,  1,  1, -1,  1,  1,  1,  1,  1, -1,  1, -1,  1,  1,  1,  1, -1, -1,  1, -1,  1,  1,  1, -1,
 | |
|      1,  1, -1, -1,  1,  1,  1,  1, -1,  1, -1, -1,  1,  1,  1, -1,  1, -1, -1, -1,  1,  1,  1, -1, -1, -1, -1, -1,  1,  1,  1,  1,
 | |
|      1,  1,  1,  1, -1,  1,  1, -1, -1,  1,  1,  1, -1,  1,  1,  1,  1, -1,  1,  1, -1,  1,  1,  1, -1, -1,  1,  1, -1,  1,  1, -1,
 | |
|      1,  1, -1,  1, -1,  1,  1,  1, -1,  1, -1,  1, -1,  1,  1, -1,  1, -1, -1,  1, -1,  1,  1, -1, -1, -1, -1,  1, -1,  1,  1,  1,
 | |
|      1,  1,  1, -1, -1,  1,  1,  1, -1,  1,  1, -1, -1,  1,  1, -1,  1, -1,  1, -1, -1,  1,  1, -1, -1, -1,  1, -1, -1,  1,  1,  1,
 | |
|      1,  1, -1, -1, -1,  1,  1, -1, -1,  1, -1, -1, -1,  1,  1,  1,  1, -1, -1, -1, -1,  1,  1,  1, -1, -1, -1, -1, -1,  1,  1, -1,
 | |
|      1,  1,  1,  1,  1, -1,  1, -1, -1,  1,  1,  1,  1, -1,  1,  1,  1, -1,  1,  1,  1, -1,  1,  1, -1, -1,  1,  1,  1, -1,  1, -1,
 | |
|      1,  1, -1,  1,  1, -1,  1,  1, -1,  1, -1,  1,  1, -1,  1, -1,  1, -1, -1,  1,  1, -1,  1, -1, -1, -1, -1,  1,  1, -1,  1,  1,
 | |
|      1,  1,  1, -1,  1, -1,  1,  1, -1,  1,  1, -1,  1, -1,  1, -1,  1, -1,  1, -1,  1, -1,  1, -1, -1, -1,  1, -1,  1, -1,  1,  1,
 | |
|      1,  1, -1, -1,  1, -1,  1, -1, -1,  1, -1, -1,  1, -1,  1,  1,  1, -1, -1, -1,  1, -1,  1,  1, -1, -1, -1, -1,  1, -1,  1, -1,
 | |
|      1,  1,  1,  1, -1, -1,  1,  1, -1,  1,  1,  1, -1, -1,  1, -1,  1, -1,  1,  1, -1, -1,  1, -1, -1, -1,  1,  1, -1, -1,  1,  1,
 | |
|      1,  1, -1,  1, -1, -1,  1, -1, -1,  1, -1,  1, -1, -1,  1,  1,  1, -1, -1,  1, -1, -1,  1,  1, -1, -1, -1,  1, -1, -1,  1, -1,
 | |
|      1,  1,  1, -1, -1, -1,  1, -1, -1,  1,  1, -1, -1, -1,  1,  1,  1, -1,  1, -1, -1, -1,  1,  1, -1, -1,  1, -1, -1, -1,  1, -1,
 | |
|      1,  1, -1, -1, -1, -1,  1,  1, -1,  1, -1, -1, -1, -1,  1, -1,  1, -1, -1, -1, -1, -1,  1, -1, -1, -1, -1, -1, -1, -1,  1,  1,
 | |
|      1,  1,  1,  1,  1,  1, -1, -1, -1,  1,  1,  1,  1,  1, -1,  1,  1, -1,  1,  1,  1,  1, -1,  1, -1, -1,  1,  1,  1,  1, -1, -1,
 | |
|      1,  1, -1,  1,  1,  1, -1,  1, -1,  1, -1,  1,  1,  1, -1, -1,  1, -1, -1,  1,  1,  1, -1, -1, -1, -1, -1,  1,  1,  1, -1,  1,
 | |
|      1,  1,  1, -1,  1,  1, -1,  1, -1,  1,  1, -1,  1,  1, -1, -1,  1, -1,  1, -1,  1,  1, -1, -1, -1, -1,  1, -1,  1,  1, -1,  1,
 | |
|      1,  1, -1, -1,  1,  1, -1, -1, -1,  1, -1, -1,  1,  1, -1,  1,  1, -1, -1, -1,  1,  1, -1,  1, -1, -1, -1, -1,  1,  1, -1, -1,
 | |
|      1,  1,  1,  1, -1,  1, -1,  1, -1,  1,  1,  1, -1,  1, -1, -1,  1, -1,  1,  1, -1,  1, -1, -1, -1, -1,  1,  1, -1,  1, -1,  1,
 | |
|      1,  1, -1,  1, -1,  1, -1, -1, -1,  1, -1,  1, -1,  1, -1,  1,  1, -1, -1,  1, -1,  1, -1,  1, -1, -1, -1,  1, -1,  1, -1, -1,
 | |
|      1,  1,  1, -1, -1,  1, -1, -1, -1,  1,  1, -1, -1,  1, -1,  1,  1, -1,  1, -1, -1,  1, -1,  1, -1, -1,  1, -1, -1,  1, -1, -1,
 | |
|      1,  1, -1, -1, -1,  1, -1,  1, -1,  1, -1, -1, -1,  1, -1, -1,  1, -1, -1, -1, -1,  1, -1, -1, -1, -1, -1, -1, -1,  1, -1,  1,
 | |
|      1,  1,  1,  1,  1, -1, -1,  1, -1,  1,  1,  1,  1, -1, -1, -1,  1, -1,  1,  1,  1, -1, -1, -1, -1, -1,  1,  1,  1, -1, -1,  1,
 | |
|      1,  1, -1,  1,  1, -1, -1, -1, -1,  1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1,  1, -1, -1,  1, -1, -1, -1,  1,  1, -1, -1, -1,
 | |
|      1,  1,  1, -1,  1, -1, -1, -1, -1,  1,  1, -1,  1, -1, -1,  1,  1, -1,  1, -1,  1, -1, -1,  1, -1, -1,  1, -1,  1, -1, -1, -1,
 | |
|      1,  1, -1, -1,  1, -1, -1,  1, -1,  1, -1, -1,  1, -1, -1, -1,  1, -1, -1, -1,  1, -1, -1, -1, -1, -1, -1, -1,  1, -1, -1,  1,
 | |
|      1,  1,  1,  1, -1, -1, -1, -1, -1,  1,  1,  1, -1, -1, -1,  1,  1, -1,  1,  1, -1, -1, -1,  1, -1, -1,  1,  1, -1, -1, -1, -1,
 | |
|      1,  1, -1,  1, -1, -1, -1,  1, -1,  1, -1,  1, -1, -1, -1, -1,  1, -1, -1,  1, -1, -1, -1, -1, -1, -1, -1,  1, -1, -1, -1,  1,
 | |
|      1,  1,  1, -1, -1, -1, -1,  1, -1,  1,  1, -1, -1, -1, -1, -1,  1, -1,  1, -1, -1, -1, -1, -1, -1, -1,  1, -1, -1, -1, -1,  1,
 | |
|      1,  1, -1, -1, -1, -1, -1, -1, -1,  1, -1, -1, -1, -1, -1,  1,  1, -1, -1, -1, -1, -1, -1,  1, -1, -1, -1, -1, -1, -1, -1, -1,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(n % QK_K == 0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_iq2_xxs * restrict x = vx;
 | |
|     const block_q8_K    * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
| 
 | |
|     const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
 | |
| 
 | |
|     uint32_t aux32[4];
 | |
|     const uint8_t * aux8 = (const uint8_t *)aux32;
 | |
| 
 | |
|     ggml_int8x16x4_t q2u;
 | |
|     ggml_int8x16x4_t q2s;
 | |
|     ggml_int8x16x4_t q8b;
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const uint16_t * restrict q2 = x[i].qs;
 | |
|         const int8_t   * restrict q8 = y[i].qs;
 | |
|         float sumf1 = 0, sumf2 = 0;
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
 | |
|             q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
 | |
|             memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
 | |
|             q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
 | |
|             q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
 | |
|             q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
 | |
|             q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
 | |
|             q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >>  0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >>  7) & 127))));
 | |
|             q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
 | |
|             q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >>  0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >>  7) & 127))));
 | |
|             q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
 | |
|             q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
 | |
|             q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
 | |
|             q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
 | |
|             q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
 | |
|             const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
 | |
|             const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
 | |
|             sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
 | |
|             sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
 | |
|         }
 | |
|         sumf += d*(sumf1 + sumf2);
 | |
|     }
 | |
|     *s = 0.25f * sumf;
 | |
| 
 | |
| #elif defined(__AVX2__)
 | |
| 
 | |
|     const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
 | |
| 
 | |
|     uint32_t aux32[4];
 | |
|     const uint8_t * aux8 = (const uint8_t *)aux32;
 | |
| 
 | |
|     __m256 accumf = _mm256_setzero_ps();
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const uint16_t * restrict q2 = x[i].qs;
 | |
|         const int8_t   * restrict q8 = y[i].qs;
 | |
|         __m256i sumi1 = _mm256_setzero_si256();
 | |
|         __m256i sumi2 = _mm256_setzero_si256();
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
 | |
|             const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
 | |
|             const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
 | |
|             memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
 | |
|             const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
 | |
|             const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
 | |
|             const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
 | |
|                                                    signs64[(aux32[1] >>  7) & 127], signs64[(aux32[1] >>  0) & 127]);
 | |
|             const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
 | |
|                                                    signs64[(aux32[3] >>  7) & 127], signs64[(aux32[3] >>  0) & 127]);
 | |
|             const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
 | |
|             const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
 | |
|             const __m256i dot1  = _mm256_maddubs_epi16(q2_1, q8s_1);
 | |
|             const __m256i dot2  = _mm256_maddubs_epi16(q2_2, q8s_2);
 | |
|             const uint16_t ls1 = aux32[1] >> 28;
 | |
|             const uint16_t ls2 = aux32[3] >> 28;
 | |
|             const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
 | |
|             const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
 | |
|             sumi1 = _mm256_add_epi32(sumi1, p1);
 | |
|             sumi2 = _mm256_add_epi32(sumi2, p2);
 | |
|         }
 | |
| 
 | |
|         accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = 0.125f * hsum_float_8(accumf);
 | |
| 
 | |
| #else
 | |
| 
 | |
|     uint32_t aux32[2];
 | |
|     const uint8_t * aux8 = (const uint8_t *)aux32;
 | |
| 
 | |
|     float sumf = 0.f;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const uint16_t * restrict q2 = x[i].qs;
 | |
|         const int8_t   * restrict q8 = y[i].qs;
 | |
|         int32_t bsum = 0;
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
 | |
|             memcpy(aux32, q2, 2*sizeof(uint32_t));
 | |
|             q2 += 4;
 | |
|             const uint32_t ls = 2*(aux32[1] >> 28) + 1;
 | |
|             int32_t sumi = 0;
 | |
|             for (int l = 0; l < 4; ++l) {
 | |
|                 const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
 | |
|                 const uint8_t  signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
 | |
|                 for (int j = 0; j < 8; ++j) {
 | |
|                     sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
 | |
|                 }
 | |
|                 q8 += 8;
 | |
|             }
 | |
|             bsum += sumi * ls;
 | |
|         }
 | |
|         sumf += d * bsum;
 | |
|     }
 | |
|     *s = 0.125f * sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(n % QK_K == 0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_iq2_xs * restrict x = vx;
 | |
|     const block_q8_K   * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
| 
 | |
|     const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
 | |
| 
 | |
|     ggml_int8x16x4_t q2u;
 | |
|     ggml_int8x16x4_t q2s;
 | |
|     ggml_int8x16x4_t q8b;
 | |
| 
 | |
|     int32x4x4_t scales32;
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const uint16_t * restrict q2 = x[i].qs;
 | |
|         const int8_t   * restrict q8 = y[i].qs;
 | |
|         const uint8x8_t scales8 = vld1_u8(x[i].scales);
 | |
|         const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
 | |
|         const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
 | |
|         uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
 | |
|         scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
 | |
|         const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
 | |
|         const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
 | |
|         scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
 | |
|         scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
 | |
|         scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
 | |
|         scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
 | |
|         int32x4_t sumi = vdupq_n_s32(0);
 | |
|         for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
 | |
|             q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
 | |
|             q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
 | |
|             q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
 | |
|             q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
 | |
|             q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
 | |
|             q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
 | |
|             q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
 | |
|             q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
 | |
|             q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
 | |
|             q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
 | |
|             q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
 | |
|             q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
 | |
|             q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
 | |
|             const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
 | |
|             const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
 | |
|             const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
 | |
|             const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
 | |
|             const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
 | |
|             sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
 | |
|             q2 += 8;
 | |
|         }
 | |
|         sumf += d*vaddvq_s32(sumi);
 | |
|     }
 | |
|     *s = 0.125f * sumf;
 | |
| 
 | |
| #elif defined(__AVX2__)
 | |
| 
 | |
|     const __m256i mone = _mm256_set1_epi8(1);
 | |
|     static const char block_sign_shuffle_mask_1[32] = {
 | |
|         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
 | |
|         0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
 | |
|     };
 | |
|     static const char block_sign_shuffle_mask_2[32] = {
 | |
|         0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
 | |
|         0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
 | |
|     };
 | |
|     static const uint8_t bit_selector_mask_bytes[32] = {
 | |
|         0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
 | |
|         0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
 | |
|     };
 | |
| 
 | |
|     const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
 | |
|     const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
 | |
|     const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
 | |
| 
 | |
| #if QK_K == 64
 | |
|     static const uint8_t k_bit_helper[16] = {
 | |
|         0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
 | |
|     };
 | |
|     const __m128i bit_helper = _mm_loadu_si128((const __m128i*)k_bit_helper);
 | |
|     const __m128i m511 = _mm_set1_epi16(511);
 | |
|     typedef union {
 | |
|         __m128i vec_index;
 | |
|         uint16_t index[8];
 | |
|     } index_t;
 | |
| 
 | |
|     index_t idx;
 | |
|     __m256 accumf = _mm256_setzero_ps();
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const __m128i q2_data = _mm_loadu_si128((const __m128i*)x[i].qs);
 | |
|         idx.vec_index = _mm_and_si128(q2_data, m511);
 | |
| 
 | |
|         const __m128i partial_sign_bits = _mm_srli_epi16(q2_data, 9);
 | |
|         const __m128i partial_sign_bits_upper = _mm_srli_epi16(q2_data, 13);
 | |
|         const __m128i partial_sign_bits_for_counting = _mm_xor_si128(partial_sign_bits, partial_sign_bits_upper);
 | |
| 
 | |
|         const __m128i odd_bits = _mm_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
 | |
|         const __m128i full_sign_bits = _mm_or_si128(partial_sign_bits, odd_bits);
 | |
|         const __m256i full_signs = MM256_SET_M128I(full_sign_bits, full_sign_bits);
 | |
| 
 | |
|         const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)y[i].qs);
 | |
|         const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)(y[i].qs+32));
 | |
| 
 | |
|         const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[idx.index[3]], iq2xs_grid[idx.index[2]],
 | |
|                                                iq2xs_grid[idx.index[1]], iq2xs_grid[idx.index[0]]);
 | |
|         const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[idx.index[7]], iq2xs_grid[idx.index[6]],
 | |
|                                                iq2xs_grid[idx.index[5]], iq2xs_grid[idx.index[4]]);
 | |
| 
 | |
|         __m256i signs;
 | |
|         signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_1);
 | |
|         signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
 | |
|         const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
 | |
| 
 | |
|         signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_2);
 | |
|         signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
 | |
|         const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
 | |
| 
 | |
|         const __m256i dot1  = _mm256_maddubs_epi16(q2_1, q8s_1);
 | |
|         const __m256i dot2  = _mm256_maddubs_epi16(q2_2, q8s_2);
 | |
| 
 | |
|         const __m256i sc1 = MM256_SET_M128I(_mm_set1_epi16(2*(x[i].scales[0] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[0] & 0xf)+1));
 | |
|         const __m256i sc2 = MM256_SET_M128I(_mm_set1_epi16(2*(x[i].scales[1] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[1] & 0xf)+1));
 | |
| 
 | |
|         const __m256i sum = _mm256_add_epi32(_mm256_madd_epi16(sc1, dot1), _mm256_madd_epi16(sc2, dot2));
 | |
| 
 | |
|         accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sum), accumf);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = 0.125f * hsum_float_8(accumf);
 | |
| #else
 | |
| 
 | |
|     static const uint8_t k_bit_helper[32] = {
 | |
|         0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
 | |
|         0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
 | |
|     };
 | |
|     const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
 | |
|     const __m256i m511 = _mm256_set1_epi16(511);
 | |
|     const __m128i m4 = _mm_set1_epi8(0xf);
 | |
|     const __m128i m1 = _mm_set1_epi8(1);
 | |
| 
 | |
|     uint64_t aux64;
 | |
| 
 | |
|     // somewhat hacky, but gives a significant boost in performance
 | |
|     __m256i aux_gindex;
 | |
|     const uint16_t * gindex = (const uint16_t *)&aux_gindex;
 | |
| 
 | |
|     __m256 accumf = _mm256_setzero_ps();
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const uint16_t * restrict q2 = x[i].qs;
 | |
|         const int8_t   * restrict q8 = y[i].qs;
 | |
| 
 | |
|         memcpy(&aux64, x[i].scales, 8);
 | |
|         __m128i stmp = _mm_set1_epi64x(aux64);
 | |
|         stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
 | |
|         const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
 | |
| 
 | |
|         __m256i sumi1 = _mm256_setzero_si256();
 | |
|         __m256i sumi2 = _mm256_setzero_si256();
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
 | |
| 
 | |
|             const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2);  q2 += 16;
 | |
|             aux_gindex = _mm256_and_si256(q2_data, m511);
 | |
| 
 | |
|             const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
 | |
|             const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
 | |
|             const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
 | |
| 
 | |
|             const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
 | |
|             const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
 | |
| 
 | |
|             const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
 | |
|             const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
 | |
|             const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
 | |
|             const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
 | |
| 
 | |
|             const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
 | |
|                                                    iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
 | |
|             const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
 | |
|                                                    iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
 | |
|             const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
 | |
|                                                    iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
 | |
|             const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
 | |
|                                                    iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
 | |
| 
 | |
|             const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
 | |
|             const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
 | |
|             const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l);
 | |
|             const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h);
 | |
| 
 | |
|             __m256i signs;
 | |
|             signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
 | |
|             signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
 | |
|             const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
 | |
| 
 | |
|             signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
 | |
|             signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
 | |
|             const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
 | |
| 
 | |
|             signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
 | |
|             signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
 | |
|             const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
 | |
| 
 | |
|             signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
 | |
|             signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
 | |
|             const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
 | |
| 
 | |
|             const __m256i dot1  = _mm256_maddubs_epi16(q2_1, q8s_1);
 | |
|             const __m256i dot2  = _mm256_maddubs_epi16(q2_2, q8s_2);
 | |
|             const __m256i dot3  = _mm256_maddubs_epi16(q2_3, q8s_3);
 | |
|             const __m256i dot4  = _mm256_maddubs_epi16(q2_4, q8s_4);
 | |
| 
 | |
|             const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
 | |
|             const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
 | |
|             const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
 | |
|             const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
 | |
| 
 | |
|             sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
 | |
|             sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
 | |
|             sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
 | |
|             sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
 | |
|         }
 | |
| 
 | |
|         accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = 0.125f * hsum_float_8(accumf);
 | |
| #endif
 | |
| 
 | |
| #else
 | |
| 
 | |
|     float sumf = 0.f;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const uint16_t * restrict q2 = x[i].qs;
 | |
|         const uint8_t  * restrict sc = x[i].scales;
 | |
|         const int8_t   * restrict q8 = y[i].qs;
 | |
|         int32_t bsum = 0;
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
 | |
|             const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
 | |
|             const uint16_t ls2 = 2*(sc[ib32] >>  4) + 1;
 | |
|             int32_t sumi = 0;
 | |
|             for (int l = 0; l < 2; ++l) {
 | |
|                 const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
 | |
|                 const uint8_t  signs = ksigns_iq2xs[q2[l] >> 9];
 | |
|                 for (int j = 0; j < 8; ++j) {
 | |
|                     sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
 | |
|                 }
 | |
|                 q8 += 8;
 | |
|             }
 | |
|             bsum += sumi * ls1;
 | |
|             sumi = 0;
 | |
|             for (int l = 2; l < 4; ++l) {
 | |
|                 const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
 | |
|                 const uint8_t  signs = ksigns_iq2xs[q2[l] >> 9];
 | |
|                 for (int j = 0; j < 8; ++j) {
 | |
|                     sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
 | |
|                 }
 | |
|                 q8 += 8;
 | |
|             }
 | |
|             bsum += sumi * ls2;
 | |
|             q2 += 4;
 | |
|         }
 | |
|         sumf += d * bsum;
 | |
|     }
 | |
|     *s = 0.125f * sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(n % QK_K == 0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_iq2_s * restrict x = vx;
 | |
|     const block_q8_K  * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
| 
 | |
|    static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
 | |
|                                        0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
 | |
|    };
 | |
| 
 | |
|     static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
 | |
| 
 | |
|     const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
 | |
|     const uint8x16_t        mask2 = vld1q_u8(k_mask2);
 | |
|     const uint8x16_t m1 = vdupq_n_u8(1);
 | |
|     const int32x4_t vzero = vdupq_n_s32(0);
 | |
| 
 | |
|     uint8x16x2_t vs;
 | |
|     ggml_int8x16x4_t q2s;
 | |
|     ggml_int8x16x4_t q8b;
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
| 
 | |
|         const uint8_t * restrict qs = x[i].qs;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         int sumi1 = 0, sumi2 = 0;
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
 | |
|             q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
 | |
|             q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
 | |
|                                      vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
 | |
|             q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
 | |
|                                      vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
 | |
|             q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
 | |
|                                      vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
 | |
|             q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
 | |
|                                      vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
 | |
|             qs += 8;
 | |
| 
 | |
|             vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | (signs[1] << 16)));
 | |
|             vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
 | |
|             vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
 | |
|             vs.val[0] = vceqq_u8(vs.val[0], mask2);
 | |
|             vs.val[1] = vceqq_u8(vs.val[1], mask2);
 | |
| 
 | |
|             q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
 | |
|             q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);
 | |
| 
 | |
|             vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | (signs[3] << 16)));
 | |
|             vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
 | |
|             vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
 | |
|             vs.val[0] = vceqq_u8(vs.val[0], mask2);
 | |
|             vs.val[1] = vceqq_u8(vs.val[1], mask2);
 | |
| 
 | |
|             signs += 4;
 | |
| 
 | |
|             q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
 | |
|             q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);
 | |
| 
 | |
|             const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
 | |
|             const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
 | |
|             const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
 | |
|             const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);
 | |
| 
 | |
|             sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
 | |
|             sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >>  4));
 | |
|             sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
 | |
|             sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >>  4));
 | |
|         }
 | |
|         sumf += d*(sumi1 + sumi2);
 | |
|     }
 | |
| 
 | |
|     *s = 0.125f * sumf;
 | |
| 
 | |
| #elif defined(__AVX2__)
 | |
| 
 | |
|    static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
 | |
|                                        0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
 | |
|    };
 | |
| 
 | |
|     static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
 | |
|                                         0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
 | |
|     };
 | |
| 
 | |
|     const __m128i m4 = _mm_set1_epi8(0xf);
 | |
|     const __m128i m1 = _mm_set1_epi8(1);
 | |
| 
 | |
|     const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
 | |
|     const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
 | |
| 
 | |
|     uint64_t aux64;
 | |
| 
 | |
|     __m256 accumf = _mm256_setzero_ps();
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const uint8_t * restrict qs = x[i].qs;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
| 
 | |
|         memcpy(&aux64, x[i].scales, 8);
 | |
|         const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
 | |
|         const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
 | |
| 
 | |
|         __m256i sumi1 = _mm256_setzero_si256();
 | |
|         __m256i sumi2 = _mm256_setzero_si256();
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
 | |
|             const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
 | |
|             const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
 | |
|             const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
 | |
|                                                    iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
 | |
|                                                    iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
 | |
|                                                    iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
 | |
|             const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
 | |
|                                                    iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
 | |
|                                                    iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
 | |
|                                                    iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
 | |
|             qs += 8;
 | |
| 
 | |
|             __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
 | |
|             aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
 | |
|             const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
 | |
|             const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
 | |
| 
 | |
|             aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
 | |
|             aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
 | |
|             const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
 | |
|             const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
 | |
| 
 | |
|             signs += 4;
 | |
| 
 | |
|             const __m256i dot1  = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
 | |
|             const __m256i dot2  = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
 | |
| 
 | |
|             const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
 | |
|             const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
 | |
|             sumi1 = _mm256_add_epi32(sumi1, p1);
 | |
|             sumi2 = _mm256_add_epi32(sumi2, p2);
 | |
|         }
 | |
| 
 | |
|         accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = 0.125f * hsum_float_8(accumf);
 | |
| 
 | |
| #else
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; i++) {
 | |
| 
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const int8_t  * q8 = y[i].qs;
 | |
|         const uint8_t * qs = x[i].qs;
 | |
|         const uint8_t * qh = x[i].qh;
 | |
|         const uint8_t * signs = qs + QK_K/8;
 | |
| 
 | |
|         int bsum = 0;
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
 | |
|             int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
 | |
|             int ls2 = 1 + 2*(x[i].scales[ib32] >>  4);
 | |
|             int sumi1 = 0, sumi2 = 0;
 | |
|             for (int l = 0; l < 2; ++l) {
 | |
|                 const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
 | |
|                 for (int j = 0; j < 8; ++j) {
 | |
|                     sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
 | |
|                 }
 | |
|                 q8 += 8;
 | |
|             }
 | |
|             for (int l = 2; l < 4; ++l) {
 | |
|                 const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
 | |
|                 for (int j = 0; j < 8; ++j) {
 | |
|                     sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
 | |
|                 }
 | |
|                 q8 += 8;
 | |
|             }
 | |
|             bsum += ls1 * sumi1 + ls2 * sumi2;
 | |
|             qs += 4;
 | |
|             signs += 4;
 | |
|         }
 | |
| 
 | |
|         sumf += d * bsum;
 | |
|     }
 | |
| 
 | |
|     *s = 0.125f * sumf;
 | |
| 
 | |
| #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(n % QK_K == 0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_iq3_xxs * restrict x = vx;
 | |
|     const block_q8_K    * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
| 
 | |
|     const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
 | |
| 
 | |
|     uint32_t aux32[2];
 | |
| 
 | |
|     ggml_int8x16x4_t q3s;
 | |
|     ggml_int8x16x4_t q8b;
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const uint8_t * restrict q3 = x[i].qs;
 | |
|         const uint8_t * restrict gas = x[i].qs + QK_K/4;
 | |
|         const int8_t   * restrict q8 = y[i].qs;
 | |
|         float sumf1 = 0, sumf2 = 0;
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
 | |
|             q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
 | |
|             memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
 | |
|             const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
 | |
|             const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
 | |
|             const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
 | |
|             const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
 | |
|             q3 += 16;
 | |
|             q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >>  0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >>  7) & 127))));
 | |
|             q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
 | |
|             q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >>  0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >>  7) & 127))));
 | |
|             q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
 | |
|             q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
 | |
|             q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
 | |
|             q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
 | |
|             q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
 | |
|             const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
 | |
|             const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
 | |
|             sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
 | |
|             sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
 | |
|         }
 | |
|         sumf += d*(sumf1 + sumf2);
 | |
|     }
 | |
|     *s = 0.5f * sumf;
 | |
| 
 | |
| #elif defined(__AVX2__)
 | |
| 
 | |
|     const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
 | |
| 
 | |
|     uint32_t aux32[2];
 | |
| 
 | |
|     __m256 accumf = _mm256_setzero_ps();
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const uint8_t * restrict q3 = x[i].qs;
 | |
|         const uint8_t * restrict gas = x[i].qs + QK_K/4;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
|         __m256i sumi1 = _mm256_setzero_si256();
 | |
|         __m256i sumi2 = _mm256_setzero_si256();
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
 | |
|             const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
 | |
|             const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
 | |
|             const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
 | |
|                                                   iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
 | |
|             q3 += 8;
 | |
|             const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
 | |
|                                                   iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
 | |
|             q3 += 8;
 | |
|             memcpy(aux32, gas, 8); gas += 8;
 | |
|             const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
 | |
|                                                    signs64[(aux32[0] >>  7) & 127], signs64[(aux32[0] >>  0) & 127]);
 | |
|             const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
 | |
|                                                    signs64[(aux32[1] >>  7) & 127], signs64[(aux32[1] >>  0) & 127]);
 | |
|             const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
 | |
|             const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
 | |
|             const __m256i dot1  = _mm256_maddubs_epi16(q2_1, q8s_1);
 | |
|             const __m256i dot2  = _mm256_maddubs_epi16(q2_2, q8s_2);
 | |
|             const uint16_t ls1 = aux32[0] >> 28;
 | |
|             const uint16_t ls2 = aux32[1] >> 28;
 | |
|             const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
 | |
|             const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
 | |
|             sumi1 = _mm256_add_epi32(sumi1, p1);
 | |
|             sumi2 = _mm256_add_epi32(sumi2, p2);
 | |
|         }
 | |
| 
 | |
|         accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = 0.25f * hsum_float_8(accumf);
 | |
| 
 | |
| #else
 | |
| 
 | |
|     uint32_t aux32;
 | |
| 
 | |
|     float sumf = 0.f;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const uint8_t * restrict q3 = x[i].qs;
 | |
|         const uint8_t * restrict gas = x[i].qs + QK_K/4;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
|         int32_t bsum = 0;
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
 | |
|             memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
 | |
|             const uint32_t ls = 2*(aux32 >> 28) + 1;
 | |
|             int32_t sumi = 0;
 | |
|             for (int l = 0; l < 4; ++l) {
 | |
|                 const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
 | |
|                 const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
 | |
|                 const uint8_t  signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
 | |
|                 for (int j = 0; j < 4; ++j) {
 | |
|                     sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
 | |
|                     sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
 | |
|                 }
 | |
|                 q8 += 8;
 | |
|             }
 | |
|             q3 += 8;
 | |
|             bsum += sumi * ls;
 | |
|         }
 | |
|         sumf += d * bsum;
 | |
|     }
 | |
|     *s = 0.25f * sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(n % QK_K == 0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_iq3_s * restrict x = vx;
 | |
|     const block_q8_K  * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
| 
 | |
|     typedef union {
 | |
|         uint16x8_t vec_index;
 | |
|         uint16_t   index[8];
 | |
|     } vec_index_t;
 | |
| 
 | |
|    static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
 | |
|                                        0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
 | |
|    };
 | |
| 
 | |
|     static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
 | |
| 
 | |
|     static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
 | |
| 
 | |
|     const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
 | |
|     const uint8x16_t        mask2 = vld1q_u8(k_mask2);
 | |
| 
 | |
|     const int16x8_t  hshift = vld1q_s16(k_shift);
 | |
|     const uint16x8_t m256   = vdupq_n_u16(256);
 | |
|     const uint8x16_t m1     = vdupq_n_u8(1);
 | |
| 
 | |
|     uint8x16x2_t vs;
 | |
|     ggml_int8x16x4_t q3s;
 | |
|     ggml_int8x16x4_t q8b;
 | |
|     vec_index_t idx;
 | |
| 
 | |
| #if QK_K == 256
 | |
|     uint32_t scales32[2];
 | |
|     const uint8_t * scales8 = (const uint8_t *)scales32;
 | |
| #endif
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const uint8_t * restrict qs = x[i].qs;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
 | |
|         const int8_t   * restrict q8 = y[i].qs;
 | |
| 
 | |
| #if QK_K == 256
 | |
|         memcpy(scales32, x[i].scales, 4);
 | |
|         scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
 | |
|         scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
 | |
| #endif
 | |
| 
 | |
|         int sumi1 = 0, sumi2 = 0;
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
 | |
|             q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
 | |
| 
 | |
|             const uint8x16_t idx_l = vld1q_u8(qs); qs += 16;
 | |
|             idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256));
 | |
|             const uint32x4_t aux32x4_0 = {iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
 | |
|                                           iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]};
 | |
|             const uint32x4_t aux32x4_1 = {iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
 | |
|                                           iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]};
 | |
|             idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256));
 | |
|             const uint32x4_t aux32x4_2 = {iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
 | |
|                                           iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]};
 | |
|             const uint32x4_t aux32x4_3 = {iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
 | |
|                                           iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]};
 | |
| 
 | |
| 
 | |
|             vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | (signs[1] << 16)));
 | |
|             vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
 | |
|             vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
 | |
|             vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
 | |
|             vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
 | |
| 
 | |
|             q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0));
 | |
|             q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1));
 | |
| 
 | |
|             vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | (signs[3] << 16)));
 | |
|             vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
 | |
|             vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
 | |
|             vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
 | |
|             vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
 | |
| 
 | |
|             signs += 4;
 | |
| 
 | |
|             q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2));
 | |
|             q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3));
 | |
| 
 | |
|             const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
 | |
|             const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
 | |
| #if QK_K == 256
 | |
|             sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0];
 | |
|             sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4];
 | |
| #else
 | |
|             sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32/2] & 0xf));
 | |
|             sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32/2] >>  4));
 | |
| #endif
 | |
|         }
 | |
|         sumf += d*(sumi1 + sumi2);
 | |
|     }
 | |
|     *s = sumf;
 | |
| 
 | |
| #elif defined(__AVX2__)
 | |
| 
 | |
|    static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
 | |
|                                        0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
 | |
|    };
 | |
| 
 | |
|     static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
 | |
|                                         0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
 | |
|     };
 | |
| 
 | |
|     const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
 | |
|     const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
 | |
| 
 | |
|     const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
 | |
|     const __m256i idx_mask  = _mm256_set1_epi32(256);
 | |
| 
 | |
|     typedef union {
 | |
|         __m256i  vec[2];
 | |
|         uint32_t index[16];
 | |
|     } index_t;
 | |
| 
 | |
|     index_t idx;
 | |
| 
 | |
|     __m256 accumf = _mm256_setzero_ps();
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const uint8_t * restrict qs = x[i].qs;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
|         __m256i sumi1 = _mm256_setzero_si256();
 | |
|         __m256i sumi2 = _mm256_setzero_si256();
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
 | |
|             const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
 | |
|             const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
 | |
|             const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16;
 | |
|             idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]);
 | |
|             idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]);
 | |
|             idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask);
 | |
|             idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask);
 | |
|             idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l)));
 | |
|             idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1)));
 | |
| 
 | |
|             // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
 | |
|             //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
 | |
|             //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
 | |
|             const __m256i q2_1 = _mm256_set_epi32(
 | |
|                     iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
 | |
|                     iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
 | |
|             );
 | |
|             const __m256i q2_2 = _mm256_set_epi32(
 | |
|                     iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
 | |
|                     iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
 | |
|             );
 | |
| 
 | |
|             __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
 | |
|             aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
 | |
|             const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
 | |
|             const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
 | |
| 
 | |
|             aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
 | |
|             aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
 | |
|             const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
 | |
|             const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
 | |
| 
 | |
|             signs += 4;
 | |
| 
 | |
|             const __m256i dot1  = _mm256_maddubs_epi16(q2_1, q8s_1);
 | |
|             const __m256i dot2  = _mm256_maddubs_epi16(q2_2, q8s_2);
 | |
|             const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
 | |
|             const uint16_t ls2 = x[i].scales[ib32/2] >>  4;
 | |
|             const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
 | |
|             const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
 | |
|             sumi1 = _mm256_add_epi32(sumi1, p1);
 | |
|             sumi2 = _mm256_add_epi32(sumi2, p2);
 | |
|         }
 | |
| 
 | |
|         accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(accumf);
 | |
| 
 | |
| #else
 | |
| 
 | |
|     float sumf = 0.f;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
 | |
|         const uint8_t * restrict qs = x[i].qs;
 | |
|         const uint8_t * restrict qh = x[i].qh;
 | |
|         const uint8_t * restrict signs = x[i].signs;
 | |
|         const int8_t  * restrict q8 = y[i].qs;
 | |
|         int32_t bsum = 0;
 | |
|         for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
 | |
|             const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
 | |
|             const uint32_t ls2 = 2*(x[i].scales[ib32/2] >>  4) + 1;
 | |
|             int32_t sumi = 0;
 | |
|             for (int l = 0; l < 4; ++l) {
 | |
|                 const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
 | |
|                 const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
 | |
|                 for (int j = 0; j < 4; ++j) {
 | |
|                     sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
 | |
|                     sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
 | |
|                 }
 | |
|                 q8 += 8;
 | |
|             }
 | |
|             qs += 8;
 | |
|             signs += 4;
 | |
|             bsum += sumi * ls1;
 | |
|             sumi = 0;
 | |
|             for (int l = 0; l < 4; ++l) {
 | |
|                 const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
 | |
|                 const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
 | |
|                 for (int j = 0; j < 4; ++j) {
 | |
|                     sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
 | |
|                     sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
 | |
|                 }
 | |
|                 q8 += 8;
 | |
|             }
 | |
|             qs += 8;
 | |
|             signs += 4;
 | |
|             bsum += sumi * ls2;
 | |
|         }
 | |
|         sumf += d * bsum;
 | |
|     }
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef __AVX2__
 | |
| static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
 | |
|     const __m256i ax = _mm256_sign_epi8(x, x);
 | |
|     const __m256i sy = _mm256_sign_epi8(y, x);
 | |
|     return _mm256_maddubs_epi16(ax, sy);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void ggml_vec_dot_iq1_s_q8_K  (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(n % QK_K == 0);
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
| 
 | |
|     const block_iq1_s * restrict x = vx;
 | |
|     const block_q8_K  * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
|     // TODO: implement for QK_K = 64
 | |
| #if defined __ARM_NEON && QK_K == 256
 | |
| 
 | |
|     const uint8x16_t m8 = vdupq_n_u8(0x08);
 | |
|     const uint8x16_t m7 = vdupq_n_u8(0x07);
 | |
|     const uint8x16_t m1 = vdupq_n_u8(0x01);
 | |
|     const int32x4_t vzero = vdupq_n_s32(0);
 | |
| 
 | |
|     uint16_t gindex[8];
 | |
|     uint16x8x2_t vindex;
 | |
|     int8x16x4_t q1b;
 | |
|     ggml_int8x16x4_t q8b;
 | |
|     uint16x8x4_t scales;
 | |
|     int32x4x2_t sumi;
 | |
|     int32x4x2_t dotq;
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const int8_t  * q8 = y[i].qs;
 | |
|         const uint8_t * qs = x[i].qs;
 | |
|         const uint8_t * sc = x[i].scales;
 | |
| 
 | |
|         sumi.val[0] = sumi.val[1] = vzero;
 | |
| 
 | |
|         for (int i128 = 0; i128 < QK_K/128; ++i128) {
 | |
|             const uint8x16_t ql = vld1q_u8(qs); qs += 16;
 | |
|             const uint8x8_t tm1 = vld1_u8 (sc); sc +=  8;
 | |
|             const uint8x8_t tm2 = vshr_n_u8(tm1, 4);
 | |
|             const uint8x16_t qh = vcombine_u8(vzip1_u8(tm1, tm2), vzip2_u8(tm1, tm2));
 | |
|             const uint8x16_t hbit = vandq_u8(qh, m8);
 | |
|             vindex.val[0] = vorrq_u16(vmovl_u8(vget_low_u8 (ql)), vshlq_n_u16(vmovl_u8(vget_low_u8 (hbit)), 5));
 | |
|             vindex.val[1] = vorrq_u16(vmovl_u8(vget_high_u8(ql)), vshlq_n_u16(vmovl_u8(vget_high_u8(hbit)), 5));
 | |
|             const uint8x16_t scales8 = vorrq_u8(vshlq_n_u8(vandq_u8(qh, m7), 1), m1);
 | |
|             scales.val[0] = vmovl_u8(vget_low_u8 (scales8));
 | |
|             scales.val[1] = vmovl_u8(vget_high_u8 (scales8));
 | |
| 
 | |
|             for (int l = 0; l < 2; ++l) {
 | |
|                 vst1q_u16(gindex+0, vindex.val[l]);
 | |
|                 q1b.val[0] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[0])), vld1_s8((const void *)(iq1s_grid+gindex[1])));
 | |
|                 q1b.val[1] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[2])), vld1_s8((const void *)(iq1s_grid+gindex[3])));
 | |
|                 q1b.val[2] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[4])), vld1_s8((const void *)(iq1s_grid+gindex[5])));
 | |
|                 q1b.val[3] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[6])), vld1_s8((const void *)(iq1s_grid+gindex[7])));
 | |
|                 q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
 | |
| 
 | |
|                 dotq.val[0] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(vzero, q1b.val[1], q8b.val[1]));
 | |
|                 dotq.val[1] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(vzero, q1b.val[3], q8b.val[3]));
 | |
| 
 | |
|                 sumi.val[0] = vmlaq_s32(sumi.val[0], dotq.val[0], vreinterpretq_s32_u32(vmovl_u16(vget_low_u16 (scales.val[l]))));
 | |
|                 sumi.val[1] = vmlaq_s32(sumi.val[1], dotq.val[1], vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales.val[l]))));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * vaddvq_s32(vaddq_s32(sumi.val[0], sumi.val[1]));
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
|     // TODO: implement for QK_K = 64
 | |
| #elif defined __AVX2__ && QK_K == 256
 | |
| 
 | |
|     const __m128i m8 = _mm_set1_epi8(0x08);
 | |
|     const __m128i m7 = _mm_set1_epi8(0x07);
 | |
|     const __m128i m1 = _mm_set1_epi8(0x01);
 | |
|     const __m128i shuffle_h = _mm_set_epi8(15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0);
 | |
|     const __m128i shuffle_s[4] = {
 | |
|         _mm_set_epi32(0x03030303, 0x02020202, 0x01010101, 0x00000000),
 | |
|         _mm_set_epi32(0x07070707, 0x06060606, 0x05050505, 0x04040404),
 | |
|         _mm_set_epi32(0x0b0b0b0b, 0x0a0a0a0a, 0x09090909, 0x08080808),
 | |
|         _mm_set_epi32(0x0f0f0f0f, 0x0e0e0e0e, 0x0d0d0d0d, 0x0c0c0c0c)
 | |
|     };
 | |
| 
 | |
|     uint64_t aux64;
 | |
| 
 | |
|     typedef union m256i_uint16 {
 | |
|         __m256i reg;
 | |
|         uint16_t s[16];
 | |
|     } m256i_uint16_t;
 | |
| 
 | |
|     m256i_uint16_t v_gindex;
 | |
| 
 | |
|     __m256 accum = _mm256_setzero_ps();
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const int8_t  * q8 = y[i].qs;
 | |
|         const uint8_t * qs = x[i].qs;
 | |
|         const uint8_t * sc = x[i].scales;
 | |
| 
 | |
|         __m256i sumi = _mm256_setzero_si256();
 | |
|         for (int i128 = 0; i128 < QK_K/128; ++i128) {
 | |
|             const __m128i ql = _mm_loadu_si128((const __m128i*)qs); qs += 16;
 | |
|             memcpy(&aux64, sc, 8); sc += 8;
 | |
|             const __m128i qh = _mm_shuffle_epi8(_mm_set_epi64x(aux64 >> 4, aux64), shuffle_h);
 | |
|             const __m256i hbit = _mm256_cvtepu8_epi16(_mm_and_si128(qh, m8));
 | |
|             v_gindex.reg = _mm256_or_si256(_mm256_cvtepu8_epi16(ql), _mm256_slli_epi16(hbit, 5));
 | |
|             const __m128i scales = _mm_or_si128(_mm_slli_epi16(_mm_and_si128(qh, m7), 1), m1);
 | |
| 
 | |
|             for (int i32 = 0; i32 < 4; ++i32) {
 | |
|                 const __m256i q8b = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
 | |
|                 const __m256i q1b = _mm256_set_epi64x(iq1s_grid[v_gindex.s[4*i32+3]], iq1s_grid[v_gindex.s[4*i32+2]],
 | |
|                                                       iq1s_grid[v_gindex.s[4*i32+1]], iq1s_grid[v_gindex.s[4*i32+0]]);
 | |
|                 const __m256i dot = mul_add_epi8(q1b, q8b);
 | |
|                 const __m256i s16 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, shuffle_s[i32]));
 | |
|                 const __m256i p   = _mm256_madd_epi16(s16, dot);
 | |
|                 sumi = _mm256_add_epi32(sumi, p);
 | |
|             }
 | |
| 
 | |
|         }
 | |
| 
 | |
|         accum = _mm256_fmadd_ps(_mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d)), _mm256_cvtepi32_ps(sumi), accum);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(accum);
 | |
| 
 | |
| #else
 | |
| 
 | |
|     int db[4];
 | |
|     uint16_t idx[4];
 | |
| 
 | |
|     float sumf = 0;
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
| 
 | |
|         const int8_t  * q8 = y[i].qs;
 | |
|         const uint8_t * qs = x[i].qs;
 | |
|         const uint8_t * sc = x[i].scales;
 | |
| 
 | |
|         int sumi = 0;
 | |
|         for (int i32 = 0; i32 < QK_K/32; ++i32) {
 | |
|             idx[0] = qs[0] | ((sc[0] & 0x08) << 5);
 | |
|             idx[1] = qs[1] | ((sc[0] & 0x80) << 1);
 | |
|             idx[2] = qs[2] | ((sc[1] & 0x08) << 5);
 | |
|             idx[3] = qs[3] | ((sc[1] & 0x80) << 1);
 | |
|             db[0] = (2*(sc[0] & 7) + 1);
 | |
|             db[1] = (2*((sc[0] >> 4) & 7) + 1);
 | |
|             db[2] = (2*(sc[1] & 7) + 1);
 | |
|             db[3] = (2*((sc[1] >> 4) & 7) + 1);
 | |
|             for (int l = 0; l < 4; ++l) {
 | |
|                 const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
 | |
|                 int suml = 0;
 | |
|                 for (int j = 0; j < 8; ++j) suml += q8[j] * grid[j];
 | |
|                 sumi += db[l] * suml;
 | |
|                 q8 += 8;
 | |
|             }
 | |
|             qs += 4;
 | |
|             sc += 2;
 | |
|         }
 | |
| 
 | |
|         sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * sumi;
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
|     assert(n % QK4_NL == 0);
 | |
|     static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
 | |
| 
 | |
|     const block_iq4_nl * restrict x = vx;
 | |
|     const block_q8_0   * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK4_NL;
 | |
| 
 | |
| #if defined __ARM_NEON
 | |
|     const int8x16_t values = vld1q_s8(kvalues_iq4nl);
 | |
|     const uint8x16_t m4b = vdupq_n_u8(0x0f);
 | |
|     uint8x16x2_t q4bits;
 | |
|     int8x16x4_t q4b;
 | |
|     int8x16x4_t q8b;
 | |
|     int32x4_t prod_1, prod_2;
 | |
| 
 | |
|     float sumf = 0;
 | |
| 
 | |
|     for (int ib = 0; ib < nb; ib += 2) {
 | |
| 
 | |
|         q4bits.val[0] = vld1q_u8(x[ib+0].qs);
 | |
|         q4bits.val[1] = vld1q_u8(x[ib+1].qs);
 | |
|         q8b.val[0]    = vld1q_s8(y[ib+0].qs);
 | |
|         q8b.val[1]    = vld1q_s8(y[ib+0].qs + 16);
 | |
|         q8b.val[2]    = vld1q_s8(y[ib+1].qs);
 | |
|         q8b.val[3]    = vld1q_s8(y[ib+1].qs + 16);
 | |
| 
 | |
|         q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8  (q4bits.val[0], m4b));
 | |
|         q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
 | |
|         q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8  (q4bits.val[1], m4b));
 | |
|         q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
 | |
| 
 | |
|         prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
 | |
|         prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
 | |
| 
 | |
|         sumf +=
 | |
|             GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) +
 | |
|             GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2);
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #elif defined __AVX2__
 | |
| 
 | |
|     const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
 | |
|     const __m128i m4b  = _mm_set1_epi8(0x0f);
 | |
|     const __m256i mone = _mm256_set1_epi16(1);
 | |
| 
 | |
|     __m256 accum1 = _mm256_setzero_ps();
 | |
|     __m256 accum2 = _mm256_setzero_ps();
 | |
|     for (int ib = 0; ib < nb; ib += 2) {
 | |
|         const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs);
 | |
|         const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs);
 | |
|         const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs);
 | |
|         const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs);
 | |
|         const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
 | |
|                                               _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
 | |
|         const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
 | |
|                                               _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
 | |
|         const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
 | |
|         const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
 | |
|         const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
 | |
|         const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
 | |
|         accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
 | |
|                 _mm256_cvtepi32_ps(p_1), accum1);
 | |
|         accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
 | |
|                 _mm256_cvtepi32_ps(p_2), accum2);
 | |
| 
 | |
|         y += 2;
 | |
|         x += 2;
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(_mm256_add_ps(accum1, accum2));
 | |
| 
 | |
| #else
 | |
|     float sumf = 0;
 | |
|     for (int ib = 0; ib < nb; ++ib) {
 | |
|         const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
 | |
|         int sumi1 = 0, sumi2 = 0;
 | |
|         for (int j = 0; j < QK4_NL/2; ++j) {
 | |
|             sumi1 += y[ib].qs[j+       0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
 | |
|             sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >>  4];
 | |
|         }
 | |
|         sumf += d * (sumi1 + sumi2);
 | |
|     }
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
 | |
|     assert(nrc == 1);
 | |
|     UNUSED(nrc);
 | |
|     UNUSED(bx);
 | |
|     UNUSED(by);
 | |
|     UNUSED(bs);
 | |
|     assert(n % QK_K == 0);
 | |
| #if QK_K == 64
 | |
|     ggml_vec_dot_iq4_nl_q8_0(n, s, bs, vx, bx, vy, by, nrc);
 | |
| #else
 | |
| 
 | |
|     const block_iq4_xs * restrict x = vx;
 | |
|     const block_q8_K   * restrict y = vy;
 | |
| 
 | |
|     const int nb = n / QK_K;
 | |
| 
 | |
| #if defined __ARM_NEON
 | |
|     const int8x16_t values = vld1q_s8(kvalues_iq4nl);
 | |
|     const uint8x16_t m4b = vdupq_n_u8(0x0f);
 | |
|     ggml_uint8x16x2_t q4bits;
 | |
|     ggml_int8x16x4_t q4b;
 | |
|     ggml_int8x16x4_t q8b;
 | |
|     int32x4_t prod_1, prod_2;
 | |
| 
 | |
|     float sumf = 0;
 | |
| 
 | |
|     for (int ibl = 0; ibl < nb; ++ibl) {
 | |
| 
 | |
|         const int8_t  * q8 = y[ibl].qs;
 | |
|         const uint8_t * q4 = x[ibl].qs;
 | |
|         uint16_t h = x[ibl].scales_h;
 | |
| 
 | |
|         int sumi1 = 0, sumi2 = 0;
 | |
|         for (int ib = 0; ib < QK_K/64; ++ib) {
 | |
| 
 | |
|             q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
 | |
|             q8b    = ggml_vld1q_s8_x4(q8); q8 += 64;
 | |
| 
 | |
|             q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8  (q4bits.val[0], m4b));
 | |
|             q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
 | |
|             q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8  (q4bits.val[1], m4b));
 | |
|             q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
 | |
| 
 | |
|             prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
 | |
|             prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
 | |
| 
 | |
|             int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32;
 | |
|             int ls2 = ((x[ibl].scales_l[ib] >>  4) | ((h << 2) & 0x30)) - 32;
 | |
|             h >>= 4;
 | |
|             sumi1 += vaddvq_s32(prod_1) * ls1;
 | |
|             sumi2 += vaddvq_s32(prod_2) * ls2;
 | |
| 
 | |
|         }
 | |
| 
 | |
|         sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| 
 | |
| #elif defined __AVX2__
 | |
| 
 | |
|     const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
 | |
|     const __m128i m4b  = _mm_set1_epi8(0x0f);
 | |
| 
 | |
|     __m256 accum = _mm256_setzero_ps();
 | |
|     for (int ibl = 0; ibl < nb; ++ibl) {
 | |
|         const uint8_t * qs = x[ibl].qs;
 | |
|         const int8_t  * q8 = y[ibl].qs;
 | |
|         uint16_t sh = x[ibl].scales_h;
 | |
|         __m256i sumi1 = _mm256_setzero_si256();
 | |
|         __m256i sumi2 = _mm256_setzero_si256();
 | |
|         for (int ib = 0; ib < QK_K/32; ib += 2) {
 | |
|             const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs);  qs += 16;
 | |
|             const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs);  qs += 16;
 | |
|             const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
 | |
|             const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
 | |
|             const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
 | |
|                                                   _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
 | |
|             const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
 | |
|                                                   _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
 | |
|             const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
 | |
|             const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
 | |
|             const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
 | |
|             const int16_t ls2 = ((x[ibl].scales_l[ib/2] >>  4) | ((sh << 2) & 0x30)) - 32;
 | |
|             sh >>= 4;
 | |
|             const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1));
 | |
|             const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2));
 | |
|             sumi1 = _mm256_add_epi32(p_1, sumi1);
 | |
|             sumi2 = _mm256_add_epi32(p_2, sumi2);
 | |
|         }
 | |
|         accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
 | |
|                 _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(accum);
 | |
| 
 | |
| #else
 | |
|     float sumf = 0;
 | |
|     for (int ibl = 0; ibl < nb; ++ibl) {
 | |
|         const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
 | |
|         uint16_t h = x[ibl].scales_h;
 | |
|         const uint8_t * qs = x[ibl].qs;
 | |
|         const int8_t  * q8 = y[ibl].qs;
 | |
|         for (int ib = 0; ib < QK_K/32; ib += 2) {
 | |
|             const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
 | |
|             const uint8_t ls2 = (x[ibl].scales_l[ib/2] >>  4) | ((h << 2) & 0x30);
 | |
|             h >>= 4;
 | |
|             const float d1 = d4d8*(ls1 - 32);
 | |
|             const float d2 = d4d8*(ls2 - 32);
 | |
|             int sumi1 = 0, sumi2 = 0;
 | |
|             for (int j = 0; j < 16; ++j) {
 | |
|                 sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
 | |
|                 sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >>  4];
 | |
|             }
 | |
|             sumf += d1 * (sumi1 + sumi2);
 | |
|             qs += 16;
 | |
|             q8 += 32;
 | |
|             sumi1 = sumi2 = 0;
 | |
|             for (int j = 0; j < 16; ++j) {
 | |
|                 sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
 | |
|                 sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >>  4];
 | |
|             }
 | |
|             sumf += d2 * (sumi1 + sumi2);
 | |
|             qs += 16;
 | |
|             q8 += 32;
 | |
|         }
 | |
|     }
 | |
|     *s = sumf;
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // ================================ IQ2 quantization =============================================
 | |
| 
 | |
| typedef struct {
 | |
|     uint64_t * grid;
 | |
|     int      * map;
 | |
|     uint16_t * neighbours;
 | |
| } iq2_entry_t;
 | |
| 
 | |
| static iq2_entry_t iq2_data[4] = {
 | |
|     {NULL, NULL, NULL},
 | |
|     {NULL, NULL, NULL},
 | |
|     {NULL, NULL, NULL},
 | |
|     {NULL, NULL, NULL},
 | |
| };
 | |
| 
 | |
| static inline int iq2_data_index(enum ggml_type type) {
 | |
|     GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
 | |
|     return type == GGML_TYPE_IQ2_XXS ? 0 :
 | |
|            type == GGML_TYPE_IQ2_XS  ? 1 :
 | |
|            type == GGML_TYPE_IQ1_S   ? 2 : 3;
 | |
| }
 | |
| 
 | |
| static inline int iq2_grid_size(enum ggml_type type) {
 | |
|     GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
 | |
|     return type == GGML_TYPE_IQ2_XXS ? 256 :
 | |
|            type == GGML_TYPE_IQ2_XS  ? 512 :
 | |
|            type == GGML_TYPE_IQ1_S   ? 512 : 1024;
 | |
| }
 | |
| 
 | |
| static int iq2_compare_func(const void * left, const void * right) {
 | |
|     const int * l = (const int *)left;
 | |
|     const int * r = (const int *)right;
 | |
|     return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
 | |
| }
 | |
| 
 | |
| void iq2xs_init_impl(enum ggml_type type) {
 | |
|     const int gindex = iq2_data_index(type);
 | |
|     const int grid_size = iq2_grid_size(type);
 | |
|     if (iq2_data[gindex].grid) {
 | |
|         return;
 | |
|     }
 | |
|     static const uint16_t kgrid_2bit_256[256] = {
 | |
|             0,     2,     5,     8,    10,    17,    20,    32,    34,    40,    42,    65,    68,    80,    88,    97,
 | |
|           100,   128,   130,   138,   162,   257,   260,   272,   277,   320,   388,   408,   512,   514,   546,   642,
 | |
|          1025,  1028,  1040,  1057,  1060,  1088,  1090,  1096,  1120,  1153,  1156,  1168,  1188,  1280,  1282,  1288,
 | |
|          1312,  1350,  1385,  1408,  1425,  1545,  1552,  1600,  1668,  1700,  2048,  2053,  2056,  2068,  2088,  2113,
 | |
|          2116,  2128,  2130,  2184,  2308,  2368,  2562,  2580,  4097,  4100,  4112,  4129,  4160,  4192,  4228,  4240,
 | |
|          4245,  4352,  4360,  4384,  4432,  4442,  4480,  4644,  4677,  5120,  5128,  5152,  5157,  5193,  5248,  5400,
 | |
|          5474,  5632,  5654,  6145,  6148,  6160,  6208,  6273,  6400,  6405,  6560,  6737,  8192,  8194,  8202,  8260,
 | |
|          8289,  8320,  8322,  8489,  8520,  8704,  8706,  9217,  9220,  9232,  9280,  9302,  9472,  9537,  9572,  9872,
 | |
|         10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
 | |
|         16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
 | |
|         17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
 | |
|         20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
 | |
|         22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
 | |
|         25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
 | |
|         33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
 | |
|         37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
 | |
|     };
 | |
|     static const uint16_t kgrid_2bit_512[512] = {
 | |
|             0,     2,     5,     8,    10,    17,    20,    22,    25,    32,    34,    37,    40,    65,    68,    70,
 | |
|            73,    80,    82,    85,    88,    97,   100,   128,   130,   133,   136,   145,   148,   153,   160,   257,
 | |
|           260,   262,   265,   272,   274,   277,   280,   282,   289,   292,   320,   322,   325,   328,   337,   340,
 | |
|           352,   360,   385,   388,   400,   512,   514,   517,   520,   529,   532,   544,   577,   580,   592,   597,
 | |
|           640,   650,  1025,  1028,  1030,  1033,  1040,  1042,  1045,  1048,  1057,  1060,  1088,  1090,  1093,  1096,
 | |
|          1105,  1108,  1110,  1120,  1153,  1156,  1168,  1280,  1282,  1285,  1288,  1297,  1300,  1312,  1345,  1348,
 | |
|          1360,  1377,  1408,  1537,  1540,  1552,  1574,  1600,  1602,  1668,  2048,  2050,  2053,  2056,  2058,  2065,
 | |
|          2068,  2080,  2085,  2113,  2116,  2128,  2136,  2176,  2208,  2218,  2305,  2308,  2320,  2368,  2433,  2441,
 | |
|          2560,  2592,  2600,  2710,  2720,  4097,  4100,  4102,  4105,  4112,  4114,  4117,  4120,  4129,  4132,  4160,
 | |
|          4162,  4165,  4168,  4177,  4180,  4192,  4202,  4225,  4228,  4240,  4352,  4354,  4357,  4360,  4369,  4372,
 | |
|          4384,  4417,  4420,  4432,  4480,  4500,  4502,  4609,  4612,  4614,  4624,  4672,  4704,  5120,  5122,  5125,
 | |
|          5128,  5137,  5140,  5152,  5185,  5188,  5193,  5200,  5220,  5248,  5377,  5380,  5392,  5440,  5632,  5652,
 | |
|          5705,  6145,  6148,  6160,  6162,  6208,  6228,  6278,  6400,  6405,  6502,  6737,  6825,  8192,  8194,  8197,
 | |
|          8200,  8202,  8209,  8212,  8224,  8257,  8260,  8272,  8320,  8352,  8449,  8452,  8464,  8512,  8520,  8549,
 | |
|          8704,  8738,  8832,  8872,  9217,  9220,  9232,  9257,  9280,  9472,  9537,  9554,  9625,  9729,  9754,  9894,
 | |
|         10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
 | |
|         16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
 | |
|         16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
 | |
|         16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
 | |
|         17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
 | |
|         18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
 | |
|         20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
 | |
|         21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
 | |
|         22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
 | |
|         24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
 | |
|         32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
 | |
|         33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
 | |
|         33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
 | |
|         35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
 | |
|         37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
 | |
|         40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
 | |
|         42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
 | |
|     };
 | |
|     static const uint16_t kgrid_1bit_512[512] = {
 | |
|            10,    33,    41,    85,   132,   134,   160,   162,   277,   337,   340,   345,   357,   405,   516,   545,
 | |
|           553,   598,   641,   650,   681,  1042,  1044,  1097,  1169,  1176,  1320,  1345,  1365,  1378,  1434,  1444,
 | |
|          1545,  1617,  1642,  1685,  2053,  2080,  2089,  2133,  2176,  2182,  2208,  2214,  2306,  2384,  2393,  2440,
 | |
|          2453,  2581,  2664,  2690,  2721,  4117,  4161,  4182,  4184,  4261,  4357,  4369,  4372,  4377,  4390,  4422,
 | |
|          4432,  4437,  4449,  4457,  4485,  4497,  4505,  4629,  4677,  4696,  4774,  5205,  5217,  5225,  5386,  5397,
 | |
|          5409,  5445,  5457,  5460,  5461,  5462,  5465,  5472,  5477,  5525,  5545,  5650,  5668,  5717,  5729,  5769,
 | |
|          5777,  6212,  6234,  6244,  6293,  6424,  6482,  6485,  6502,  6505,  6529,  6538,  6565,  6656,  6682,  6788,
 | |
|          6806,  6820,  8218,  8224,  8226,  8232,  8277,  8326,  8354,  8469,  8521,  8530,  8549,  8596,  8737,  8794,
 | |
|          9221,  9253,  9348,  9369,  9380,  9474,  9557,  9633,  9732,  9753,  9793,  9830,  9862,  9880, 10240, 10272,
 | |
|         10282, 10321, 10406, 10517, 10530, 10566, 10585, 10645, 10896, 16466, 16468, 16473, 16485, 16646, 16660, 16665,
 | |
|         16725, 16793, 16806, 16914, 16969, 16977, 16996, 17028, 17057, 17408, 17416, 17434, 17493, 17512, 17578, 17685,
 | |
|         17696, 17733, 17745, 17748, 17749, 17750, 17753, 17765, 17794, 17813, 17946, 17984, 18005, 18072, 18453, 18529,
 | |
|         18569, 18722, 18756, 18762, 18773, 18794, 18833, 18853, 18945, 19026, 19033, 19077, 20489, 20497, 20500, 20517,
 | |
|         20565, 20586, 20610, 20633, 20757, 20769, 20776, 20805, 20817, 20820, 20821, 20822, 20825, 20837, 20864, 20872,
 | |
|         20885, 20896, 21002, 21029, 21077, 21146, 21510, 21525, 21573, 21585, 21588, 21589, 21590, 21593, 21605, 21653,
 | |
|         21665, 21765, 21777, 21780, 21781, 21782, 21785, 21797, 21825, 21828, 21829, 21830, 21833, 21840, 21841, 21842,
 | |
|         21844, 21846, 21848, 21849, 21850, 21857, 21860, 21861, 21862, 21865, 21893, 21905, 21908, 21909, 21910, 21913,
 | |
|         21925, 22024, 22037, 22085, 22097, 22100, 22101, 22102, 22105, 22117, 22165, 22545, 22566, 22568, 22594, 22608,
 | |
|         22613, 22676, 22697, 22793, 22805, 22853, 22865, 22868, 22869, 22870, 22873, 22885, 22933, 22946, 23046, 23072,
 | |
|         23125, 23209, 24597, 24640, 24665, 24673, 24725, 24833, 24840, 24869, 24917, 24934, 24965, 25001, 25108, 25110,
 | |
|         25152, 25184, 25192, 25234, 25616, 25618, 25625, 25685, 25704, 25738, 25744, 25770, 25877, 25897, 25925, 25937,
 | |
|         25940, 25941, 25942, 25945, 25957, 25986, 26005, 26186, 26197, 26276, 26632, 26634, 26725, 26757, 26770, 26885,
 | |
|         26965, 26976, 26986, 27032, 27153, 27174, 27200, 27208, 27240, 27269, 27282, 27290, 32778, 32800, 32802, 32808,
 | |
|         32810, 32853, 32904, 32922, 32930, 32932, 33105, 33110, 33112, 33125, 33157, 33280, 33288, 33301, 33312, 33320,
 | |
|         33424, 33797, 33829, 33858, 34068, 34133, 34146, 34176, 34217, 34306, 34342, 34441, 34454, 34468, 34832, 34918,
 | |
|         34965, 34984, 35094, 35137, 35161, 35208, 35232, 35332, 35338, 35368, 35429, 36932, 36934, 36953, 37009, 37125,
 | |
|         37136, 37138, 37145, 37157, 37205, 37220, 37258, 37290, 37444, 37446, 37465, 37478, 37525, 37905, 37968, 37973,
 | |
|         38040, 38054, 38145, 38154, 38165, 38180, 38186, 38213, 38225, 38228, 38229, 38230, 38233, 38245, 38293, 38485,
 | |
|         38504, 38530, 38938, 38985, 38993, 39012, 39040, 39173, 39192, 39253, 39265, 39301, 39316, 39322, 39442, 39497,
 | |
|         39504, 39590, 40970, 40984, 40992, 41002, 41045, 41120, 41128, 41237, 41289, 41297, 41317, 41364, 41366, 41514,
 | |
|         41557, 41633, 41989, 42021, 42056, 42068, 42074, 42113, 42242, 42265, 42274, 42325, 42340, 42402, 42501, 42512,
 | |
|         42533, 42624, 42632, 42666, 43040, 43093, 43106, 43168, 43176, 43264, 43286, 43345, 43429, 43590, 43618, 43680,
 | |
|     };
 | |
|     static const uint16_t kgrid_2bit_1024[1024] = {
 | |
|             0,     2,     5,     8,    10,    17,    20,    22,    25,    32,    34,    37,    40,    65,    68,    70,
 | |
|            73,    80,    82,    85,    88,    97,   100,   102,   105,   128,   130,   133,   136,   145,   148,   160,
 | |
|           165,   170,   257,   260,   262,   265,   272,   274,   277,   280,   289,   292,   320,   322,   325,   328,
 | |
|           337,   340,   342,   345,   352,   357,   360,   385,   388,   400,   402,   405,   417,   420,   512,   514,
 | |
|           517,   520,   529,   532,   544,   554,   577,   580,   582,   585,   592,   597,   640,   645,   650,   660,
 | |
|           674,  1025,  1028,  1030,  1033,  1040,  1042,  1045,  1048,  1057,  1060,  1062,  1065,  1088,  1090,  1093,
 | |
|          1096,  1098,  1105,  1108,  1110,  1113,  1120,  1122,  1125,  1153,  1156,  1158,  1161,  1168,  1173,  1176,
 | |
|          1185,  1188,  1280,  1282,  1285,  1288,  1290,  1297,  1300,  1302,  1305,  1312,  1317,  1320,  1345,  1348,
 | |
|          1350,  1353,  1360,  1362,  1365,  1368,  1377,  1380,  1408,  1410,  1413,  1416,  1425,  1428,  1440,  1537,
 | |
|          1540,  1542,  1545,  1552,  1557,  1600,  1605,  1608,  1617,  1620,  1632,  1665,  1668,  1680,  2048,  2050,
 | |
|          2053,  2056,  2065,  2068,  2070,  2073,  2080,  2085,  2090,  2113,  2116,  2118,  2121,  2128,  2130,  2133,
 | |
|          2136,  2145,  2148,  2176,  2181,  2196,  2218,  2305,  2308,  2320,  2322,  2325,  2328,  2337,  2368,  2373,
 | |
|          2376,  2385,  2388,  2400,  2433,  2448,  2560,  2577,  2580,  2594,  2600,  2602,  2640,  2713,  4097,  4100,
 | |
|          4102,  4105,  4112,  4114,  4117,  4120,  4129,  4132,  4134,  4160,  4162,  4165,  4168,  4177,  4180,  4182,
 | |
|          4185,  4192,  4194,  4197,  4200,  4225,  4228,  4230,  4240,  4245,  4248,  4257,  4260,  4352,  4354,  4357,
 | |
|          4360,  4362,  4369,  4372,  4374,  4377,  4384,  4386,  4389,  4392,  4417,  4420,  4422,  4425,  4432,  4434,
 | |
|          4437,  4440,  4449,  4452,  4480,  4482,  4485,  4488,  4497,  4500,  4609,  4612,  4617,  4624,  4629,  4641,
 | |
|          4644,  4672,  4677,  4689,  4692,  4737,  4740,  4752,  5120,  5122,  5125,  5128,  5137,  5140,  5142,  5145,
 | |
|          5152,  5157,  5160,  5185,  5188,  5190,  5193,  5200,  5202,  5205,  5208,  5217,  5220,  5248,  5250,  5253,
 | |
|          5256,  5265,  5268,  5280,  5377,  5380,  5382,  5385,  5392,  5394,  5397,  5400,  5409,  5412,  5440,  5442,
 | |
|          5445,  5448,  5457,  5460,  5472,  5505,  5508,  5520,  5632,  5637,  5640,  5649,  5652,  5664,  5697,  5700,
 | |
|          5712,  5760,  5802,  6145,  6148,  6150,  6153,  6160,  6165,  6168,  6177,  6208,  6210,  6213,  6216,  6225,
 | |
|          6228,  6240,  6273,  6276,  6400,  6402,  6405,  6408,  6417,  6420,  6432,  6465,  6468,  6480,  6505,  6562,
 | |
|          6660,  6672,  6720,  6742,  8192,  8194,  8197,  8200,  8209,  8212,  8214,  8217,  8224,  8229,  8234,  8257,
 | |
|          8260,  8272,  8274,  8277,  8292,  8320,  8330,  8340,  8362,  8449,  8452,  8464,  8466,  8469,  8481,  8512,
 | |
|          8514,  8517,  8529,  8532,  8544,  8577,  8580,  8592,  8704,  8714,  8738,  8744,  8746,  8772,  8784,  8840,
 | |
|          8842,  8872,  9217,  9220,  9222,  9225,  9232,  9237,  9240,  9249,  9252,  9280,  9282,  9285,  9288,  9297,
 | |
|          9300,  9312,  9345,  9348,  9360,  9472,  9477,  9480,  9489,  9492,  9504,  9537,  9540,  9552,  9574,  9600,
 | |
|          9729,  9732,  9744,  9792,  9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500,
 | |
|         10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410,
 | |
|         16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513,
 | |
|         16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674,
 | |
|         16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785,
 | |
|         16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025,
 | |
|         17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476,
 | |
|         17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665,
 | |
|         17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760,
 | |
|         17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085,
 | |
|         18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528,
 | |
|         18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948,
 | |
|         18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548,
 | |
|         20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740,
 | |
|         20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865,
 | |
|         20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510,
 | |
|         21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636,
 | |
|         21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054,
 | |
|         22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800,
 | |
|         22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645,
 | |
|         24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912,
 | |
|         24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680,
 | |
|         25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880,
 | |
|         26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850,
 | |
|         32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060,
 | |
|         33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345,
 | |
|         33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873,
 | |
|         33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176,
 | |
|         34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076,
 | |
|         35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928,
 | |
|         36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200,
 | |
|         37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968,
 | |
|         38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976,
 | |
|         39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130,
 | |
|         41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121,
 | |
|         42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690,
 | |
|     };
 | |
| 
 | |
|     const int kmap_size = 43692;
 | |
|     //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
 | |
|     const int nwant = type == GGML_TYPE_IQ1_S ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
 | |
|     const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
 | |
|                              type == GGML_TYPE_IQ2_XS  ? kgrid_2bit_512 :
 | |
|                              type == GGML_TYPE_IQ1_S   ? kgrid_1bit_512 : kgrid_2bit_1024;
 | |
|     uint64_t * kgrid_q2xs;
 | |
|     int      * kmap_q2xs;
 | |
|     uint16_t * kneighbors_q2xs;
 | |
| 
 | |
|     //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
 | |
|     uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
 | |
|     for (int k = 0; k < grid_size; ++k) {
 | |
|         int8_t * pos = (int8_t *)(the_grid + k);
 | |
|         for (int i = 0; i < 8; ++i) {
 | |
|             int l = (kgrid[k] >> 2*i) & 0x3;
 | |
|             pos[i] = 2*l + 1;
 | |
|         }
 | |
|     }
 | |
|     kgrid_q2xs = the_grid;
 | |
|     iq2_data[gindex].grid = the_grid;
 | |
|     kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
 | |
|     iq2_data[gindex].map = kmap_q2xs;
 | |
|     for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
 | |
|     uint64_t aux64;
 | |
|     uint8_t * aux8 = (uint8_t *)&aux64;
 | |
|     for (int i = 0; i < grid_size; ++i) {
 | |
|         aux64 = kgrid_q2xs[i];
 | |
|         uint16_t index = 0;
 | |
|         for (int k=0; k<8; ++k) {
 | |
|             uint16_t q = (aux8[k] - 1)/2;
 | |
|             index |= (q << 2*k);
 | |
|         }
 | |
|         kmap_q2xs[index] = i;
 | |
|     }
 | |
|     int8_t pos[8];
 | |
|     int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
 | |
|     int num_neighbors = 0, num_not_in_map = 0;
 | |
|     for (int i = 0; i < kmap_size; ++i) {
 | |
|         if (kmap_q2xs[i] >= 0) continue;
 | |
|         ++num_not_in_map;
 | |
|         for (int k = 0; k < 8; ++k) {
 | |
|             int l = (i >> 2*k) & 0x3;
 | |
|             pos[k] = 2*l + 1;
 | |
|         }
 | |
|         for (int j = 0; j < grid_size; ++j) {
 | |
|             const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
 | |
|             int d2 = 0;
 | |
|             for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
 | |
|             dist2[2*j+0] = d2;
 | |
|             dist2[2*j+1] = j;
 | |
|         }
 | |
|         qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
 | |
|         int n = 0; int d2 = dist2[0];
 | |
|         int nhave = 1;
 | |
|         for (int j = 0; j < grid_size; ++j) {
 | |
|             if (dist2[2*j] > d2) {
 | |
|                 if (nhave == nwant) break;
 | |
|                 d2 = dist2[2*j];
 | |
|                 ++nhave;
 | |
|             }
 | |
|             ++n;
 | |
|         }
 | |
|         num_neighbors += n;
 | |
|     }
 | |
|     //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
 | |
|     kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
 | |
|     iq2_data[gindex].neighbours = kneighbors_q2xs;
 | |
|     int counter = 0;
 | |
|     for (int i = 0; i < kmap_size; ++i) {
 | |
|         if (kmap_q2xs[i] >= 0) continue;
 | |
|         for (int k = 0; k < 8; ++k) {
 | |
|             int l = (i >> 2*k) & 0x3;
 | |
|             pos[k] = 2*l + 1;
 | |
|         }
 | |
|         for (int j = 0; j < grid_size; ++j) {
 | |
|             const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
 | |
|             int d2 = 0;
 | |
|             for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
 | |
|             dist2[2*j+0] = d2;
 | |
|             dist2[2*j+1] = j;
 | |
|         }
 | |
|         qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
 | |
|         kmap_q2xs[i] = -(counter + 1);
 | |
|         int d2 = dist2[0];
 | |
|         uint16_t * start = &kneighbors_q2xs[counter++];
 | |
|         int n = 0, nhave = 1;
 | |
|         for (int j = 0; j < grid_size; ++j) {
 | |
|             if (dist2[2*j] > d2) {
 | |
|                 if (nhave == nwant) break;
 | |
|                 d2 = dist2[2*j];
 | |
|                 ++nhave;
 | |
|             }
 | |
|             kneighbors_q2xs[counter++] = dist2[2*j+1];
 | |
|             ++n;
 | |
|         }
 | |
|         *start = n;
 | |
|     }
 | |
|     free(dist2);
 | |
| }
 | |
| 
 | |
| void iq2xs_free_impl(enum ggml_type type) {
 | |
|     GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
 | |
|     const int gindex = iq2_data_index(type);
 | |
|     if (iq2_data[gindex].grid) {
 | |
|         free(iq2_data[gindex].grid);       iq2_data[gindex].grid = NULL;
 | |
|         free(iq2_data[gindex].map);        iq2_data[gindex].map  = NULL;
 | |
|         free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
 | |
|         const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
 | |
|     int num_neighbors = neighbours[0];
 | |
|     GGML_ASSERT(num_neighbors > 0);
 | |
|     float best_d2 = FLT_MAX;
 | |
|     int grid_index = -1;
 | |
|     for (int j = 1; j <= num_neighbors; ++j) {
 | |
|         const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
 | |
|         float d2 = 0;
 | |
|         for (int i = 0; i < 8; ++i) {
 | |
|             float q = pg[i];
 | |
|             float diff = scale*q - xval[i];
 | |
|             d2 += weight[i]*diff*diff;
 | |
|         }
 | |
|         if (d2 < best_d2) {
 | |
|             best_d2 = d2; grid_index = neighbours[j];
 | |
|         }
 | |
|     }
 | |
|     GGML_ASSERT(grid_index >= 0);
 | |
|     const int8_t * pg = (const int8_t *)(grid + grid_index);
 | |
|     for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
 | |
|     return grid_index;
 | |
| }
 | |
| 
 | |
| static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
 | |
| 
 | |
|     const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
 | |
| 
 | |
|     const uint64_t * kgrid_q2xs      = iq2_data[gindex].grid;
 | |
|     const int      * kmap_q2xs       = iq2_data[gindex].map;
 | |
|     const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
 | |
| 
 | |
|     GGML_ASSERT(quant_weights   && "missing quantization weights");
 | |
|     GGML_ASSERT(kgrid_q2xs      && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(kmap_q2xs       && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(n%QK_K == 0);
 | |
| 
 | |
|     const int kMaxQ = 3;
 | |
| 
 | |
|     const int nbl = n/QK_K;
 | |
| 
 | |
|     block_iq2_xxs * y = vy;
 | |
| 
 | |
|     float scales[QK_K/32];
 | |
|     float weight[32];
 | |
|     float xval[32];
 | |
|     int8_t L[32];
 | |
|     int8_t Laux[32];
 | |
|     float  waux[32];
 | |
|     uint8_t block_signs[4];
 | |
|     uint32_t q2[2*(QK_K/32)];
 | |
| 
 | |
|     for (int ibl = 0; ibl < nbl; ++ibl) {
 | |
| 
 | |
|         y[ibl].d = GGML_FP32_TO_FP16(0.f);
 | |
|         memset(q2, 0, QK_K/4);
 | |
| 
 | |
|         float max_scale = 0;
 | |
| 
 | |
|         const float * xbl = x + QK_K*ibl;
 | |
|         float sumx2 = 0;
 | |
|         for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
 | |
|         float sigma2 = sumx2/QK_K;
 | |
| 
 | |
|         for (int ib = 0; ib < QK_K/32; ++ib) {
 | |
|             const float * xb = xbl + 32*ib;
 | |
|             const float * qw = quant_weights + QK_K*ibl + 32*ib;
 | |
|             for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
 | |
|             for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
 | |
|             for (int k = 0; k < 4; ++k) {
 | |
|                 int nflip = 0;
 | |
|                 uint8_t s = 0;
 | |
|                 for (int i = 0; i < 8; ++i) {
 | |
|                     if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
 | |
|                     else {
 | |
|                         xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
 | |
|                     }
 | |
|                 }
 | |
|                 if (nflip%2) {
 | |
|                     int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
 | |
|                     for (int i = 1; i < 8; ++i) {
 | |
|                         float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
 | |
|                         if (ax < min) {
 | |
|                             min = ax; imin = i;
 | |
|                         }
 | |
|                     }
 | |
|                     xval[8*k+imin] = -xval[8*k+imin];
 | |
|                     s ^= (1 << imin);
 | |
|                 }
 | |
|                 block_signs[k] = s & 127;
 | |
|             }
 | |
|             float max = xval[0];
 | |
|             for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
 | |
|             if (!max) {
 | |
|                 scales[ib] = 0;
 | |
|                 memset(L, 0, 32);
 | |
|                 continue;
 | |
|             }
 | |
|             float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
 | |
|             float eff_max = scale*kMaxQ;
 | |
|             float best = 0;
 | |
|             for (int is = -6; is <= 6; ++is) {
 | |
|                 float id = (2*kMaxQ-1+is*0.1f)/eff_max;
 | |
|                 float this_scale = 1/id;
 | |
|                 for (int k = 0; k < 4; ++k) {
 | |
|                     for (int i = 0; i < 8; ++i) {
 | |
|                         int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
 | |
|                         Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
 | |
|                     }
 | |
|                     uint16_t u = 0;
 | |
|                     for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
 | |
|                     int grid_index = kmap_q2xs[u];
 | |
|                     if (grid_index < 0) {
 | |
|                         const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
 | |
|                         grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
 | |
|                     }
 | |
|                 }
 | |
|                 float sumqx = 0, sumq2 = 0;
 | |
|                 for (int i = 0; i < 32; ++i) {
 | |
|                     float w = weight[i];
 | |
|                     float q = 2*Laux[i] + 1;
 | |
|                     sumqx += w*xval[i]*q;
 | |
|                     sumq2 += w*q*q;
 | |
|                 }
 | |
|                 if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
 | |
|                     scale = sumqx/sumq2; best = scale*sumqx;
 | |
|                     memcpy(L, Laux, 32);
 | |
|                 }
 | |
|             }
 | |
|             if (scale > 0) {
 | |
|                 float id = 1/scale;
 | |
|                 for (int k = 0; k < 4; ++k) {
 | |
|                     uint16_t u = 0;
 | |
|                     for (int i = 0; i < 8; ++i) {
 | |
|                         int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
 | |
|                         l = MAX(0, MIN(kMaxQ-1, l));
 | |
|                         u |= (l << 2*i);
 | |
|                     }
 | |
|                     int grid_index = kmap_q2xs[u];
 | |
|                     if (grid_index < 0) {
 | |
|                         const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
 | |
|                         grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
 | |
|                     }
 | |
|                     const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
 | |
|                     for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
 | |
|                 }
 | |
|                 float sumqx = 0, sumq2 = 0;
 | |
|                 for (int i = 0; i < 32; ++i) {
 | |
|                     float w = weight[i];
 | |
|                     float q = 2*L[i] + 1;
 | |
|                     sumqx += w*xval[i]*q;
 | |
|                     sumq2 += w*q*q;
 | |
|                 }
 | |
|                 if (sumq2 > 0) scale = sumqx/sumq2;
 | |
|             }
 | |
|             if (scale < 0) {
 | |
|                 // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
 | |
|                 // and correspondingly flip quant signs.
 | |
|                 scale = -scale;
 | |
|                 for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
 | |
|             }
 | |
|             for (int k = 0; k < 4; ++k) {
 | |
|                 uint16_t u = 0;
 | |
|                 for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
 | |
|                 int grid_index = kmap_q2xs[u];
 | |
|                 if (grid_index < 0) {
 | |
|                     printf("Oops: found point %u not on grid:", u);
 | |
|                     for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
 | |
|                     printf("\n");
 | |
|                     GGML_ASSERT(false);
 | |
|                 }
 | |
|                 q2[2*ib+0] |= (grid_index << 8*k);
 | |
|                 q2[2*ib+1] |= (block_signs[k] << 7*k);
 | |
|             }
 | |
|             GGML_ASSERT(scale >= 0);
 | |
|             scales[ib] = scale;
 | |
|             max_scale = MAX(max_scale, scale);
 | |
|         }
 | |
| 
 | |
|         if (!max_scale) {
 | |
|             memset(y[ibl].qs, 0, QK_K/4);
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         float d = max_scale/31;
 | |
|         y[ibl].d = GGML_FP32_TO_FP16(d);
 | |
|         float id = 1/d;
 | |
|         for (int ib = 0; ib < QK_K/32; ++ib) {
 | |
|             int l = nearest_int(0.5f*(id*scales[ib]-1));
 | |
|             l = MAX(0, MIN(15, l));
 | |
|             q2[2*ib+1] |= ((uint32_t)l << 28);
 | |
|         }
 | |
|         memcpy(y[ibl].qs, q2, QK_K/4);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
 | |
| 
 | |
|     const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
 | |
| 
 | |
|     const uint64_t * kgrid_q2xs      = iq2_data[gindex].grid;
 | |
|     const int      * kmap_q2xs       = iq2_data[gindex].map;
 | |
|     const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
 | |
| 
 | |
|     GGML_ASSERT(quant_weights   && "missing quantization weights");
 | |
|     GGML_ASSERT(kmap_q2xs       && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(kgrid_q2xs      && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(n%QK_K == 0);
 | |
| 
 | |
|     const int kMaxQ = 3;
 | |
| 
 | |
|     const int nbl = n/QK_K;
 | |
| 
 | |
|     block_iq2_xs * y = vy;
 | |
| 
 | |
|     float scales[QK_K/16];
 | |
|     float weight[16];
 | |
|     float xval[16];
 | |
|     int8_t L[16];
 | |
|     int8_t Laux[16];
 | |
|     float  waux[16];
 | |
|     bool   is_on_grid[2];
 | |
|     bool   is_on_grid_aux[2];
 | |
|     uint8_t block_signs[2];
 | |
|     uint16_t q2[2*(QK_K/16)];
 | |
| 
 | |
|     for (int ibl = 0; ibl < nbl; ++ibl) {
 | |
| 
 | |
|         y[ibl].d = GGML_FP32_TO_FP16(0.f);
 | |
|         memset(q2, 0, QK_K/4);
 | |
|         memset(y[ibl].scales, 0, QK_K/32);
 | |
| 
 | |
|         float max_scale = 0;
 | |
| 
 | |
|         const float * xbl = x + QK_K*ibl;
 | |
|         float sumx2 = 0;
 | |
|         for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
 | |
|         float sigma2 = sumx2/QK_K;
 | |
| 
 | |
|         for (int ib = 0; ib < QK_K/16; ++ib) {
 | |
|             const float * xb = xbl + 16*ib;
 | |
|             const float * qw = quant_weights + QK_K*ibl + 16*ib;
 | |
|             for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
 | |
|             for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
 | |
|             for (int k = 0; k < 2; ++k) {
 | |
|                 int nflip = 0;
 | |
|                 uint8_t s = 0;
 | |
|                 for (int i = 0; i < 8; ++i) {
 | |
|                     if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
 | |
|                     else {
 | |
|                         xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
 | |
|                     }
 | |
|                 }
 | |
|                 if (nflip%2) {
 | |
|                     int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
 | |
|                     for (int i = 1; i < 8; ++i) {
 | |
|                         float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
 | |
|                         if (ax < min) {
 | |
|                             min = ax; imin = i;
 | |
|                         }
 | |
|                     }
 | |
|                     xval[8*k+imin] = -xval[8*k+imin];
 | |
|                     s ^= (1 << imin);
 | |
|                 }
 | |
|                 block_signs[k] = s & 127;
 | |
|             }
 | |
|             float max = xval[0];
 | |
|             for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
 | |
|             if (!max) {
 | |
|                 scales[ib] = 0;
 | |
|                 memset(L, 0, 16);
 | |
|                 continue;
 | |
|             }
 | |
|             float best = 0;
 | |
|             float scale = max/(2*kMaxQ-1);
 | |
|             is_on_grid[0] = is_on_grid[1] = true;
 | |
|             for (int is = -9; is <= 9; ++is) {
 | |
|                 float id = (2*kMaxQ-1+is*0.1f)/max;
 | |
|                 float this_scale = 1/id;
 | |
|                 for (int k = 0; k < 2; ++k) {
 | |
|                     for (int i = 0; i < 8; ++i) {
 | |
|                         int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
 | |
|                         Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
 | |
|                     }
 | |
|                     uint16_t u = 0;
 | |
|                     for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
 | |
|                     int grid_index = kmap_q2xs[u];
 | |
|                     is_on_grid_aux[k] = true;
 | |
|                     if (grid_index < 0) {
 | |
|                         is_on_grid_aux[k] = false;
 | |
|                         const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
 | |
|                         grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
 | |
|                     }
 | |
|                 }
 | |
|                 float sumqx = 0, sumq2 = 0;
 | |
|                 for (int i = 0; i < 16; ++i) {
 | |
|                     float w = weight[i];
 | |
|                     float q = 2*Laux[i] + 1;
 | |
|                     sumqx += w*xval[i]*q;
 | |
|                     sumq2 += w*q*q;
 | |
|                 }
 | |
|                 if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
 | |
|                     scale = sumqx/sumq2; best = scale*sumqx;
 | |
|                     for (int i = 0; i < 16; ++i) L[i] = Laux[i];
 | |
|                     for (int k = 0; k <  2; ++k) is_on_grid[k] = is_on_grid_aux[k];
 | |
|                 }
 | |
|             }
 | |
|             int n_not_ongrid = 0;
 | |
|             for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
 | |
|             if (n_not_ongrid > 0 && scale > 0) {
 | |
|                 float id = 1/scale;
 | |
|                 for (int k = 0; k < 2; ++k) {
 | |
|                     if (is_on_grid[k]) continue;
 | |
|                     uint16_t u = 0;
 | |
|                     for (int i = 0; i < 8; ++i) {
 | |
|                         int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
 | |
|                         l = MAX(0, MIN(kMaxQ-1, l));
 | |
|                         u |= (l << 2*i);
 | |
|                         L[8*k + i] = l;
 | |
|                     }
 | |
|                     int grid_index = kmap_q2xs[u];
 | |
|                     if (grid_index < 0) {
 | |
|                         const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
 | |
|                         grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
 | |
|                     }
 | |
|                 }
 | |
|                 float sumqx = 0, sumq2 = 0;
 | |
|                 for (int i = 0; i < 16; ++i) {
 | |
|                     float w = weight[i];
 | |
|                     float q = 2*L[i] + 1;
 | |
|                     sumqx += w*xval[i]*q;
 | |
|                     sumq2 += w*q*q;
 | |
|                 }
 | |
|                 if (sumq2 > 0) scale = sumqx/sumq2;
 | |
|             }
 | |
|             if (scale < 0) {
 | |
|                 scale = -scale;
 | |
|                 for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
 | |
|             }
 | |
|             for (int k = 0; k < 2; ++k) {
 | |
|                 uint16_t u = 0;
 | |
|                 for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
 | |
|                 int grid_index = kmap_q2xs[u];
 | |
|                 if (grid_index < 0) {
 | |
|                     printf("Oops: found point %u not on grid:", u);
 | |
|                     for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
 | |
|                     printf("\n");
 | |
|                     GGML_ASSERT(false);
 | |
|                 }
 | |
|                 q2[2*ib+k] = grid_index | (block_signs[k] << 9);
 | |
|             }
 | |
|             GGML_ASSERT(scale >= 0);
 | |
|             scales[ib] = scale;
 | |
|             max_scale = MAX(max_scale, scale);
 | |
|         }
 | |
| 
 | |
|         if (!max_scale) {
 | |
|             memset(y[ibl].qs, 0, QK_K/4);
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         float d = max_scale/31;
 | |
|         y[ibl].d = GGML_FP32_TO_FP16(d);
 | |
|         float id = 1/d;
 | |
|         for (int ib = 0; ib < QK_K/16; ++ib) {
 | |
|             int l = nearest_int(0.5f*(id*scales[ib]-1));
 | |
|             l = MAX(0, MIN(15, l));
 | |
|             if (ib%2 == 0) y[ibl].scales[ib/2] = l;
 | |
|             else y[ibl].scales[ib/2] |= (l << 4);
 | |
|         }
 | |
|         memcpy(y[ibl].qs, q2, QK_K/4);
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t quantize_iq2_xxs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     GGML_ASSERT(n_per_row%QK_K == 0);
 | |
|     int nblock = n_per_row/QK_K;
 | |
|     char * qrow = (char *)dst;
 | |
|     for (int row = 0; row < nrow; ++row) {
 | |
|         quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
 | |
|         src += n_per_row;
 | |
|         qrow += nblock*sizeof(block_iq2_xxs);
 | |
|     }
 | |
|     return nrow * nblock * sizeof(block_iq2_xxs);
 | |
| }
 | |
| 
 | |
| size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     GGML_ASSERT(n_per_row%QK_K == 0);
 | |
|     int nblock = n_per_row/QK_K;
 | |
|     char * qrow = (char *)dst;
 | |
|     for (int row = 0; row < nrow; ++row) {
 | |
|         quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
 | |
|         src += n_per_row;
 | |
|         qrow += nblock*sizeof(block_iq2_xs);
 | |
|     }
 | |
|     return nrow * nblock * sizeof(block_iq2_xs);
 | |
| }
 | |
| 
 | |
| //
 | |
| // ============================================= 3-bit using D4 lattice
 | |
| //
 | |
| 
 | |
| typedef struct {
 | |
|     uint32_t * grid;
 | |
|     int      * map;
 | |
|     uint16_t * neighbours;
 | |
| } iq3_entry_t;
 | |
| 
 | |
| static iq3_entry_t iq3_data[2] = {
 | |
|     {NULL, NULL, NULL},
 | |
|     {NULL, NULL, NULL},
 | |
| };
 | |
| 
 | |
| static inline int iq3_data_index(int grid_size) {
 | |
|     (void)grid_size;
 | |
|     GGML_ASSERT(grid_size == 256 || grid_size == 512);
 | |
|     return grid_size == 256 ? 0 : 1;
 | |
| }
 | |
| 
 | |
| static int iq3_compare_func(const void * left, const void * right) {
 | |
|     const int * l = (const int *)left;
 | |
|     const int * r = (const int *)right;
 | |
|     return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
 | |
| }
 | |
| 
 | |
| void iq3xs_init_impl(int grid_size) {
 | |
|     const int gindex = iq3_data_index(grid_size);
 | |
|     if (iq3_data[gindex].grid) {
 | |
|         return;
 | |
|     }
 | |
|     static const uint16_t kgrid_256[256] = {
 | |
|             0,     2,     4,     9,    11,    15,    16,    18,    25,    34,    59,    61,    65,    67,    72,    74,
 | |
|            81,    85,    88,    90,    97,   108,   120,   128,   130,   132,   137,   144,   146,   153,   155,   159,
 | |
|           169,   175,   189,   193,   199,   200,   202,   213,   248,   267,   287,   292,   303,   315,   317,   321,
 | |
|           327,   346,   362,   413,   436,   456,   460,   462,   483,   497,   513,   515,   520,   522,   529,   531,
 | |
|           536,   538,   540,   551,   552,   576,   578,   585,   592,   594,   641,   643,   648,   650,   657,   664,
 | |
|           698,   704,   706,   720,   729,   742,   758,   769,   773,   808,   848,   852,   870,   889,   901,   978,
 | |
|           992,  1024,  1026,  1033,  1035,  1040,  1042,  1046,  1049,  1058,  1089,  1091,  1093,  1096,  1098,  1105,
 | |
|          1112,  1139,  1143,  1144,  1152,  1154,  1161,  1167,  1168,  1170,  1183,  1184,  1197,  1217,  1224,  1228,
 | |
|          1272,  1276,  1309,  1323,  1347,  1367,  1377,  1404,  1473,  1475,  1486,  1509,  1537,  1544,  1546,  1553,
 | |
|          1555,  1576,  1589,  1594,  1600,  1602,  1616,  1625,  1636,  1638,  1665,  1667,  1672,  1685,  1706,  1722,
 | |
|          1737,  1755,  1816,  1831,  1850,  1856,  1862,  1874,  1901,  1932,  1950,  1971,  2011,  2032,  2052,  2063,
 | |
|          2077,  2079,  2091,  2095,  2172,  2192,  2207,  2208,  2224,  2230,  2247,  2277,  2308,  2345,  2356,  2389,
 | |
|          2403,  2424,  2501,  2504,  2506,  2520,  2570,  2593,  2616,  2624,  2630,  2646,  2669,  2700,  2714,  2746,
 | |
|          2754,  2795,  2824,  2835,  2839,  2874,  2882,  2905,  2984,  3028,  3042,  3092,  3108,  3110,  3124,  3153,
 | |
|          3185,  3215,  3252,  3288,  3294,  3364,  3397,  3434,  3483,  3523,  3537,  3587,  3589,  3591,  3592,  3610,
 | |
|          3626,  3670,  3680,  3722,  3749,  3754,  3776,  3789,  3803,  3824,  3857,  3873,  3904,  3906,  3924,  3992,
 | |
|     };
 | |
|     static const uint16_t kgrid_512[512] = {
 | |
|             0,     1,     2,     5,     7,     8,     9,    10,    12,    14,    16,    17,    21,    27,    32,    34,
 | |
|            37,    39,    41,    43,    48,    50,    57,    60,    63,    64,    65,    66,    68,    72,    73,    77,
 | |
|            80,    83,    87,    89,    93,   100,   113,   117,   122,   128,   129,   133,   135,   136,   139,   142,
 | |
|           145,   149,   152,   156,   162,   165,   167,   169,   171,   184,   187,   195,   201,   205,   208,   210,
 | |
|           217,   219,   222,   228,   232,   234,   247,   249,   253,   256,   267,   271,   273,   276,   282,   288,
 | |
|           291,   297,   312,   322,   324,   336,   338,   342,   347,   353,   357,   359,   374,   379,   390,   393,
 | |
|           395,   409,   426,   441,   448,   450,   452,   464,   466,   470,   475,   488,   492,   512,   513,   514,
 | |
|           516,   520,   521,   523,   525,   527,   528,   530,   537,   540,   542,   556,   558,   561,   570,   576,
 | |
|           577,   579,   582,   584,   588,   593,   600,   603,   609,   616,   618,   632,   638,   640,   650,   653,
 | |
|           655,   656,   660,   666,   672,   675,   685,   688,   698,   705,   708,   711,   712,   715,   721,   727,
 | |
|           728,   732,   737,   754,   760,   771,   773,   778,   780,   793,   795,   802,   806,   808,   812,   833,
 | |
|           840,   843,   849,   856,   858,   873,   912,   916,   919,   932,   934,   961,   963,   968,   970,   977,
 | |
|           989,   993,  1010,  1016,  1024,  1025,  1027,  1029,  1031,  1032,  1034,  1036,  1038,  1041,  1043,  1047,
 | |
|          1048,  1050,  1057,  1059,  1061,  1064,  1066,  1079,  1080,  1083,  1085,  1088,  1090,  1096,  1099,  1103,
 | |
|          1106,  1109,  1113,  1116,  1122,  1129,  1153,  1156,  1159,  1169,  1171,  1176,  1183,  1185,  1195,  1199,
 | |
|          1209,  1212,  1216,  1218,  1221,  1225,  1234,  1236,  1241,  1243,  1250,  1256,  1270,  1281,  1287,  1296,
 | |
|          1299,  1306,  1309,  1313,  1338,  1341,  1348,  1353,  1362,  1375,  1376,  1387,  1400,  1408,  1410,  1415,
 | |
|          1425,  1453,  1457,  1477,  1481,  1494,  1496,  1507,  1512,  1538,  1545,  1547,  1549,  1551,  1554,  1561,
 | |
|          1563,  1565,  1570,  1572,  1575,  1577,  1587,  1593,  1601,  1603,  1605,  1612,  1617,  1619,  1632,  1648,
 | |
|          1658,  1662,  1664,  1674,  1680,  1690,  1692,  1704,  1729,  1736,  1740,  1745,  1747,  1751,  1752,  1761,
 | |
|          1763,  1767,  1773,  1787,  1795,  1801,  1806,  1810,  1817,  1834,  1840,  1844,  1857,  1864,  1866,  1877,
 | |
|          1882,  1892,  1902,  1915,  1934,  1953,  1985,  1987,  2000,  2002,  2013,  2048,  2052,  2058,  2064,  2068,
 | |
|          2071,  2074,  2081,  2088,  2104,  2114,  2119,  2121,  2123,  2130,  2136,  2141,  2147,  2153,  2157,  2177,
 | |
|          2179,  2184,  2189,  2193,  2203,  2208,  2223,  2226,  2232,  2244,  2249,  2251,  2256,  2258,  2265,  2269,
 | |
|          2304,  2306,  2324,  2335,  2336,  2361,  2373,  2375,  2385,  2418,  2443,  2460,  2480,  2504,  2509,  2520,
 | |
|          2531,  2537,  2562,  2568,  2572,  2578,  2592,  2596,  2599,  2602,  2614,  2620,  2625,  2627,  2629,  2634,
 | |
|          2641,  2650,  2682,  2688,  2697,  2707,  2712,  2718,  2731,  2754,  2759,  2760,  2775,  2788,  2793,  2805,
 | |
|          2811,  2817,  2820,  2832,  2842,  2854,  2890,  2902,  2921,  2923,  2978,  3010,  3012,  3026,  3081,  3083,
 | |
|          3085,  3097,  3099,  3120,  3136,  3152,  3159,  3188,  3210,  3228,  3234,  3245,  3250,  3256,  3264,  3276,
 | |
|          3281,  3296,  3349,  3363,  3378,  3392,  3395,  3420,  3440,  3461,  3488,  3529,  3531,  3584,  3588,  3591,
 | |
|          3600,  3602,  3614,  3616,  3628,  3634,  3650,  3657,  3668,  3683,  3685,  3713,  3716,  3720,  3726,  3729,
 | |
|          3736,  3753,  3778,  3802,  3805,  3819,  3841,  3845,  3851,  3856,  3880,  3922,  3938,  3970,  3993,  4032,
 | |
|     };
 | |
| 
 | |
|     const int kmap_size = 4096;
 | |
|     const int nwant = grid_size == 256 ? 2 : 3;
 | |
|     const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
 | |
|     uint32_t * kgrid_q3xs;
 | |
|     int      * kmap_q3xs;
 | |
|     uint16_t * kneighbors_q3xs;
 | |
| 
 | |
|     //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
 | |
|     uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
 | |
|     for (int k = 0; k < grid_size; ++k) {
 | |
|         int8_t * pos = (int8_t *)(the_grid + k);
 | |
|         for (int i = 0; i < 4; ++i) {
 | |
|             int l = (kgrid[k] >> 3*i) & 0x7;
 | |
|             pos[i] = 2*l + 1;
 | |
|         }
 | |
|     }
 | |
|     kgrid_q3xs = the_grid;
 | |
|     iq3_data[gindex].grid = the_grid;
 | |
|     kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
 | |
|     iq3_data[gindex].map = kmap_q3xs;
 | |
|     for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
 | |
|     uint32_t aux32;
 | |
|     uint8_t * aux8 = (uint8_t *)&aux32;
 | |
|     for (int i = 0; i < grid_size; ++i) {
 | |
|         aux32 = kgrid_q3xs[i];
 | |
|         uint16_t index = 0;
 | |
|         for (int k=0; k<4; ++k) {
 | |
|             uint16_t q = (aux8[k] - 1)/2;
 | |
|             index |= (q << 3*k);
 | |
|         }
 | |
|         kmap_q3xs[index] = i;
 | |
|     }
 | |
|     int8_t pos[4];
 | |
|     int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
 | |
|     int num_neighbors = 0, num_not_in_map = 0;
 | |
|     for (int i = 0; i < kmap_size; ++i) {
 | |
|         if (kmap_q3xs[i] >= 0) continue;
 | |
|         ++num_not_in_map;
 | |
|         for (int k = 0; k < 4; ++k) {
 | |
|             int l = (i >> 3*k) & 0x7;
 | |
|             pos[k] = 2*l + 1;
 | |
|         }
 | |
|         for (int j = 0; j < grid_size; ++j) {
 | |
|             const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
 | |
|             int d2 = 0;
 | |
|             for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
 | |
|             dist2[2*j+0] = d2;
 | |
|             dist2[2*j+1] = j;
 | |
|         }
 | |
|         qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
 | |
|         int n = 0; int d2 = dist2[0];
 | |
|         int nhave = 1;
 | |
|         for (int j = 0; j < grid_size; ++j) {
 | |
|             if (dist2[2*j] > d2) {
 | |
|                 if (nhave == nwant) break;
 | |
|                 d2 = dist2[2*j];
 | |
|                 ++nhave;
 | |
|             }
 | |
|             ++n;
 | |
|         }
 | |
|         num_neighbors += n;
 | |
|     }
 | |
|     //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
 | |
|     kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
 | |
|     iq3_data[gindex].neighbours = kneighbors_q3xs;
 | |
|     int counter = 0;
 | |
|     for (int i = 0; i < kmap_size; ++i) {
 | |
|         if (kmap_q3xs[i] >= 0) continue;
 | |
|         for (int k = 0; k < 4; ++k) {
 | |
|             int l = (i >> 3*k) & 0x7;
 | |
|             pos[k] = 2*l + 1;
 | |
|         }
 | |
|         for (int j = 0; j < grid_size; ++j) {
 | |
|             const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
 | |
|             int d2 = 0;
 | |
|             for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
 | |
|             dist2[2*j+0] = d2;
 | |
|             dist2[2*j+1] = j;
 | |
|         }
 | |
|         qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
 | |
|         kmap_q3xs[i] = -(counter + 1);
 | |
|         int d2 = dist2[0];
 | |
|         uint16_t * start = &kneighbors_q3xs[counter++];
 | |
|         int n = 0, nhave = 1;
 | |
|         for (int j = 0; j < grid_size; ++j) {
 | |
|             if (dist2[2*j] > d2) {
 | |
|                 if (nhave == nwant) break;
 | |
|                 d2 = dist2[2*j];
 | |
|                 ++nhave;
 | |
|             }
 | |
|             kneighbors_q3xs[counter++] = dist2[2*j+1];
 | |
|             ++n;
 | |
|         }
 | |
|         *start = n;
 | |
|     }
 | |
|     free(dist2);
 | |
| }
 | |
| 
 | |
| void iq3xs_free_impl(int grid_size) {
 | |
|     GGML_ASSERT(grid_size == 256 || grid_size == 512);
 | |
|     const int gindex = iq3_data_index(grid_size);
 | |
|     if (iq3_data[gindex].grid) {
 | |
|         free(iq3_data[gindex].grid);       iq3_data[gindex].grid = NULL;
 | |
|         free(iq3_data[gindex].map);        iq3_data[gindex].map  = NULL;
 | |
|         free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
 | |
|         const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
 | |
|     int num_neighbors = neighbours[0];
 | |
|     GGML_ASSERT(num_neighbors > 0);
 | |
|     float best_d2 = FLT_MAX;
 | |
|     int grid_index = -1;
 | |
|     for (int j = 1; j <= num_neighbors; ++j) {
 | |
|         const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
 | |
|         float d2 = 0;
 | |
|         for (int i = 0; i < 4; ++i) {
 | |
|             float q = pg[i];
 | |
|             float diff = scale*q - xval[i];
 | |
|             d2 += weight[i]*diff*diff;
 | |
|         }
 | |
|         if (d2 < best_d2) {
 | |
|             best_d2 = d2; grid_index = neighbours[j];
 | |
|         }
 | |
|     }
 | |
|     GGML_ASSERT(grid_index >= 0);
 | |
|     const int8_t * pg = (const int8_t *)(grid + grid_index);
 | |
|     for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
 | |
|     return grid_index;
 | |
| }
 | |
| 
 | |
| static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int n,
 | |
|         const float * restrict quant_weights) {
 | |
| 
 | |
|     const int gindex = iq3_data_index(grid_size);
 | |
| 
 | |
|     const uint32_t * kgrid_q3xs      = iq3_data[gindex].grid;
 | |
|     const int      * kmap_q3xs       = iq3_data[gindex].map;
 | |
|     const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
 | |
| 
 | |
|     //GGML_ASSERT(quant_weights   && "missing quantization weights");
 | |
|     GGML_ASSERT(kgrid_q3xs      && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(kmap_q3xs       && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(n%QK_K == 0);
 | |
| 
 | |
|     const int kMaxQ = 8;
 | |
| 
 | |
|     const int nbl = n/QK_K;
 | |
| 
 | |
|     ggml_fp16_t * dh;
 | |
|     uint8_t * qs;
 | |
|     int block_size;
 | |
|     if (grid_size == 256) {
 | |
|         block_iq3_xxs * y = vy;
 | |
|         dh = &y->d;
 | |
|         qs = y->qs;
 | |
|         block_size = sizeof(block_iq3_xxs);
 | |
|     } else {
 | |
|         block_iq3_s * y = vy;
 | |
|         dh = &y->d;
 | |
|         qs = y->qs;
 | |
|         block_size = sizeof(block_iq3_s);
 | |
|     }
 | |
|     int quant_size = block_size - sizeof(ggml_fp16_t);
 | |
| 
 | |
|     float scales[QK_K/32];
 | |
|     float weight[32];
 | |
|     float xval[32];
 | |
|     int8_t L[32];
 | |
|     int8_t Laux[32];
 | |
|     float  waux[32];
 | |
|     bool   is_on_grid[8];
 | |
|     bool   is_on_grid_aux[8];
 | |
|     uint8_t block_signs[8];
 | |
|     uint8_t q3[3*(QK_K/8)+QK_K/32];
 | |
|     uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
 | |
|     uint8_t  * qh = q3 + 3*(QK_K/8);
 | |
| 
 | |
|     for (int ibl = 0; ibl < nbl; ++ibl) {
 | |
| 
 | |
|         dh[0] = GGML_FP32_TO_FP16(0.f);
 | |
|         memset(q3, 0, 3*QK_K/8+QK_K/32);
 | |
| 
 | |
|         float max_scale = 0;
 | |
| 
 | |
|         const float * xbl = x + QK_K*ibl;
 | |
|         float sumx2 = 0;
 | |
|         for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
 | |
|         float sigma2 = 2*sumx2/QK_K;
 | |
| 
 | |
|         for (int ib = 0; ib < QK_K/32; ++ib) {
 | |
|             const float * xb = xbl + 32*ib;
 | |
|             if (quant_weights) {
 | |
|                 const float * qw = quant_weights + QK_K*ibl + 32*ib;
 | |
|                 for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
 | |
|             } else {
 | |
|                 for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
 | |
|             }
 | |
|             for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
 | |
|             for (int k = 0; k < 4; ++k) {
 | |
|                 int nflip = 0;
 | |
|                 uint8_t s = 0;
 | |
|                 for (int i = 0; i < 8; ++i) {
 | |
|                     if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
 | |
|                     else {
 | |
|                         xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
 | |
|                     }
 | |
|                 }
 | |
|                 if (nflip%2) {
 | |
|                     int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
 | |
|                     for (int i = 1; i < 8; ++i) {
 | |
|                         float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
 | |
|                         if (ax < min) {
 | |
|                             min = ax; imin = i;
 | |
|                         }
 | |
|                     }
 | |
|                     xval[8*k+imin] = -xval[8*k+imin];
 | |
|                     s ^= (1 << imin);
 | |
|                 }
 | |
|                 block_signs[k] = s & 127;
 | |
|             }
 | |
|             float max = xval[0];
 | |
|             for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
 | |
|             if (!max) {
 | |
|                 scales[ib] = 0;
 | |
|                 memset(L, 0, 32);
 | |
|                 continue;
 | |
|             }
 | |
|             float best = 0;
 | |
|             float scale = max/(2*kMaxQ-1);
 | |
|             for (int is = -15; is <= 15; ++is) {
 | |
|                 float id = (2*kMaxQ-1+is*0.2f)/max;
 | |
|                 float this_scale = 1/id;
 | |
|                 for (int k = 0; k < 8; ++k) {
 | |
|                     for (int i = 0; i < 4; ++i) {
 | |
|                         int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
 | |
|                         Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
 | |
|                     }
 | |
|                     uint16_t u = 0;
 | |
|                     for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
 | |
|                     int grid_index = kmap_q3xs[u];
 | |
|                     is_on_grid_aux[k] = true;
 | |
|                     if (grid_index < 0) {
 | |
|                         is_on_grid_aux[k] = false;
 | |
|                         const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
 | |
|                         grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
 | |
|                     }
 | |
|                 }
 | |
|                 float sumqx = 0, sumq2 = 0;
 | |
|                 for (int i = 0; i < 32; ++i) {
 | |
|                     float w = weight[i];
 | |
|                     float q = 2*Laux[i] + 1;
 | |
|                     sumqx += w*xval[i]*q;
 | |
|                     sumq2 += w*q*q;
 | |
|                 }
 | |
|                 if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
 | |
|                     scale = sumqx/sumq2; best = scale*sumqx;
 | |
|                     for (int i = 0; i < 32; ++i) L[i] = Laux[i];
 | |
|                     for (int k = 0; k <  8; ++k) is_on_grid[k] = is_on_grid_aux[k];
 | |
|                 }
 | |
|             }
 | |
|             int n_not_ongrid = 0;
 | |
|             for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
 | |
|             if (n_not_ongrid > 0 && scale > 0) {
 | |
|                 float id = 1/scale;
 | |
|                 for (int k = 0; k < 8; ++k) {
 | |
|                     if (is_on_grid[k]) continue;
 | |
|                     uint16_t u = 0;
 | |
|                     for (int i = 0; i < 4; ++i) {
 | |
|                         int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
 | |
|                         l = MAX(0, MIN(kMaxQ-1, l));
 | |
|                         u |= (l << 3*i);
 | |
|                     }
 | |
|                     int grid_index = kmap_q3xs[u];
 | |
|                     if (grid_index < 0) {
 | |
|                         const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
 | |
|                         grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
 | |
|                     }
 | |
|                     const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
 | |
|                     for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
 | |
|                 }
 | |
|                 float sumqx = 0, sumq2 = 0;
 | |
|                 for (int i = 0; i < 32; ++i) {
 | |
|                     float w = weight[i];
 | |
|                     float q = 2*L[i] + 1;
 | |
|                     sumqx += w*xval[i]*q;
 | |
|                     sumq2 += w*q*q;
 | |
|                 }
 | |
|                 if (sumq2 > 0) scale = sumqx/sumq2;
 | |
|             }
 | |
|             if (scale < 0) {
 | |
|                 // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
 | |
|                 // and correspondingly flip quant signs.
 | |
|                 scale = -scale;
 | |
|                 for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
 | |
|             }
 | |
|             for (int k = 0; k < 8; ++k) {
 | |
|                 uint16_t u = 0;
 | |
|                 for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
 | |
|                 int grid_index = kmap_q3xs[u];
 | |
|                 if (grid_index < 0) {
 | |
|                     printf("Oops: found point %u not on grid:", u);
 | |
|                     for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
 | |
|                     printf("\n");
 | |
|                     GGML_ASSERT(false);
 | |
|                 }
 | |
|                 if (grid_size == 256) {
 | |
|                     q3[8*ib+k] = grid_index;
 | |
|                 } else {
 | |
|                     q3[8*ib+k] = grid_index & 255;
 | |
|                     qh[ib] |= ((grid_index >> 8) << k);
 | |
|                 }
 | |
| 
 | |
|             }
 | |
|             scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
 | |
|             GGML_ASSERT(scale >= 0);
 | |
|             scales[ib] = scale;
 | |
|             max_scale = MAX(max_scale, scale);
 | |
|         }
 | |
| 
 | |
|         if (!max_scale) {
 | |
|             memset(qs, 0, quant_size);
 | |
|             dh += block_size/sizeof(ggml_fp16_t);
 | |
|             qs += block_size;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         float d = max_scale/31;
 | |
|         dh[0] = GGML_FP32_TO_FP16(d * 1.0125f);  // small improvement via this fudge factor
 | |
|         float id = 1/d;
 | |
|         for (int ib = 0; ib < QK_K/32; ++ib) {
 | |
|             int l = nearest_int(0.5f*(id*scales[ib]-1));
 | |
|             l = MAX(0, MIN(15, l));
 | |
|             scales_and_signs[ib] |= ((uint32_t)l << 28);
 | |
|         }
 | |
|         memcpy(qs, q3, quant_size);
 | |
| 
 | |
|         dh += block_size/sizeof(ggml_fp16_t);
 | |
|         qs += block_size;
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t quantize_iq3_xxs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     GGML_ASSERT(n_per_row%QK_K == 0);
 | |
|     int nblock = n_per_row/QK_K;
 | |
|     char * qrow = (char *)dst;
 | |
|     for (int row = 0; row < nrow; ++row) {
 | |
|         quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
 | |
|         src += n_per_row;
 | |
|         qrow += nblock*sizeof(block_iq3_xxs);
 | |
|     }
 | |
|     return nrow * nblock * sizeof(block_iq3_xxs);
 | |
| }
 | |
| 
 | |
| void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     block_iq3_xxs * restrict y = vy;
 | |
|     quantize_row_iq3_xxs_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
 | |
| }
 | |
| 
 | |
| static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
 | |
|         const float * restrict quant_weights,
 | |
|         float   * scales,
 | |
|         float   * weight,
 | |
|         float   * xval,
 | |
|         int8_t  * L,
 | |
|         int8_t  * Laux,
 | |
|         float   * waux,
 | |
|         bool    * is_on_grid,
 | |
|         bool    * is_on_grid_aux,
 | |
|         uint8_t * block_signs) {
 | |
| 
 | |
|     const int gindex = iq3_data_index(512);
 | |
| 
 | |
|     const uint32_t * kgrid_q3xs      = iq3_data[gindex].grid;
 | |
|     const int      * kmap_q3xs       = iq3_data[gindex].map;
 | |
|     const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
 | |
| 
 | |
|     //GGML_ASSERT(quant_weights   && "missing quantization weights");
 | |
|     GGML_ASSERT(kgrid_q3xs      && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(kmap_q3xs       && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(n%QK_K == 0);
 | |
| 
 | |
|     const int kMaxQ = 8;
 | |
| 
 | |
|     const int nbl = n/QK_K;
 | |
| 
 | |
|     block_iq3_s * y = vy;
 | |
| 
 | |
|     const int bs4 = block_size/4;
 | |
|     const int bs8 = block_size/8;
 | |
| 
 | |
|     for (int ibl = 0; ibl < nbl; ++ibl) {
 | |
| 
 | |
|         memset(&y[ibl], 0, sizeof(block_iq3_s));
 | |
|         y[ibl].d = GGML_FP32_TO_FP16(0.f);
 | |
| 
 | |
|         uint8_t * qs = y[ibl].qs;
 | |
|         uint8_t * qh = y[ibl].qh;
 | |
|         uint8_t * signs = y[ibl].signs;
 | |
| 
 | |
|         float max_scale = 0;
 | |
| 
 | |
|         const float * xbl = x + QK_K*ibl;
 | |
|         float sumx2 = 0;
 | |
|         for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
 | |
|         float sigma2 = 2*sumx2/QK_K;
 | |
| 
 | |
|         for (int ib = 0; ib < QK_K/block_size; ++ib) {
 | |
|             const float * xb = xbl + block_size*ib;
 | |
|             if (quant_weights) {
 | |
|                 const float * qw = quant_weights + QK_K*ibl + block_size*ib;
 | |
|                 for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
 | |
|             } else {
 | |
|                 for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
 | |
|             }
 | |
|             for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
 | |
|             for (int k = 0; k < bs8; ++k) {
 | |
|                 uint8_t s = 0;
 | |
|                 for (int i = 0; i < 8; ++i) {
 | |
|                     if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
 | |
|                     else {
 | |
|                         xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
 | |
|                     }
 | |
|                 }
 | |
|                 block_signs[k] = s;
 | |
|             }
 | |
|             float max = xval[0];
 | |
|             for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
 | |
|             if (!max) {
 | |
|                 scales[ib] = 0;
 | |
|                 continue;
 | |
|             }
 | |
|             float best = 0;
 | |
|             float scale = max/(2*kMaxQ-1);
 | |
|             for (int k = 0; k < bs4; ++k) is_on_grid[k] = false;
 | |
|             for (int is = -9; is <= 9; ++is) {
 | |
|                 float id = (2*kMaxQ-1+is*0.2f)/max;
 | |
|                 float this_scale = 1/id;
 | |
|                 for (int k = 0; k < bs4; ++k) {
 | |
|                     for (int i = 0; i < 4; ++i) {
 | |
|                         int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
 | |
|                         Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
 | |
|                     }
 | |
|                     uint16_t u = 0;
 | |
|                     for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
 | |
|                     int grid_index = kmap_q3xs[u];
 | |
|                     is_on_grid_aux[k] = true;
 | |
|                     if (grid_index < 0) {
 | |
|                         is_on_grid_aux[k] = false;
 | |
|                         const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
 | |
|                         grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
 | |
|                     }
 | |
|                 }
 | |
|                 float sumqx = 0, sumq2 = 0;
 | |
|                 for (int i = 0; i < block_size; ++i) {
 | |
|                     float w = weight[i];
 | |
|                     float q = 2*Laux[i] + 1;
 | |
|                     sumqx += w*xval[i]*q;
 | |
|                     sumq2 += w*q*q;
 | |
|                 }
 | |
|                 if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
 | |
|                     scale = sumqx/sumq2; best = scale*sumqx;
 | |
|                     for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
 | |
|                     for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
 | |
|                 }
 | |
|             }
 | |
|             int n_not_ongrid = 0;
 | |
|             for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
 | |
|             if (n_not_ongrid > 0 && scale > 0) {
 | |
|                 float id = 1/scale;
 | |
|                 for (int k = 0; k < bs4; ++k) {
 | |
|                     //if (is_on_grid[k]) continue;
 | |
|                     uint16_t u = 0;
 | |
|                     for (int i = 0; i < 4; ++i) {
 | |
|                         int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
 | |
|                         l = MAX(0, MIN(kMaxQ-1, l));
 | |
|                         u |= (l << 3*i);
 | |
|                     }
 | |
|                     int grid_index = kmap_q3xs[u];
 | |
|                     if (grid_index < 0) {
 | |
|                         const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
 | |
|                         grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
 | |
|                     }
 | |
|                     const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
 | |
|                     for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
 | |
|                 }
 | |
|                 float sumqx = 0, sumq2 = 0;
 | |
|                 for (int i = 0; i < block_size; ++i) {
 | |
|                     float w = weight[i];
 | |
|                     float q = 2*L[i] + 1;
 | |
|                     sumqx += w*xval[i]*q;
 | |
|                     sumq2 += w*q*q;
 | |
|                 }
 | |
|                 if (sumq2 > 0) scale = sumqx/sumq2;
 | |
|             }
 | |
|             if (scale < 0) {
 | |
|                 // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
 | |
|                 // and correspondingly flip quant signs.
 | |
|                 scale = -scale;
 | |
|                 for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
 | |
|             }
 | |
|             for (int k = 0; k < bs4; ++k) {
 | |
|                 uint16_t u = 0;
 | |
|                 for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
 | |
|                 int grid_index = kmap_q3xs[u];
 | |
|                 if (grid_index < 0) {
 | |
|                     printf("Oops: found point %u not on grid:", u);
 | |
|                     for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
 | |
|                     printf("\n");
 | |
|                     GGML_ASSERT(false);
 | |
|                 }
 | |
|                 qs[k] = grid_index & 255;
 | |
|                 qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
 | |
|             }
 | |
|             qs += bs4;
 | |
|             for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
 | |
|             signs += bs8;
 | |
|             GGML_ASSERT(scale >= 0);
 | |
|             scales[ib] = scale;
 | |
|             max_scale = MAX(max_scale, scale);
 | |
|         }
 | |
| 
 | |
|         if (!max_scale) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         float d = max_scale/31;
 | |
|         y[ibl].d = GGML_FP32_TO_FP16(d * 1.033f);
 | |
|         float id = 1/d;
 | |
|         for (int ib = 0; ib < QK_K/block_size; ib += 2) {
 | |
|             int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
 | |
|             l1 = MAX(0, MIN(15, l1));
 | |
|             int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
 | |
|             l2 = MAX(0, MIN(15, l2));
 | |
|             y[ibl].scales[ib/2] = l1 | (l2 << 4);
 | |
|         }
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define IQ3S_BLOCK_SIZE 32
 | |
| size_t quantize_iq3_s(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     GGML_ASSERT(n_per_row%QK_K == 0);
 | |
|     int nblock = n_per_row/QK_K;
 | |
|     float scales[QK_K/IQ3S_BLOCK_SIZE];
 | |
|     float weight[IQ3S_BLOCK_SIZE];
 | |
|     float xval[IQ3S_BLOCK_SIZE];
 | |
|     int8_t L[IQ3S_BLOCK_SIZE];
 | |
|     int8_t Laux[IQ3S_BLOCK_SIZE];
 | |
|     float  waux[IQ3S_BLOCK_SIZE];
 | |
|     bool   is_on_grid[IQ3S_BLOCK_SIZE/4];
 | |
|     bool   is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
 | |
|     uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
 | |
|     char * qrow = (char *)dst;
 | |
|     for (int row = 0; row < nrow; ++row) {
 | |
|         quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
 | |
|                 scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
 | |
|         src += n_per_row;
 | |
|         qrow += nblock*sizeof(block_iq3_s);
 | |
|     }
 | |
|     return nrow * nblock * sizeof(block_iq3_s);
 | |
| }
 | |
| 
 | |
| void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     block_iq3_s * restrict y = vy;
 | |
|     quantize_row_iq3_s_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| void quantize_row_iq3_s_reference(const float * restrict x, block_iq3_s * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     quantize_iq3_s(x, y, 1, k, NULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| // =================================== 1.5 bpw ===================================================
 | |
| 
 | |
| static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
 | |
|         const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
 | |
|     int num_neighbors = neighbours[0];
 | |
|     GGML_ASSERT(num_neighbors > 0);
 | |
|     float best_score = 0;
 | |
|     int grid_index = -1;
 | |
|     for (int j = 1; j <= num_neighbors; ++j) {
 | |
|         const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
 | |
|         float sumqx = 0, sumq2 = 0;
 | |
|         for (int i = 0; i < 8; ++i) {
 | |
|             float q = (pg[i] - 3)/2;
 | |
|             float w = weight[i];
 | |
|             sumqx += w*q*xval[i];
 | |
|             sumq2 += w*q*q;
 | |
|         }
 | |
|         if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
 | |
|             *scale = sumqx/sumq2; best_score = *scale * sumqx;
 | |
|             grid_index = neighbours[j];
 | |
|         }
 | |
|     }
 | |
|     if (grid_index < 0) {
 | |
|         for (int i = 0; i < ngrid; ++i) {
 | |
|             const int8_t * grid_i = (const int8_t *)(grid + i);
 | |
|             float sumqx = 0, sumq2 = 0;
 | |
|             for (int j = 0; j < 8; ++j) {
 | |
|                 float w = weight[j];
 | |
|                 float q = (grid_i[j] - 3)/2;
 | |
|                 sumqx += w*q*xval[j];
 | |
|                 sumq2 += w*q*q;
 | |
|             }
 | |
|             if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
 | |
|                 *scale = sumqx/sumq2; best_score = *scale*sumqx;
 | |
|                 grid_index = i;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (grid_index < 0) {
 | |
|         printf("Oops, did not find grid point\n");
 | |
|         printf("Have %d neighbours\n", num_neighbors);
 | |
|         for (int j = 1; j <= num_neighbors; ++j) {
 | |
|             const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
 | |
|             float sumqx = 0, sumq2 = 0;
 | |
|             for (int i = 0; i < 8; ++i) {
 | |
|                 float q = (pg[i] - 3)/2;
 | |
|                 float w = weight[i];
 | |
|                 sumqx += w*q*xval[i];
 | |
|                 sumq2 += w*q*q;
 | |
|             }
 | |
|             printf("    neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
 | |
|         }
 | |
|     }
 | |
|     GGML_ASSERT(grid_index >= 0);
 | |
|     //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 | |
|     *scale *= 1.05f;  // This is a fudge factor. Don't ask me why it improves the result.
 | |
|     //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 | |
|     const int8_t * pg = (const int8_t *)(grid + grid_index);
 | |
|     for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
 | |
|     return grid_index;
 | |
| }
 | |
| 
 | |
| static int iq1_sort_helper(const void * left, const void * right) {
 | |
|     const float * l = left;
 | |
|     const float * r = right;
 | |
|     return *l < *r ? -1 : *l > *r ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
 | |
| 
 | |
|     const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
 | |
| 
 | |
|     const uint64_t * kgrid_q2xs      = iq2_data[gindex].grid;
 | |
|     const int      * kmap_q2xs       = iq2_data[gindex].map;
 | |
|     const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
 | |
| 
 | |
|     GGML_ASSERT(quant_weights   && "missing quantization weights");
 | |
|     GGML_ASSERT(kgrid_q2xs      && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(kmap_q2xs       && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(n%QK_K == 0);
 | |
| 
 | |
|     const int nbl = n/QK_K;
 | |
| 
 | |
|     block_iq1_s * y = vy;
 | |
| 
 | |
|     float  scales[QK_K/8];
 | |
|     float  weight[8];
 | |
|     int8_t L[8];
 | |
|     float  sumx[9];
 | |
|     float  sumw[9];
 | |
|     float  pairs[16];
 | |
|     int * idx = (int *)(pairs + 1);
 | |
|     uint8_t hbit[QK_K/8];
 | |
| 
 | |
|     for (int ibl = 0; ibl < nbl; ++ibl) {
 | |
| 
 | |
|         y[ibl].d = GGML_FP32_TO_FP16(0.f);
 | |
|         memset(y[ibl].qs, 0, QK_K/8);
 | |
|         memset(y[ibl].scales, 0, QK_K/16);
 | |
| 
 | |
|         float max_scale = 0;
 | |
| 
 | |
|         const float * xbl = x + QK_K*ibl;
 | |
|         float sumx2 = 0;
 | |
|         for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
 | |
|         float sigma2 = sumx2/QK_K;
 | |
| 
 | |
|         for (int ib = 0; ib < QK_K/8; ++ib) {
 | |
|             const float * xb = xbl + 8*ib;
 | |
|             const float * qw = quant_weights + QK_K*ibl + 8*ib;
 | |
|             for (int i = 0; i < 8; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
 | |
|             float max = fabsf(xb[0]);
 | |
|             for (int i = 1; i < 8; ++i) max = MAX(max, fabsf(xb[i]));
 | |
|             if (!max) {
 | |
|                 scales[ib] = 0;
 | |
|                 memset(L, 1, 8);
 | |
|                 continue;
 | |
|             }
 | |
|             // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
 | |
|             // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
 | |
|             // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
 | |
|             // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
 | |
|             // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
 | |
|             // for each possible and score for each split.
 | |
|             for (int j = 0; j < 8; ++j) {
 | |
|                 pairs[2*j] = xb[j];
 | |
|                 idx[2*j] = j;
 | |
|             }
 | |
|             qsort(pairs, 8, 2*sizeof(float), iq1_sort_helper);
 | |
|             {
 | |
|                 sumx[0] = sumw[0] = 0;
 | |
|                 for (int j = 0; j < 8; ++j) {
 | |
|                     int i = idx[2*j];
 | |
|                     sumx[j+1] = sumx[j] + weight[i]*xb[i];
 | |
|                     sumw[j+1] = sumw[j] + weight[i];
 | |
|                 }
 | |
|             }
 | |
|             float best_score = 0, scale = max;
 | |
|             int besti1 = 0, besti2 = 0;
 | |
|             for (int i1 = 0; i1 <= 8; ++i1) {
 | |
|                 for (int i2 = i1; i2 <= 8; ++i2) {
 | |
|                     float sumqx = -(sumx[i1] - sumx[0]) + (sumx[8] - sumx[i2]);
 | |
|                     float sumq2 =  (sumw[i1] - sumw[0]) + (sumw[8] - sumw[i2]);
 | |
|                     if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
 | |
|                         scale = sumqx/sumq2; best_score = scale*sumqx;
 | |
|                         besti1 = i1; besti2 = i2;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             for (int j =      0; j < besti1; ++j) L[idx[2*j]] = 0;
 | |
|             for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
 | |
|             for (int j = besti2; j <      8; ++j) L[idx[2*j]] = 2;
 | |
|             if (scale < 0) {
 | |
|                 for (int j = 0; j < 8; ++j) L[j] = 2 - L[j];
 | |
|                 scale = -scale;
 | |
|             }
 | |
|             // Now we check if the solution found above corresponds to a grid point and, if not, use a neighbouring
 | |
|             // grid point that minimizes SSD.
 | |
|             uint16_t u = 0;
 | |
|             for (int j = 0; j < 8; ++j) u |= (L[j] << 2*j);
 | |
|             int grid_index = kmap_q2xs[u];
 | |
|             if (grid_index < 0) {
 | |
|                 const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
 | |
|                 grid_index = iq1_find_best_neighbour(neighbours, kgrid_q2xs, xb, weight, &scale, L, NGRID_IQ2XXS);
 | |
|                 GGML_ASSERT(grid_index >= 0);
 | |
|             }
 | |
|             y[ibl].qs[ib] = grid_index & 255;
 | |
|             hbit[ib] = grid_index >> 8;
 | |
|             GGML_ASSERT(scale >= 0);
 | |
|             scales[ib] = scale;
 | |
|             max_scale = MAX(max_scale, scale);
 | |
|         }
 | |
| 
 | |
|         if (!max_scale) {
 | |
|             memset(y[ibl].qs, 0, QK_K/8);
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         float d = max_scale/15;
 | |
|         y[ibl].d = GGML_FP32_TO_FP16(d*1.085f); // 1.085f is another fudge factor. Don't ask me why it is needed.
 | |
|         float id = 1/d;
 | |
|         for (int ib = 0; ib < QK_K/8; ++ib) {
 | |
|             int l = nearest_int(0.5f*(id*scales[ib]-1));
 | |
|             l = MAX(0, MIN(7, l));
 | |
|             if (hbit[ib]) l |= 8;
 | |
|             y[ibl].scales[ib/2] |= (l << 4*(ib%2));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     GGML_ASSERT(n_per_row%QK_K == 0);
 | |
|     int nblock = n_per_row/QK_K;
 | |
|     char * qrow = (char *)dst;
 | |
|     for (int row = 0; row < nrow; ++row) {
 | |
|         quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights);
 | |
|         src += n_per_row;
 | |
|         qrow += nblock*sizeof(block_iq1_s);
 | |
|     }
 | |
|     return nrow * nblock * sizeof(block_iq1_s);
 | |
| }
 | |
| 
 | |
| // ============================ 4-bit non-linear quants
 | |
| 
 | |
| static inline int best_index_int8(int n, const int8_t * val, float x) {
 | |
|     if (x <= val[0]) return 0;
 | |
|     if (x >= val[n-1]) return n-1;
 | |
|     int ml = 0, mu = n-1;
 | |
|     while (mu-ml > 1) {
 | |
|         int mav = (ml+mu)/2;
 | |
|         if (x < val[mav]) mu = mav; else ml = mav;
 | |
|     }
 | |
|     return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
 | |
| }
 | |
| 
 | |
| static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * restrict x,
 | |
|         ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
 | |
|         float * scales, float * weight, uint8_t * L,
 | |
|         const int8_t * values,
 | |
|         const float * quant_weights) {
 | |
| 
 | |
|     const int ntry = 7;
 | |
| 
 | |
|     float sigma2 = 0;
 | |
|     for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
 | |
|     sigma2 *= 2.f/super_block_size;
 | |
| 
 | |
|     memset(q4, 0, super_block_size/2);
 | |
|     dh[0] = GGML_FP32_TO_FP16(0.f);
 | |
| 
 | |
|     float max_scale = 0, amax_scale = 0;
 | |
|     for (int ib = 0; ib < super_block_size/block_size; ++ib) {
 | |
|         const float * xb = x + ib*block_size;
 | |
|         if (quant_weights) {
 | |
|             const float * qw = quant_weights + ib*block_size;
 | |
|             for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
 | |
|         } else {
 | |
|             for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
 | |
|         }
 | |
|         float amax = 0, max = 0;
 | |
|         for (int j = 0; j < block_size; ++j) {
 | |
|             float ax = fabsf(xb[j]);
 | |
|             if (ax > amax) {
 | |
|                 amax = ax; max = xb[j];
 | |
|             }
 | |
|         }
 | |
|         if (!amax) {
 | |
|             scales[ib] = 0;
 | |
|             continue;
 | |
|         }
 | |
|         float d = -max/values[0];
 | |
|         float id = 1/d;
 | |
|         float sumqx = 0, sumq2 = 0;
 | |
|         for (int j = 0; j < block_size; ++j) {
 | |
|             float al = id*xb[j];
 | |
|             int l = best_index_int8(16, values, al);
 | |
|             float q = values[l];
 | |
|             float w = weight[j];
 | |
|             sumqx += w*q*xb[j];
 | |
|             sumq2 += w*q*q;
 | |
|         }
 | |
|         d = sumqx/sumq2;
 | |
|         float best = d*sumqx;
 | |
|         for (int itry = -ntry; itry <= ntry; ++itry) {
 | |
|             id = (itry + values[0])/max;
 | |
|             sumqx = sumq2 = 0;
 | |
|             for (int j = 0; j < block_size; ++j) {
 | |
|                 float al = id*xb[j];
 | |
|                 int l = best_index_int8(16, values, al);
 | |
|                 float q = values[l];
 | |
|                 float w = weight[j];
 | |
|                 sumqx += w*q*xb[j];
 | |
|                 sumq2 += w*q*q;
 | |
|             }
 | |
|             if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
 | |
|                 d = sumqx/sumq2; best = d * sumqx;
 | |
|             }
 | |
|         }
 | |
|         scales[ib] = d;
 | |
|         float abs_d = fabsf(d);
 | |
|         if (abs_d > amax_scale) {
 | |
|             amax_scale = abs_d; max_scale = d;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (super_block_size/block_size > 1) {
 | |
|         int nb = super_block_size/block_size;
 | |
|         memset(scales_h, 0, ((nb+7)/8)*sizeof(uint16_t));
 | |
|         float d = -max_scale/32;
 | |
|         dh[0] = GGML_FP32_TO_FP16(d);
 | |
|         float id = d ? 1/d : 0.f;
 | |
|         for (int ib = 0; ib < super_block_size/block_size; ++ib) {
 | |
|             int l = nearest_int(id*scales[ib]);
 | |
|             l = MAX(-32, MIN(31, l));
 | |
|             float dl = d * l;
 | |
|             float idl = dl ? 1/dl : 0.f;
 | |
|             uint8_t * Lb = L + ib*block_size;
 | |
|             const float * xb = x + ib*block_size;
 | |
|             for (int j = 0; j < block_size; ++j) {
 | |
|                 Lb[j] = best_index_int8(16, values, idl*xb[j]);
 | |
|             }
 | |
|             l += 32;
 | |
|             uint8_t l_l = l & 0xf;
 | |
|             uint8_t l_h = l >>  4;
 | |
|             if (ib%2 == 0) scales_l[ib/2] = l_l;
 | |
|             else scales_l[ib/2] |= (l_l << 4);
 | |
|             scales_h[ib/8] |= (l_h << 2*(ib%8));
 | |
|         }
 | |
|     } else {
 | |
|         dh[0] = GGML_FP32_TO_FP16(scales[0]);
 | |
|         float id = scales[0] ? 1/scales[0] : 0;
 | |
|         for (int j = 0; j < super_block_size; ++j) {
 | |
|             L[j] = best_index_int8(16, values, id*x[j]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < super_block_size/32; ++i) {
 | |
|         for (int j = 0; j < 16; ++j) {
 | |
|             q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     GGML_ASSERT(n_per_row%QK4_NL == 0);
 | |
|     int nblock = n_per_row/QK4_NL;
 | |
|     char * qrow = (char *)dst;
 | |
|     uint8_t L[QK4_NL];
 | |
|     float weight[QK4_NL];
 | |
|     uint16_t unused_h;
 | |
|     uint8_t * unused_l = NULL;
 | |
|     float scale;
 | |
|     for (int row = 0; row < nrow; ++row) {
 | |
|         block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
 | |
|         for (int ibl = 0; ibl < nblock; ++ibl) {
 | |
|             const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
 | |
|             quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
 | |
|                     &scale, weight, L, kvalues_iq4nl, qw);
 | |
|         }
 | |
|         src += n_per_row;
 | |
|         qrow += nblock*sizeof(block_iq4_nl);
 | |
|     }
 | |
|     return nrow * nblock * sizeof(block_iq4_nl);
 | |
| }
 | |
| 
 | |
| void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int k) {
 | |
|     assert(k % QK4_NL == 0);
 | |
|     block_iq4_nl * restrict y = vy;
 | |
|     quantize_row_iq4_nl_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int k) {
 | |
|     assert(k % QK4_NL == 0);
 | |
|     quantize_iq4_nl(x, y, 1, k, NULL);
 | |
| }
 | |
| 
 | |
| size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
| #if QK_K == 64
 | |
|     return quantize_iq4_nl(src, dst, nrow, n_per_row, quant_weights);
 | |
| #else
 | |
|     GGML_ASSERT(n_per_row%QK_K == 0);
 | |
|     int nblock = n_per_row/QK_K;
 | |
|     char * qrow = (char *)dst;
 | |
|     uint8_t L[QK_K];
 | |
|     float weight[32];
 | |
|     float scales[QK_K/32];
 | |
|     for (int row = 0; row < nrow; ++row) {
 | |
|         block_iq4_xs * iq4 = (block_iq4_xs *)qrow;
 | |
|         for (int ibl = 0; ibl < nblock; ++ibl) {
 | |
|             const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
 | |
|             quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
 | |
|                     scales, weight, L, kvalues_iq4nl, qw);
 | |
|         }
 | |
|         src += n_per_row;
 | |
|         qrow += nblock*sizeof(block_iq4_xs);
 | |
|     }
 | |
|     return nrow * nblock * sizeof(block_iq4_xs);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     block_iq4_xs * restrict y = vy;
 | |
|     quantize_row_iq4_xs_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| void quantize_row_iq4_xs_reference(const float * restrict x, block_iq4_xs * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     quantize_iq4_xs(x, y, 1, k, NULL);
 | |
| }
 | |
| 
 | |
| // =============================== 2.5625 bpw
 | |
| 
 | |
| static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
 | |
| 
 | |
|     const int gindex = iq2_data_index(GGML_TYPE_IQ2_S);
 | |
| 
 | |
|     const uint64_t * kgrid_q2xs      = iq2_data[gindex].grid;
 | |
|     const int      * kmap_q2xs       = iq2_data[gindex].map;
 | |
|     const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
 | |
| 
 | |
|     GGML_ASSERT(kmap_q2xs       && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(kgrid_q2xs      && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
 | |
|     GGML_ASSERT(n%QK_K == 0);
 | |
| 
 | |
|     const int kMaxQ = 3;
 | |
| 
 | |
|     const int nbl = n/QK_K;
 | |
| 
 | |
|     block_iq2_s * y = vy;
 | |
| 
 | |
|     float scales[QK_K/16];
 | |
|     float weight[16];
 | |
|     float xval[16];
 | |
|     int8_t L[16];
 | |
|     int8_t Laux[16];
 | |
|     float  waux[16];
 | |
|     bool   is_on_grid[2];
 | |
|     bool   is_on_grid_aux[2];
 | |
|     uint8_t block_signs[2];
 | |
| 
 | |
|     for (int ibl = 0; ibl < nbl; ++ibl) {
 | |
| 
 | |
|         memset(&y[ibl], 0, sizeof(block_iq2_s));
 | |
|         y[ibl].d = GGML_FP32_TO_FP16(0.f);
 | |
| 
 | |
|         float max_scale = 0;
 | |
| 
 | |
|         const float * xbl = x + QK_K*ibl;
 | |
|         float sumx2 = 0;
 | |
|         for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
 | |
|         float sigma2 = 2*sumx2/QK_K;
 | |
| 
 | |
|         for (int ib = 0; ib < QK_K/16; ++ib) {
 | |
|             const float * xb = xbl + 16*ib;
 | |
|             if (quant_weights) {
 | |
|                 const float * qw = quant_weights + QK_K*ibl + 16*ib;
 | |
|                 for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
 | |
|             } else {
 | |
|                 for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i];
 | |
|             }
 | |
|             for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
 | |
|             for (int k = 0; k < 2; ++k) {
 | |
|                 uint8_t s = 0;
 | |
|                 for (int i = 0; i < 8; ++i) {
 | |
|                     if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
 | |
|                     else {
 | |
|                         xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
 | |
|                     }
 | |
|                 }
 | |
|                 block_signs[k] = s;
 | |
|             }
 | |
|             float max = xval[0];
 | |
|             for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
 | |
|             if (!max) {
 | |
|                 scales[ib] = 0;
 | |
|                 continue;
 | |
|             }
 | |
|             float best = 0;
 | |
|             float scale = max/(2*kMaxQ-1);
 | |
|             is_on_grid[0] = is_on_grid[1] = true;
 | |
|             for (int is = -9; is <= 9; ++is) {
 | |
|                 float id = (2*kMaxQ-1+is*0.1f)/max;
 | |
|                 float this_scale = 1/id;
 | |
|                 for (int k = 0; k < 2; ++k) {
 | |
|                     for (int i = 0; i < 8; ++i) {
 | |
|                         int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
 | |
|                         Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
 | |
|                     }
 | |
|                     uint16_t u = 0;
 | |
|                     for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
 | |
|                     int grid_index = kmap_q2xs[u];
 | |
|                     is_on_grid_aux[k] = true;
 | |
|                     if (grid_index < 0) {
 | |
|                         is_on_grid_aux[k] = false;
 | |
|                         const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
 | |
|                         grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
 | |
|                     }
 | |
|                 }
 | |
|                 float sumqx = 0, sumq2 = 0;
 | |
|                 for (int i = 0; i < 16; ++i) {
 | |
|                     float w = weight[i];
 | |
|                     float q = 2*Laux[i] + 1;
 | |
|                     sumqx += w*xval[i]*q;
 | |
|                     sumq2 += w*q*q;
 | |
|                 }
 | |
|                 if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
 | |
|                     scale = sumqx/sumq2; best = scale*sumqx;
 | |
|                     for (int i = 0; i < 16; ++i) L[i] = Laux[i];
 | |
|                     for (int k = 0; k <  2; ++k) is_on_grid[k] = is_on_grid_aux[k];
 | |
|                 }
 | |
|             }
 | |
|             int n_not_ongrid = 0;
 | |
|             for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
 | |
|             if (n_not_ongrid > 0 && scale > 0) {
 | |
|                 float id = 1/scale;
 | |
|                 for (int k = 0; k < 2; ++k) {
 | |
|                     if (is_on_grid[k]) continue;
 | |
|                     uint16_t u = 0;
 | |
|                     for (int i = 0; i < 8; ++i) {
 | |
|                         int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
 | |
|                         l = MAX(0, MIN(kMaxQ-1, l));
 | |
|                         u |= (l << 2*i);
 | |
|                         L[8*k + i] = l;
 | |
|                     }
 | |
|                     int grid_index = kmap_q2xs[u];
 | |
|                     if (grid_index < 0) {
 | |
|                         const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
 | |
|                         grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
 | |
|                     }
 | |
|                 }
 | |
|                 float sumqx = 0, sumq2 = 0;
 | |
|                 for (int i = 0; i < 16; ++i) {
 | |
|                     float w = weight[i];
 | |
|                     float q = 2*L[i] + 1;
 | |
|                     sumqx += w*xval[i]*q;
 | |
|                     sumq2 += w*q*q;
 | |
|                 }
 | |
|                 if (sumq2 > 0) scale = sumqx/sumq2;
 | |
|             }
 | |
|             if (scale < 0) {
 | |
|                 scale = -scale;
 | |
|                 for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k];
 | |
|             }
 | |
|             for (int k = 0; k < 2; ++k) {
 | |
|                 uint16_t u = 0;
 | |
|                 for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
 | |
|                 int grid_index = kmap_q2xs[u];
 | |
|                 if (grid_index < 0) {
 | |
|                     printf("Oops: found point %u not on grid:", u);
 | |
|                     for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
 | |
|                     printf("\n");
 | |
|                     GGML_ASSERT(false);
 | |
|                 }
 | |
|                 const int i8 = 2*ib + k;
 | |
|                 y[ibl].qs[i8] = grid_index & 255;
 | |
|                 y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4));
 | |
|                 y[ibl].qs[QK_K/8 + i8] = block_signs[k];
 | |
|             }
 | |
|             GGML_ASSERT(scale >= 0);
 | |
|             scales[ib] = scale;
 | |
|             max_scale = MAX(max_scale, scale);
 | |
|         }
 | |
| 
 | |
|         if (!max_scale) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         float d = max_scale/31;
 | |
|         y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f);
 | |
|         float id = 1/d;
 | |
|         for (int ib = 0; ib < QK_K/16; ++ib) {
 | |
|             int l = nearest_int(0.5f*(id*scales[ib]-1));
 | |
|             l = MAX(0, MIN(15, l));
 | |
|             if (ib%2 == 0) y[ibl].scales[ib/2] = l;
 | |
|             else y[ibl].scales[ib/2] |= (l << 4);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t quantize_iq2_s(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
 | |
|     GGML_ASSERT(n_per_row%QK_K == 0);
 | |
|     int nblock = n_per_row/QK_K;
 | |
|     char * qrow = (char *)dst;
 | |
|     for (int row = 0; row < nrow; ++row) {
 | |
|         quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights);
 | |
|         src += n_per_row;
 | |
|         qrow += nblock*sizeof(block_iq2_s);
 | |
|     }
 | |
|     return nrow * nblock * sizeof(block_iq2_s);
 | |
| }
 | |
| 
 | |
| void quantize_row_iq2_s_reference(const float * restrict x, block_iq2_s * restrict y, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     quantize_iq2_s(x, y, 1, k, NULL);
 | |
| }
 | |
| 
 | |
| void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int k) {
 | |
|     assert(k % QK_K == 0);
 | |
|     block_iq2_s * restrict y = vy;
 | |
|     quantize_row_iq2_s_reference(x, y, k);
 | |
| }
 | 
