mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			92 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			92 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| #include "build-info.h"
 | |
| 
 | |
| #include <ctime>
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (gpt_params_parse(argc, argv, params) == false) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     params.embedding = true;
 | |
| 
 | |
|     if (params.n_ctx > 2048) {
 | |
|         fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
 | |
|                 "expect poor results\n", __func__, params.n_ctx);
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
 | |
| 
 | |
|     if (params.seed < 0) {
 | |
|         params.seed = time(NULL);
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: seed  = %d\n", __func__, params.seed);
 | |
| 
 | |
|     std::mt19937 rng(params.seed);
 | |
|     if (params.random_prompt) {
 | |
|         params.prompt = gpt_random_prompt(rng);
 | |
|     }
 | |
| 
 | |
|     llama_init_backend();
 | |
| 
 | |
|     llama_context * ctx;
 | |
| 
 | |
|     // load the model
 | |
|     ctx = llama_init_from_gpt_params(params);
 | |
|     if (ctx == NULL) {
 | |
|         fprintf(stderr, "%s: error: unable to load model\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // print system information
 | |
|     {
 | |
|         fprintf(stderr, "\n");
 | |
|         fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
 | |
|                 params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
 | |
|     }
 | |
| 
 | |
|     int n_past = 0;
 | |
| 
 | |
|     // Add a space in front of the first character to match OG llama tokenizer behavior
 | |
|     params.prompt.insert(0, 1, ' ');
 | |
| 
 | |
|     // tokenize the prompt
 | |
|     auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
 | |
| 
 | |
|     if (params.verbose_prompt) {
 | |
|         fprintf(stderr, "\n");
 | |
|         fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
 | |
|         fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
 | |
|         for (int i = 0; i < (int) embd_inp.size(); i++) {
 | |
|             fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
 | |
|         }
 | |
|         fprintf(stderr, "\n");
 | |
|     }
 | |
| 
 | |
|     if (params.embedding){
 | |
|         if (embd_inp.size() > 0) {
 | |
|             if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past, params.n_threads)) {
 | |
|                 fprintf(stderr, "%s : failed to eval\n", __func__);
 | |
|                 return 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         const int n_embd = llama_n_embd(ctx);
 | |
|         const auto embeddings = llama_get_embeddings(ctx);
 | |
| 
 | |
|         for (int i = 0; i < n_embd; i++) {
 | |
|             printf("%f ", embeddings[i]);
 | |
|         }
 | |
|         printf("\n");
 | |
|     }
 | |
| 
 | |
|     llama_print_timings(ctx);
 | |
|     llama_free(ctx);
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
