mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* Refactor shaders, extract GLSL code from ggml_vk_generate_shaders.py into vulkan-shaders directory * Improve debug log code * Add memory debug output option * Fix flake8 * Fix unnecessary high llama-3 VRAM use
		
			
				
	
	
		
			495 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			495 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
#version 450
 | 
						|
 | 
						|
#extension GL_EXT_control_flow_attributes : enable
 | 
						|
#extension GL_EXT_shader_16bit_storage : require
 | 
						|
 | 
						|
#ifdef FLOAT16
 | 
						|
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef MUL_MAT_ID
 | 
						|
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
 | 
						|
#endif
 | 
						|
 | 
						|
#include "types.comp"
 | 
						|
 | 
						|
#ifndef LOAD_VEC_A
 | 
						|
#define LOAD_VEC_A 1
 | 
						|
#endif
 | 
						|
#ifndef LOAD_VEC_B
 | 
						|
#define LOAD_VEC_B 1
 | 
						|
#endif
 | 
						|
 | 
						|
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
 | 
						|
 | 
						|
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
 | 
						|
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
 | 
						|
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
 | 
						|
 | 
						|
#ifdef MUL_MAT_ID
 | 
						|
layout (binding = 3) readonly buffer IDS {int data_ids[];};
 | 
						|
#endif
 | 
						|
 | 
						|
layout (push_constant) uniform parameter
 | 
						|
{
 | 
						|
    uint M;
 | 
						|
    uint N;
 | 
						|
    uint K;
 | 
						|
    uint stride_a;
 | 
						|
    uint stride_b;
 | 
						|
    uint stride_d;
 | 
						|
 | 
						|
    uint batch_stride_a;
 | 
						|
    uint batch_stride_b;
 | 
						|
    uint batch_stride_d;
 | 
						|
 | 
						|
#ifdef MUL_MAT_ID
 | 
						|
    uint nei0;
 | 
						|
    uint nei1;
 | 
						|
    uint nbi1;
 | 
						|
    uint ne11;
 | 
						|
#else
 | 
						|
    uint k_split;
 | 
						|
    uint ne02;
 | 
						|
    uint ne12;
 | 
						|
    uint broadcast2;
 | 
						|
    uint broadcast3;
 | 
						|
#endif
 | 
						|
} p;
 | 
						|
 | 
						|
layout (constant_id = 1) const uint BM = 64;
 | 
						|
layout (constant_id = 2) const uint BN = 64;
 | 
						|
layout (constant_id = 3) const uint BK = 16;  // Assumed to be 32 if working with a quant
 | 
						|
layout (constant_id = 4) const uint WM = 32;
 | 
						|
layout (constant_id = 5) const uint WN = 32;
 | 
						|
layout (constant_id = 6) const uint WMITER = 2;
 | 
						|
layout (constant_id = 7) const uint TM = 4;
 | 
						|
layout (constant_id = 8) const uint TN = 2;
 | 
						|
layout (constant_id = 9) const uint WARP = 32;
 | 
						|
 | 
						|
shared FLOAT_TYPE buf_a[BM * (BK+1)];
 | 
						|
shared FLOAT_TYPE buf_b[BN * (BK+1)];
 | 
						|
 | 
						|
#ifdef MUL_MAT_ID
 | 
						|
shared u16vec2 row_ids[2048];
 | 
						|
#endif
 | 
						|
 | 
						|
void main() {
 | 
						|
#ifdef MUL_MAT_ID
 | 
						|
    const uint expert_idx = gl_GlobalInvocationID.z;
 | 
						|
#else
 | 
						|
    const uint batch_idx = gl_GlobalInvocationID.z;
 | 
						|
 | 
						|
    const uint i13 = batch_idx / p.ne12;
 | 
						|
    const uint i12 = batch_idx % p.ne12;
 | 
						|
 | 
						|
    const uint i03 = i13 / p.broadcast3;
 | 
						|
    const uint i02 = i12 / p.broadcast2;
 | 
						|
 | 
						|
    const uint batch_idx_a = i03 * p.ne02 + i02;
 | 
						|
#endif
 | 
						|
 | 
						|
    const uint blocks_m = (p.M + BM - 1) / BM;
 | 
						|
    const uint ir = gl_WorkGroupID.x % blocks_m;
 | 
						|
    const uint ik = gl_WorkGroupID.x / blocks_m;
 | 
						|
    const uint ic = gl_WorkGroupID.y;
 | 
						|
 | 
						|
    const uint warp_i = gl_LocalInvocationID.x / WARP;
 | 
						|
    const uint warp_r = warp_i % (BM / WM);
 | 
						|
    const uint warp_c = warp_i / (BM / WM);
 | 
						|
 | 
						|
    const uint WNITER = (WM * WN) / (WARP * TM * TN * WMITER);
 | 
						|
    const uint WSUBM = WM / WMITER;
 | 
						|
    const uint WSUBN = WN / WNITER;
 | 
						|
 | 
						|
    const uint tiw = gl_LocalInvocationID.x % WARP;
 | 
						|
    const uint tiwr = tiw % (WSUBM / TM);
 | 
						|
    const uint tiwc = tiw / (WSUBM / TM);
 | 
						|
 | 
						|
    const uint loadr_a = gl_LocalInvocationID.x % (BK / LOAD_VEC_A);
 | 
						|
    const uint loadc_a = gl_LocalInvocationID.x / (BK / LOAD_VEC_A);
 | 
						|
    const uint loadr_b = gl_LocalInvocationID.x % (BK / LOAD_VEC_B);
 | 
						|
    const uint loadc_b = gl_LocalInvocationID.x / (BK / LOAD_VEC_B);
 | 
						|
 | 
						|
    const uint loadstride_a = gl_WorkGroupSize.x * LOAD_VEC_A / BK;
 | 
						|
    const uint loadstride_b = gl_WorkGroupSize.x * LOAD_VEC_B / BK;
 | 
						|
 | 
						|
#ifdef MUL_MAT_ID
 | 
						|
    uint _ne1 = 0;
 | 
						|
    for (uint ii1 = 0; ii1 < p.nei1; ii1++) {
 | 
						|
        for (uint ii0 = 0; ii0 < p.nei0; ii0++) {
 | 
						|
            if (data_ids[ii1*p.nbi1 + ii0] == expert_idx) {
 | 
						|
                row_ids[_ne1] = u16vec2(ii0, ii1);
 | 
						|
                _ne1++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    barrier();
 | 
						|
 | 
						|
    // Workgroup has no work
 | 
						|
    if (ic * BN >= _ne1) return;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef MUL_MAT_ID
 | 
						|
    const uint start_k = 0;
 | 
						|
    const uint end_k = p.K;
 | 
						|
#else
 | 
						|
    const uint start_k = ik * p.k_split;
 | 
						|
    const uint end_k = min(p.K, (ik + 1) * p.k_split);
 | 
						|
#endif
 | 
						|
 | 
						|
    uint pos_a = (
 | 
						|
#ifdef MUL_MAT_ID
 | 
						|
        expert_idx * p.batch_stride_a +
 | 
						|
#else
 | 
						|
        batch_idx_a * p.batch_stride_a +
 | 
						|
#endif
 | 
						|
        ir * BM * p.stride_a + start_k) / LOAD_VEC_A;
 | 
						|
#ifdef MUL_MAT_ID
 | 
						|
    uint pos_b = 0;
 | 
						|
#else
 | 
						|
    uint pos_b = (batch_idx * p.batch_stride_b + ic * BN * p.stride_b + start_k) / LOAD_VEC_B;
 | 
						|
#endif
 | 
						|
 | 
						|
    float sums[WMITER * TM * WNITER * TN];
 | 
						|
    FLOAT_TYPE cache_a[WMITER * TM];
 | 
						|
    FLOAT_TYPE cache_b[WNITER * TN];
 | 
						|
 | 
						|
    [[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) {
 | 
						|
        sums[i] = 0.0f;
 | 
						|
    }
 | 
						|
 | 
						|
    [[unroll]] for (uint block = start_k; block < end_k; block += BK) {
 | 
						|
        [[unroll]] for (uint l = 0; l < BM; l += loadstride_a) {
 | 
						|
 | 
						|
#if defined(DATA_A_F32) || defined(DATA_A_F16)
 | 
						|
#if LOAD_VEC_A == 8
 | 
						|
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
 | 
						|
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
 | 
						|
            buf_a[buf_idx    ] = FLOAT_TYPE(data_a[idx][0].x);
 | 
						|
            buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx][0].y);
 | 
						|
            buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx][0].z);
 | 
						|
            buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx][0].w);
 | 
						|
            buf_a[buf_idx + 4] = FLOAT_TYPE(data_a[idx][1].x);
 | 
						|
            buf_a[buf_idx + 5] = FLOAT_TYPE(data_a[idx][1].y);
 | 
						|
            buf_a[buf_idx + 6] = FLOAT_TYPE(data_a[idx][1].z);
 | 
						|
            buf_a[buf_idx + 7] = FLOAT_TYPE(data_a[idx][1].w);
 | 
						|
#elif LOAD_VEC_A == 4
 | 
						|
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
 | 
						|
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
 | 
						|
            buf_a[buf_idx    ] = FLOAT_TYPE(data_a[idx].x);
 | 
						|
            buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx].y);
 | 
						|
            buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx].z);
 | 
						|
            buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx].w);
 | 
						|
#else
 | 
						|
            if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) {
 | 
						|
                buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]);
 | 
						|
            } else {
 | 
						|
                buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(0.0f);
 | 
						|
            }
 | 
						|
#endif
 | 
						|
#elif defined(DATA_A_Q4_0)
 | 
						|
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
 | 
						|
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
 | 
						|
 | 
						|
            const uint ib = idx / 16;
 | 
						|
            const uint iqs = idx & 0xF;
 | 
						|
 | 
						|
            const float d = float(data_a[ib].d);
 | 
						|
            const uint vui = uint(data_a[ib].qs[iqs]);
 | 
						|
            const vec2 v = (vec2(vui & 0xF, vui >> 4) - 8.0f) * d;
 | 
						|
 | 
						|
            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
 | 
						|
            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
 | 
						|
#elif defined(DATA_A_Q4_1)
 | 
						|
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
 | 
						|
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
 | 
						|
 | 
						|
            const uint ib = idx / 16;
 | 
						|
            const uint iqs = idx & 0xF;
 | 
						|
 | 
						|
            const float d = float(data_a[ib].d);
 | 
						|
            const float m = float(data_a[ib].m);
 | 
						|
            const uint vui = uint(data_a[ib].qs[iqs]);
 | 
						|
            const vec2 v = vec2(vui & 0xF, vui >> 4) * d + m;
 | 
						|
 | 
						|
            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
 | 
						|
            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
 | 
						|
#elif defined(DATA_A_Q5_0)
 | 
						|
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
 | 
						|
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
 | 
						|
 | 
						|
            const uint ib = idx / 16;
 | 
						|
            const uint iqs = idx & 0xF;
 | 
						|
 | 
						|
            const float d = float(data_a[ib].d);
 | 
						|
            const uint uint_qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0];
 | 
						|
            const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
 | 
						|
            const uint vui = uint(data_a[ib].qs[iqs]);
 | 
						|
            const vec2 v = (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f) * d;
 | 
						|
 | 
						|
            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
 | 
						|
            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
 | 
						|
#elif defined(DATA_A_Q5_1)
 | 
						|
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
 | 
						|
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
 | 
						|
 | 
						|
            const uint ib = idx / 16;
 | 
						|
            const uint iqs = idx & 0xF;
 | 
						|
 | 
						|
            const float d = float(data_a[ib].d);
 | 
						|
            const float m = float(data_a[ib].m);
 | 
						|
            const uint uint_qh = data_a[ib].qh;
 | 
						|
            const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
 | 
						|
            const uint vui = uint(data_a[ib].qs[iqs]);
 | 
						|
            const vec2 v = vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) * d + m;
 | 
						|
 | 
						|
            buf_a[buf_idx     ] = FLOAT_TYPE(v.x);
 | 
						|
            buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
 | 
						|
#elif defined(DATA_A_Q8_0)
 | 
						|
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
 | 
						|
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
 | 
						|
 | 
						|
            const uint ib = idx / 16;
 | 
						|
            const uint iqs = (idx & 0xF) * 2;
 | 
						|
 | 
						|
            const float d = float(data_a[ib].d);
 | 
						|
            const vec2 v = vec2(int(data_a[ib].qs[iqs]), int(data_a[ib].qs[iqs + 1])) * d;
 | 
						|
 | 
						|
            buf_a[buf_idx    ] = FLOAT_TYPE(v.x);
 | 
						|
            buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
 | 
						|
#elif defined(DATA_A_Q2_K)
 | 
						|
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
 | 
						|
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
 | 
						|
 | 
						|
            const uint ib = idx / 128;                         // 2 values per idx
 | 
						|
            const uint iqs = idx % 128;                        // 0..127
 | 
						|
 | 
						|
            const uint qsi = (iqs / 64) * 32 + (iqs % 16) * 2; // 0,2,4..30
 | 
						|
            const uint scalesi = iqs / 8;                      // 0..15
 | 
						|
            const uint qsshift = ((iqs % 64) / 16) * 2;        // 0,2,4,6
 | 
						|
 | 
						|
            const uvec2 qs = uvec2(data_a[ib].qs[qsi], data_a[ib].qs[qsi + 1]);
 | 
						|
            const uint scales = data_a[ib].scales[scalesi];
 | 
						|
            const vec2 d = vec2(data_a[ib].d);
 | 
						|
 | 
						|
            const vec2 v = d.x * float(scales & 0xF) * vec2((qs >> qsshift) & 3) - d.y * float(scales >> 4);
 | 
						|
 | 
						|
            buf_a[buf_idx    ] = FLOAT_TYPE(v.x);
 | 
						|
            buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
 | 
						|
#elif defined(DATA_A_Q3_K)
 | 
						|
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
 | 
						|
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
 | 
						|
 | 
						|
            const uint ib = idx / 128;                   // 2 values per idx
 | 
						|
            const uint iqs = idx % 128;                  // 0..127
 | 
						|
 | 
						|
            const uint n = iqs / 64;                     // 0,1
 | 
						|
            const uint qsi = n * 32 + (iqs % 16) * 2;    // 0,2,4..62
 | 
						|
            const uint hmi =          (iqs % 16) * 2;    // 0,2,4..30
 | 
						|
            const uint j = (iqs % 64) / 4;               // 0..3
 | 
						|
            const uint is = iqs / 8;                     // 0..15
 | 
						|
            const uint halfsplit = ((iqs % 64) / 16);    // 0,1,2,3
 | 
						|
            const uint qsshift = halfsplit * 2;          // 0,2,4,6
 | 
						|
            const uint m = 1 << (4 * n + halfsplit);     // 1,2,4,8,16,32,64,128
 | 
						|
 | 
						|
            const int8_t us = int8_t(is <  4 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+8] >> 0) & 3) << 4) :
 | 
						|
                                    is <  8 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+4] >> 2) & 3) << 4) :
 | 
						|
                                    is < 12 ? (data_a[ib].scales[is-8] >>  4) | (((data_a[ib].scales[is+0] >> 4) & 3) << 4) :
 | 
						|
                                            (data_a[ib].scales[is-8] >>  4) | (((data_a[ib].scales[is-4] >> 6) & 3) << 4));
 | 
						|
            const float dl = float(data_a[ib].d) * float(us - 32);
 | 
						|
 | 
						|
            buf_a[buf_idx    ] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi    ] >> qsshift) & 3) - (((data_a[ib].hmask[hmi    ] & m) != 0) ? 0 : 4)));
 | 
						|
            buf_a[buf_idx + 1] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi + 1] >> qsshift) & 3) - (((data_a[ib].hmask[hmi + 1] & m) != 0) ? 0 : 4)));
 | 
						|
#elif defined(DATA_A_Q4_K)
 | 
						|
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
 | 
						|
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
 | 
						|
 | 
						|
            const uint ib = idx / 128;                 // 2 values per idx
 | 
						|
            const uint iqs = idx % 128;                // 0..127
 | 
						|
 | 
						|
            const uint n = iqs / 32;                   // 0,1,2,3
 | 
						|
            const uint b = (iqs % 32) / 16;            // 0,1
 | 
						|
            const uint is = 2 * n + b;                 // 0..7
 | 
						|
            const uint qsi = n * 32 + (iqs % 16) * 2;  // 0,2,4..126
 | 
						|
 | 
						|
            const vec2 loadd = vec2(data_a[ib].d);
 | 
						|
 | 
						|
            uint8_t sc;
 | 
						|
            uint8_t mbyte;
 | 
						|
            if (is < 4) {
 | 
						|
                sc    = uint8_t(data_a[ib].scales[is    ] & 63);
 | 
						|
                mbyte = uint8_t(data_a[ib].scales[is + 4] & 63);
 | 
						|
            } else {
 | 
						|
                sc    = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4));
 | 
						|
                mbyte = uint8_t((data_a[ib].scales[is + 4] >>  4) | ((data_a[ib].scales[is    ] >> 6) << 4));
 | 
						|
            }
 | 
						|
            const float d = loadd.x * sc;
 | 
						|
            const float m = loadd.y * mbyte;
 | 
						|
 | 
						|
            buf_a[buf_idx    ] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi    ] >> (b * 4)) & 0xF) - m);
 | 
						|
            buf_a[buf_idx + 1] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) - m);
 | 
						|
#elif defined(DATA_A_Q5_K)
 | 
						|
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
 | 
						|
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
 | 
						|
 | 
						|
            const uint ib = idx / 128;                 // 2 values per idx
 | 
						|
            const uint iqs = idx % 128;                // 0..127
 | 
						|
 | 
						|
            const uint n = iqs / 32;                   // 0,1,2,3
 | 
						|
            const uint b = (iqs % 32) / 16;            // 0,1
 | 
						|
            const uint is = 2 * n + b;                 // 0..7
 | 
						|
            const uint qsi = n * 32 + (iqs % 16) * 2;  // 0,2,4..126
 | 
						|
            const uint qhi = (iqs % 16) * 2;           // 0,2,4..30
 | 
						|
 | 
						|
            const uint8_t hm = uint8_t(1 << (iqs / 16));
 | 
						|
 | 
						|
            const vec2 loadd = vec2(data_a[ib].d);
 | 
						|
 | 
						|
            uint8_t sc;
 | 
						|
            uint8_t mbyte;
 | 
						|
            if (is < 4) {
 | 
						|
                sc    = uint8_t(data_a[ib].scales[is    ] & 63);
 | 
						|
                mbyte = uint8_t(data_a[ib].scales[is + 4] & 63);
 | 
						|
            } else {
 | 
						|
                sc    = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4));
 | 
						|
                mbyte = uint8_t((data_a[ib].scales[is + 4] >>  4) | ((data_a[ib].scales[is    ] >> 6) << 4));
 | 
						|
            }
 | 
						|
            const float d = loadd.x * sc;
 | 
						|
            const float m = loadd.y * mbyte;
 | 
						|
 | 
						|
            buf_a[buf_idx    ] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi    ] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi    ] & hm) != 0 ? 16 : 0)) - m);
 | 
						|
            buf_a[buf_idx + 1] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi + 1] & hm) != 0 ? 16 : 0)) - m);
 | 
						|
#elif defined(DATA_A_Q6_K)
 | 
						|
            const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
 | 
						|
            const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
 | 
						|
 | 
						|
            const uint ib = idx / 128;                  // 2 values per idx
 | 
						|
            const uint iqs = idx % 128;                 // 0..127
 | 
						|
 | 
						|
            const uint n = iqs / 64;                    // 0,1
 | 
						|
            const uint b = (iqs % 64) / 32;             // 0,1
 | 
						|
            const uint is_b = (iqs % 16) / 8;           // 0,1
 | 
						|
            const uint qhshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
 | 
						|
            const uint is = 8 * n + qhshift + is_b;     // 0..15
 | 
						|
            const uint qsi = n * 64 + (iqs % 32) * 2;   // 0,2,4..126
 | 
						|
            const uint qhi = n * 32 + (iqs % 16) * 2;   // 0,2,4..62
 | 
						|
 | 
						|
            const float dscale = float(data_a[ib].d) * float(data_a[ib].scales[is]);
 | 
						|
 | 
						|
            buf_a[buf_idx    ] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi    ] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi    ] >> qhshift) & 3) << 4)) - 32));
 | 
						|
            buf_a[buf_idx + 1] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi + 1] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi + 1] >> qhshift) & 3) << 4)) - 32));
 | 
						|
#endif
 | 
						|
        }
 | 
						|
        [[unroll]] for (uint l = 0; l < BN; l += loadstride_b) {
 | 
						|
#if LOAD_VEC_B == 8
 | 
						|
#ifdef MUL_MAT_ID
 | 
						|
            const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l];
 | 
						|
            const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b;
 | 
						|
#else
 | 
						|
            const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
 | 
						|
#endif
 | 
						|
            const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B;
 | 
						|
            buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx][0].x);
 | 
						|
            buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx][0].y);
 | 
						|
            buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx][0].z);
 | 
						|
            buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx][0].w);
 | 
						|
            buf_b[buf_idx + 4] = FLOAT_TYPE(data_b[idx][1].x);
 | 
						|
            buf_b[buf_idx + 5] = FLOAT_TYPE(data_b[idx][1].y);
 | 
						|
            buf_b[buf_idx + 6] = FLOAT_TYPE(data_b[idx][1].z);
 | 
						|
            buf_b[buf_idx + 7] = FLOAT_TYPE(data_b[idx][1].w);
 | 
						|
#elif LOAD_VEC_B == 4
 | 
						|
#ifdef MUL_MAT_ID
 | 
						|
            const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l];
 | 
						|
            const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b;
 | 
						|
#else
 | 
						|
            const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
 | 
						|
#endif
 | 
						|
            const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B;
 | 
						|
            buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx].x);
 | 
						|
            buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx].y);
 | 
						|
            buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx].z);
 | 
						|
            buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx].w);
 | 
						|
#elif !MUL_MAT_ID
 | 
						|
            if (ic * BN + loadc_b + l < p.N && block + loadr_b < end_k) {
 | 
						|
                buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]);
 | 
						|
            } else {
 | 
						|
                buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(0.0f);
 | 
						|
            }
 | 
						|
#else
 | 
						|
            const uint row_i = ic * BN + loadc_b + l;
 | 
						|
            if (row_i < _ne1) {
 | 
						|
                const u16vec2 row_idx = row_ids[row_i];
 | 
						|
                buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]);
 | 
						|
            } else {
 | 
						|
                buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(0.0f);
 | 
						|
            }
 | 
						|
#endif
 | 
						|
        }
 | 
						|
 | 
						|
        barrier();
 | 
						|
 | 
						|
        pos_a += BK / LOAD_VEC_A;
 | 
						|
        pos_b += BK / LOAD_VEC_B;
 | 
						|
 | 
						|
        for (uint i = 0; i < BK; i++) {
 | 
						|
            // Load from shared into cache
 | 
						|
            [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
 | 
						|
                [[unroll]] for (uint j = 0; j < TM; j++) {
 | 
						|
                    cache_a[wsir * TM + j] = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * (BK+1) + i];
 | 
						|
                }
 | 
						|
            }
 | 
						|
            [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
 | 
						|
                [[unroll]] for (uint j = 0; j < TN; j++) {
 | 
						|
                    cache_b[wsic * TN + j] = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + j) * (BK+1) + i];
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
 | 
						|
                [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
 | 
						|
                    [[unroll]] for (uint cc = 0; cc < TN; cc++) {
 | 
						|
                        [[unroll]] for (uint cr = 0; cr < TM; cr++) {
 | 
						|
                            sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr] += float(cache_a[wsir * TM + cr]) * float(cache_b[wsic * TN + cc]);
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        barrier();
 | 
						|
    }
 | 
						|
 | 
						|
    const uint dr = ir * BM + warp_r * WM;
 | 
						|
    const uint dc = ic * BN + warp_c * WN;
 | 
						|
 | 
						|
#ifndef MUL_MAT_ID
 | 
						|
    const uint offsets = batch_idx * p.batch_stride_d + ik * p.batch_stride_d * gl_NumWorkGroups.z;
 | 
						|
#endif
 | 
						|
 | 
						|
    [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
 | 
						|
        [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
 | 
						|
 | 
						|
            const uint dr_warp = dr + wsir * WSUBM + tiwr * TM;
 | 
						|
            const uint dc_warp = dc + wsic * WSUBN + tiwc * TN;
 | 
						|
            [[unroll]] for (uint cc = 0; cc < TN; cc++) {
 | 
						|
#ifdef MUL_MAT_ID
 | 
						|
                const uint row_i = dc_warp + cc;
 | 
						|
                if (row_i >= _ne1) break;
 | 
						|
 | 
						|
                const u16vec2 row_idx = row_ids[row_i];
 | 
						|
#endif
 | 
						|
                [[unroll]] for (uint cr = 0; cr < TM; cr++) {
 | 
						|
#ifdef MUL_MAT_ID
 | 
						|
                    data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
 | 
						|
#else
 | 
						|
                    if (dr_warp + cr < p.M && dc_warp + cc < p.N) {
 | 
						|
                        data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
 | 
						|
                    }
 | 
						|
#endif
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 |