mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 7593639ce3
			
		
	
	7593639ce3
	
	
	
		
			
			* main: add --json-schema / -j * json: move json-schema-to-grammar to common lib * json: fix zig build
		
			
				
	
	
		
			2877 lines
		
	
	
		
			108 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2877 lines
		
	
	
		
			108 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "json.hpp"
 | |
| #include "json-schema-to-grammar.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstring>
 | |
| #include <ctime>
 | |
| #include <fstream>
 | |
| #include <iterator>
 | |
| #include <iostream>
 | |
| #include <regex>
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <unordered_map>
 | |
| #include <unordered_set>
 | |
| #include <vector>
 | |
| #include <cinttypes>
 | |
| #include <codecvt>
 | |
| 
 | |
| #if defined(__APPLE__) && defined(__MACH__)
 | |
| #include <sys/types.h>
 | |
| #include <sys/sysctl.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN32)
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #ifndef NOMINMAX
 | |
| #   define NOMINMAX
 | |
| #endif
 | |
| #include <locale>
 | |
| #include <windows.h>
 | |
| #include <fcntl.h>
 | |
| #include <io.h>
 | |
| #else
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/stat.h>
 | |
| #include <unistd.h>
 | |
| #endif
 | |
| #if defined(LLAMA_USE_CURL)
 | |
| #include <curl/curl.h>
 | |
| #include <curl/easy.h>
 | |
| #include <thread>
 | |
| #include <future>
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL))
 | |
| #define GGML_USE_CUDA_SYCL
 | |
| #endif
 | |
| 
 | |
| #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
 | |
| #define GGML_USE_CUDA_SYCL_VULKAN
 | |
| #endif
 | |
| 
 | |
| #if defined(LLAMA_USE_CURL)
 | |
| #ifdef __linux__
 | |
| #include <linux/limits.h>
 | |
| #elif defined(_WIN32)
 | |
| #define PATH_MAX MAX_PATH
 | |
| #else
 | |
| #include <sys/syslimits.h>
 | |
| #endif
 | |
| #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
 | |
| #define LLAMA_CURL_MAX_HEADER_LENGTH 256
 | |
| #endif // LLAMA_USE_CURL
 | |
| 
 | |
| using json = nlohmann::ordered_json;
 | |
| 
 | |
| int32_t get_num_physical_cores() {
 | |
| #ifdef __linux__
 | |
|     // enumerate the set of thread siblings, num entries is num cores
 | |
|     std::unordered_set<std::string> siblings;
 | |
|     for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
 | |
|         std::ifstream thread_siblings("/sys/devices/system/cpu"
 | |
|             + std::to_string(cpu) + "/topology/thread_siblings");
 | |
|         if (!thread_siblings.is_open()) {
 | |
|             break; // no more cpus
 | |
|         }
 | |
|         std::string line;
 | |
|         if (std::getline(thread_siblings, line)) {
 | |
|             siblings.insert(line);
 | |
|         }
 | |
|     }
 | |
|     if (!siblings.empty()) {
 | |
|         return static_cast<int32_t>(siblings.size());
 | |
|     }
 | |
| #elif defined(__APPLE__) && defined(__MACH__)
 | |
|     int32_t num_physical_cores;
 | |
|     size_t len = sizeof(num_physical_cores);
 | |
|     int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
 | |
|     if (result == 0) {
 | |
|         return num_physical_cores;
 | |
|     }
 | |
|     result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
 | |
|     if (result == 0) {
 | |
|         return num_physical_cores;
 | |
|     }
 | |
| #elif defined(_WIN32)
 | |
|     //TODO: Implement
 | |
| #endif
 | |
|     unsigned int n_threads = std::thread::hardware_concurrency();
 | |
|     return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
 | |
| }
 | |
| 
 | |
| void process_escapes(std::string & input) {
 | |
|     std::size_t input_len = input.length();
 | |
|     std::size_t output_idx = 0;
 | |
| 
 | |
|     for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
 | |
|         if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
 | |
|             switch (input[++input_idx]) {
 | |
|                 case 'n':  input[output_idx++] = '\n'; break;
 | |
|                 case 'r':  input[output_idx++] = '\r'; break;
 | |
|                 case 't':  input[output_idx++] = '\t'; break;
 | |
|                 case '\'': input[output_idx++] = '\''; break;
 | |
|                 case '\"': input[output_idx++] = '\"'; break;
 | |
|                 case '\\': input[output_idx++] = '\\'; break;
 | |
|                 case 'x':
 | |
|                     // Handle \x12, etc
 | |
|                     if (input_idx + 2 < input_len) {
 | |
|                         const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
 | |
|                         char *err_p = nullptr;
 | |
|                         const long val = std::strtol(x, &err_p, 16);
 | |
|                         if (err_p == x + 2) {
 | |
|                             input_idx += 2;
 | |
|                             input[output_idx++] = char(val);
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                     // fall through
 | |
|                 default:   input[output_idx++] = '\\';
 | |
|                            input[output_idx++] = input[input_idx]; break;
 | |
|             }
 | |
|         } else {
 | |
|             input[output_idx++] = input[input_idx];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     input.resize(output_idx);
 | |
| }
 | |
| 
 | |
| bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
 | |
|     bool result = true;
 | |
|     try {
 | |
|         if (!gpt_params_parse_ex(argc, argv, params)) {
 | |
|             gpt_print_usage(argc, argv, gpt_params());
 | |
|             exit(0);
 | |
|         }
 | |
|     }
 | |
|     catch (const std::invalid_argument & ex) {
 | |
|         fprintf(stderr, "%s\n", ex.what());
 | |
|         gpt_print_usage(argc, argv, gpt_params());
 | |
|         exit(1);
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
 | |
|     llama_sampling_params& sparams = params.sparams;
 | |
| 
 | |
|     if (arg == "-s" || arg == "--seed") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.seed = std::stoul(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-t" || arg == "--threads") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_threads = std::stoi(argv[i]);
 | |
|         if (params.n_threads <= 0) {
 | |
|             params.n_threads = std::thread::hardware_concurrency();
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-tb" || arg == "--threads-batch") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_threads_batch = std::stoi(argv[i]);
 | |
|         if (params.n_threads_batch <= 0) {
 | |
|             params.n_threads_batch = std::thread::hardware_concurrency();
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-td" || arg == "--threads-draft") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_threads_draft = std::stoi(argv[i]);
 | |
|         if (params.n_threads_draft <= 0) {
 | |
|             params.n_threads_draft = std::thread::hardware_concurrency();
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-tbd" || arg == "--threads-batch-draft") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_threads_batch_draft = std::stoi(argv[i]);
 | |
|         if (params.n_threads_batch_draft <= 0) {
 | |
|             params.n_threads_batch_draft = std::thread::hardware_concurrency();
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-p" || arg == "--prompt") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.prompt = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-e" || arg == "--escape") {
 | |
|         params.escape = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--prompt-cache") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.path_prompt_cache = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--prompt-cache-all") {
 | |
|         params.prompt_cache_all = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--prompt-cache-ro") {
 | |
|         params.prompt_cache_ro = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-bf" || arg == "--binary-file") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         std::ifstream file(argv[i], std::ios::binary);
 | |
|         if (!file) {
 | |
|             fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         // store the external file name in params
 | |
|         params.prompt_file = argv[i];
 | |
|         std::ostringstream ss;
 | |
|         ss << file.rdbuf();
 | |
|         params.prompt = ss.str();
 | |
|         fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-f" || arg == "--file") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         std::ifstream file(argv[i]);
 | |
|         if (!file) {
 | |
|             fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         // store the external file name in params
 | |
|         params.prompt_file = argv[i];
 | |
|         std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
 | |
|         if (!params.prompt.empty() && params.prompt.back() == '\n') {
 | |
|             params.prompt.pop_back();
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-n" || arg == "--n-predict") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_predict = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--top-k") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.top_k = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-c" || arg == "--ctx-size") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_ctx = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--grp-attn-n" || arg == "-gan") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.grp_attn_n = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--grp-attn-w" || arg == "-gaw") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.grp_attn_w = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--rope-freq-base") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.rope_freq_base = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--rope-freq-scale") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.rope_freq_scale = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--rope-scaling") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         std::string value(argv[i]);
 | |
|         /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
 | |
|         else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
 | |
|         else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
 | |
|         else { invalid_param = true; }
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--rope-scale") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.rope_freq_scale = 1.0f / std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--yarn-orig-ctx") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.yarn_orig_ctx = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--yarn-ext-factor") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.yarn_ext_factor = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--yarn-attn-factor") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.yarn_attn_factor = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--yarn-beta-fast") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.yarn_beta_fast = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--yarn-beta-slow") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.yarn_beta_slow = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--pooling") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         std::string value(argv[i]);
 | |
|         /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
 | |
|         else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
 | |
|         else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
 | |
|         else { invalid_param = true; }
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--defrag-thold" || arg == "-dt") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.defrag_thold = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--samplers") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         const auto sampler_names = string_split(argv[i], ';');
 | |
|         sparams.samplers_sequence = sampler_types_from_names(sampler_names, true);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--sampling-seq") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.samplers_sequence = sampler_types_from_chars(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--top-p") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.top_p = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--min-p") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.min_p = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--temp") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.temp = std::stof(argv[i]);
 | |
|         sparams.temp = std::max(sparams.temp, 0.0f);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--tfs") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.tfs_z = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--typical") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.typical_p = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--repeat-last-n") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.penalty_last_n = std::stoi(argv[i]);
 | |
|         sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--repeat-penalty") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.penalty_repeat = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--frequency-penalty") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.penalty_freq = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--presence-penalty") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.penalty_present = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--dynatemp-range") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.dynatemp_range = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--dynatemp-exp") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.dynatemp_exponent = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--mirostat") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.mirostat = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--mirostat-lr") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.mirostat_eta = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--mirostat-ent") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.mirostat_tau = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--cfg-negative-prompt") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.cfg_negative_prompt = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--cfg-negative-prompt-file") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         std::ifstream file(argv[i]);
 | |
|         if (!file) {
 | |
|             fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
 | |
|         if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
 | |
|             sparams.cfg_negative_prompt.pop_back();
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--cfg-scale") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.cfg_scale = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-b" || arg == "--batch-size") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_batch = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-ub" || arg == "--ubatch-size") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_ubatch = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--keep") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_keep = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--draft") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_draft = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--chunks") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_chunks = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-np" || arg == "--parallel") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_parallel = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-ns" || arg == "--sequences") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_sequences = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--p-split" || arg == "-ps") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.p_split = std::stof(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-m" || arg == "--model") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.model = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-md" || arg == "--model-draft") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.model_draft = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-a" || arg == "--alias") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.model_alias = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-mu" || arg == "--model-url") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.model_url = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-hfr" || arg == "--hf-repo") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.hf_repo = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-hff" || arg == "--hf-file") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.hf_file = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--lora") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.lora_adapter.emplace_back(argv[i], 1.0f);
 | |
|         params.use_mmap = false;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--lora-scaled") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         const char* lora_adapter = argv[i];
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
 | |
|         params.use_mmap = false;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--lora-base") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.lora_base = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--control-vector") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.control_vectors.push_back({ 1.0f, argv[i], });
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--control-vector-scaled") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         const char* fname = argv[i];
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.control_vectors.push_back({ std::stof(argv[i]), fname, });
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--control-vector-layer-range") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.control_vector_layer_start = std::stoi(argv[i]);
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.control_vector_layer_end = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--mmproj") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.mmproj = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--image") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.image = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-i" || arg == "--interactive") {
 | |
|         params.interactive = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--embedding") {
 | |
|         params.embedding = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--interactive-first") {
 | |
|         params.interactive_first = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-ins" || arg == "--instruct") {
 | |
|         params.instruct = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-cml" || arg == "--chatml") {
 | |
|         params.chatml = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--infill") {
 | |
|         params.infill = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-dkvc" || arg == "--dump-kv-cache") {
 | |
|         params.dump_kv_cache = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-nkvo" || arg == "--no-kv-offload") {
 | |
|         params.no_kv_offload = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-ctk" || arg == "--cache-type-k") {
 | |
|         params.cache_type_k = argv[++i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-ctv" || arg == "--cache-type-v") {
 | |
|         params.cache_type_v = argv[++i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--multiline-input") {
 | |
|         params.multiline_input = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--simple-io") {
 | |
|         params.simple_io = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-cb" || arg == "--cont-batching") {
 | |
|         params.cont_batching = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--color") {
 | |
|         params.use_color = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--mlock") {
 | |
|         params.use_mlock = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_gpu_layers = std::stoi(argv[i]);
 | |
|         if (!llama_supports_gpu_offload()) {
 | |
|             fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
 | |
|             fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_gpu_layers_draft = std::stoi(argv[i]);
 | |
|         if (!llama_supports_gpu_offload()) {
 | |
|             fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
 | |
|             fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--main-gpu" || arg == "-mg") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.main_gpu = std::stoi(argv[i]);
 | |
| #ifndef GGML_USE_CUDA_SYCL
 | |
|         fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL. Setting the main GPU has no effect.\n");
 | |
| #endif // GGML_USE_CUDA_SYCL
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--split-mode" || arg == "-sm") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         std::string arg_next = argv[i];
 | |
|         if (arg_next == "none") {
 | |
|             params.split_mode = LLAMA_SPLIT_MODE_NONE;
 | |
|         }
 | |
|         else if (arg_next == "layer") {
 | |
|             params.split_mode = LLAMA_SPLIT_MODE_LAYER;
 | |
|         }
 | |
|         else if (arg_next == "row") {
 | |
| #ifdef GGML_USE_SYCL
 | |
|             fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
 | |
|             exit(1);
 | |
| #endif // GGML_USE_SYCL
 | |
|             params.split_mode = LLAMA_SPLIT_MODE_ROW;
 | |
|         }
 | |
|         else {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
| #ifndef GGML_USE_CUDA_SYCL
 | |
|         fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL. Setting the split mode has no effect.\n");
 | |
| #endif // GGML_USE_CUDA_SYCL
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--tensor-split" || arg == "-ts") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         std::string arg_next = argv[i];
 | |
| 
 | |
|         // split string by , and /
 | |
|         const std::regex regex{ R"([,/]+)" };
 | |
|         std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
 | |
|         std::vector<std::string> split_arg{ it, {} };
 | |
|         if (split_arg.size() >= llama_max_devices()) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         for (size_t i = 0; i < llama_max_devices(); ++i) {
 | |
|             if (i < split_arg.size()) {
 | |
|                 params.tensor_split[i] = std::stof(split_arg[i]);
 | |
|             }
 | |
|             else {
 | |
|                 params.tensor_split[i] = 0.0f;
 | |
|             }
 | |
|         }
 | |
| #ifndef GGML_USE_CUDA_SYCL_VULKAN
 | |
|         fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
 | |
| #endif // GGML_USE_CUDA_SYCL_VULKAN
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--no-mmap") {
 | |
|         params.use_mmap = false;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--numa") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         std::string value(argv[i]);
 | |
|         /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
 | |
|         else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
 | |
|         else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
 | |
|         else { invalid_param = true; }
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--verbose-prompt") {
 | |
|         params.verbose_prompt = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--no-display-prompt") {
 | |
|         params.display_prompt = false;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-r" || arg == "--reverse-prompt") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.antiprompt.emplace_back(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-ld" || arg == "--logdir") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.logdir = argv[i];
 | |
| 
 | |
|         if (params.logdir.back() != DIRECTORY_SEPARATOR) {
 | |
|             params.logdir += DIRECTORY_SEPARATOR;
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-lcs" || arg == "--lookup-cache-static") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.lookup_cache_static = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-lcd" || arg == "--lookup-cache-dynamic") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.lookup_cache_dynamic = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.logits_file = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--perplexity" || arg == "--all-logits") {
 | |
|         params.logits_all = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--ppl-stride") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.ppl_stride = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-ptc" || arg == "--print-token-count") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.n_print = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--ppl-output-type") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.ppl_output_type = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--hellaswag") {
 | |
|         params.hellaswag = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--hellaswag-tasks") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.hellaswag_tasks = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--winogrande") {
 | |
|         params.winogrande = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--winogrande-tasks") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.winogrande_tasks = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--multiple-choice") {
 | |
|         params.multiple_choice = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--multiple-choice-tasks") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.multiple_choice_tasks = std::stoi(argv[i]);
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--kl-divergence") {
 | |
|         params.kl_divergence = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--ignore-eos") {
 | |
|         params.ignore_eos = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--penalize-nl") {
 | |
|         sparams.penalize_nl = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-l" || arg == "--logit-bias") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         std::stringstream ss(argv[i]);
 | |
|         llama_token key;
 | |
|         char sign;
 | |
|         std::string value_str;
 | |
|         try {
 | |
|             if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
 | |
|                 sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
 | |
|             }
 | |
|             else {
 | |
|                 throw std::exception();
 | |
|             }
 | |
|         }
 | |
|         catch (const std::exception&) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-h" || arg == "--help") {
 | |
|         gpt_print_usage(argc, argv, gpt_params());
 | |
|         exit(0);
 | |
|     }
 | |
|     if (arg == "--version") {
 | |
|         fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
 | |
|         fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
 | |
|         exit(0);
 | |
|     }
 | |
|     if (arg == "--random-prompt") {
 | |
|         params.random_prompt = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--in-prefix-bos") {
 | |
|         params.input_prefix_bos = true;
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--in-prefix") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.input_prefix = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--in-suffix") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.input_suffix = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--grammar") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.grammar = argv[i];
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--grammar-file") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         std::ifstream file(argv[i]);
 | |
|         if (!file) {
 | |
|             fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         std::copy(
 | |
|             std::istreambuf_iterator<char>(file),
 | |
|             std::istreambuf_iterator<char>(),
 | |
|             std::back_inserter(sparams.grammar)
 | |
|         );
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "-j" || arg == "--json-schema") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         sparams.grammar = json_schema_to_grammar(json::parse(argv[i]));
 | |
|         return true;
 | |
|     }
 | |
|     if (arg == "--override-kv") {
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         char* sep = strchr(argv[i], '=');
 | |
|         if (sep == nullptr || sep - argv[i] >= 128) {
 | |
|             fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         struct llama_model_kv_override kvo;
 | |
|         std::strncpy(kvo.key, argv[i], sep - argv[i]);
 | |
|         kvo.key[sep - argv[i]] = 0;
 | |
|         sep++;
 | |
|         if (strncmp(sep, "int:", 4) == 0) {
 | |
|             sep += 4;
 | |
|             kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
 | |
|             kvo.int_value = std::atol(sep);
 | |
|         }
 | |
|         else if (strncmp(sep, "float:", 6) == 0) {
 | |
|             sep += 6;
 | |
|             kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
 | |
|             kvo.float_value = std::atof(sep);
 | |
|         }
 | |
|         else if (strncmp(sep, "bool:", 5) == 0) {
 | |
|             sep += 5;
 | |
|             kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
 | |
|             if (std::strcmp(sep, "true") == 0) {
 | |
|                 kvo.bool_value = true;
 | |
|             }
 | |
|             else if (std::strcmp(sep, "false") == 0) {
 | |
|                 kvo.bool_value = false;
 | |
|             }
 | |
|             else {
 | |
|                 fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
 | |
|                 invalid_param = true;
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         params.kv_overrides.push_back(kvo);
 | |
|         return true;
 | |
|     }
 | |
| #ifndef LOG_DISABLE_LOGS
 | |
|     // Parse args for logging parameters
 | |
|     if (log_param_single_parse(argv[i])) {
 | |
|         // Do nothing, log_param_single_parse automatically does it's thing
 | |
|         //  and returns if a match was found and parsed.
 | |
|         return true;
 | |
|     }
 | |
|     if (log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i])) {
 | |
|         // We have a matching known parameter requiring an argument,
 | |
|         //  now we need to check if there is anything after this argv
 | |
|         //  and flag invalid_param or parse it.
 | |
|         if (++i >= argc) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         if (!log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i - 1], argv[i])) {
 | |
|             invalid_param = true;
 | |
|             return true;
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     // End of Parse args for logging parameters
 | |
| #endif // LOG_DISABLE_LOGS
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
 | |
|     bool invalid_param = false;
 | |
|     std::string arg;
 | |
|     const std::string arg_prefix = "--";
 | |
|     llama_sampling_params & sparams = params.sparams;
 | |
| 
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         arg = argv[i];
 | |
|         if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
 | |
|             std::replace(arg.begin(), arg.end(), '_', '-');
 | |
|         }
 | |
| 
 | |
|         if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
 | |
|             throw std::invalid_argument("error: unknown argument: " + arg);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (invalid_param) {
 | |
|         throw std::invalid_argument("error: invalid parameter for argument: " + arg);
 | |
|     }
 | |
| 
 | |
|     if (params.prompt_cache_all &&
 | |
|             (params.interactive || params.interactive_first ||
 | |
|              params.instruct)) {
 | |
| 
 | |
|         throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
 | |
|     }
 | |
| 
 | |
|     // short-hand to avoid specifying --hf-file -> default it to --model
 | |
|     if (!params.hf_repo.empty() && params.hf_file.empty()) {
 | |
|         params.hf_file = params.model;
 | |
|     }
 | |
| 
 | |
|     if (params.escape) {
 | |
|         process_escapes(params.prompt);
 | |
|         process_escapes(params.input_prefix);
 | |
|         process_escapes(params.input_suffix);
 | |
|         process_escapes(sparams.cfg_negative_prompt);
 | |
|         for (auto & antiprompt : params.antiprompt) {
 | |
|             process_escapes(antiprompt);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!params.kv_overrides.empty()) {
 | |
|         params.kv_overrides.emplace_back();
 | |
|         params.kv_overrides.back().key[0] = 0;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
 | |
|     const llama_sampling_params & sparams = params.sparams;
 | |
| 
 | |
|     std::string sampler_type_chars;
 | |
|     std::string sampler_type_names;
 | |
|     for (const auto sampler_type : sparams.samplers_sequence) {
 | |
|         sampler_type_chars += static_cast<char>(sampler_type);
 | |
|         sampler_type_names += sampler_type_to_name_string(sampler_type) + ";";
 | |
|     }
 | |
|     sampler_type_names.pop_back();
 | |
| 
 | |
|     printf("\n");
 | |
|     printf("usage: %s [options]\n", argv[0]);
 | |
|     printf("\n");
 | |
|     printf("options:\n");
 | |
|     printf("  -h, --help            show this help message and exit\n");
 | |
|     printf("  --version             show version and build info\n");
 | |
|     printf("  -i, --interactive     run in interactive mode\n");
 | |
|     printf("  --interactive-first   run in interactive mode and wait for input right away\n");
 | |
|     printf("  -ins, --instruct      run in instruction mode (use with Alpaca models)\n");
 | |
|     printf("  -cml, --chatml        run in chatml mode (use with ChatML-compatible models)\n");
 | |
|     printf("  --multiline-input     allows you to write or paste multiple lines without ending each in '\\'\n");
 | |
|     printf("  -r PROMPT, --reverse-prompt PROMPT\n");
 | |
|     printf("                        halt generation at PROMPT, return control in interactive mode\n");
 | |
|     printf("                        (can be specified more than once for multiple prompts).\n");
 | |
|     printf("  --color               colorise output to distinguish prompt and user input from generations\n");
 | |
|     printf("  -s SEED, --seed SEED  RNG seed (default: -1, use random seed for < 0)\n");
 | |
|     printf("  -t N, --threads N     number of threads to use during generation (default: %d)\n", params.n_threads);
 | |
|     printf("  -tb N, --threads-batch N\n");
 | |
|     printf("                        number of threads to use during batch and prompt processing (default: same as --threads)\n");
 | |
|     printf("  -td N, --threads-draft N");
 | |
|     printf("                        number of threads to use during generation (default: same as --threads)\n");
 | |
|     printf("  -tbd N, --threads-batch-draft N\n");
 | |
|     printf("                        number of threads to use during batch and prompt processing (default: same as --threads-draft)\n");
 | |
|     printf("  -p PROMPT, --prompt PROMPT\n");
 | |
|     printf("                        prompt to start generation with (default: empty)\n");
 | |
|     printf("  -e, --escape          process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
 | |
|     printf("  --prompt-cache FNAME  file to cache prompt state for faster startup (default: none)\n");
 | |
|     printf("  --prompt-cache-all    if specified, saves user input and generations to cache as well.\n");
 | |
|     printf("                        not supported with --interactive or other interactive options\n");
 | |
|     printf("  --prompt-cache-ro     if specified, uses the prompt cache but does not update it.\n");
 | |
|     printf("  --random-prompt       start with a randomized prompt.\n");
 | |
|     printf("  --in-prefix-bos       prefix BOS to user inputs, preceding the `--in-prefix` string\n");
 | |
|     printf("  --in-prefix STRING    string to prefix user inputs with (default: empty)\n");
 | |
|     printf("  --in-suffix STRING    string to suffix after user inputs with (default: empty)\n");
 | |
|     printf("  -f FNAME, --file FNAME\n");
 | |
|     printf("                        prompt file to start generation.\n");
 | |
|     printf("  -bf FNAME, --binary-file FNAME\n");
 | |
|     printf("                        binary file containing multiple choice tasks.\n");
 | |
|     printf("  -n N, --n-predict N   number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
 | |
|     printf("  -c N, --ctx-size N    size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
 | |
|     printf("  -b N, --batch-size N  logical maximum batch size (default: %d)\n", params.n_batch);
 | |
|     printf("  -ub N, --ubatch-size N\n");
 | |
|     printf("                        physical maximum batch size (default: %d)\n", params.n_ubatch);
 | |
|     printf("  --samplers            samplers that will be used for generation in the order, separated by \';\'\n");
 | |
|     printf("                        (default: %s)\n", sampler_type_names.c_str());
 | |
|     printf("  --sampling-seq        simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str());
 | |
|     printf("  --top-k N             top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
 | |
|     printf("  --top-p N             top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
 | |
|     printf("  --min-p N             min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
 | |
|     printf("  --tfs N               tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
 | |
|     printf("  --typical N           locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
 | |
|     printf("  --repeat-last-n N     last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
 | |
|     printf("  --repeat-penalty N    penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
 | |
|     printf("  --presence-penalty N  repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
 | |
|     printf("  --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
 | |
|     printf("  --dynatemp-range N    dynamic temperature range (default: %.1f, 0.0 = disabled)\n", (double)sparams.dynatemp_range);
 | |
|     printf("  --dynatemp-exp N      dynamic temperature exponent (default: %.1f)\n", (double)sparams.dynatemp_exponent);
 | |
|     printf("  --mirostat N          use Mirostat sampling.\n");
 | |
|     printf("                        Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
 | |
|     printf("                        (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
 | |
|     printf("  --mirostat-lr N       Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
 | |
|     printf("  --mirostat-ent N      Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
 | |
|     printf("  -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
 | |
|     printf("                        modifies the likelihood of token appearing in the completion,\n");
 | |
|     printf("                        i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
 | |
|     printf("                        or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
 | |
|     printf("  --grammar GRAMMAR     BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
 | |
|     printf("  --grammar-file FNAME  file to read grammar from\n");
 | |
|     printf("  -j SCHEMA, --json-schema SCHEMA\n");
 | |
|     printf("                        JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object.\n");
 | |
|     printf("                        For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead\n");
 | |
|     printf("  --cfg-negative-prompt PROMPT\n");
 | |
|     printf("                        negative prompt to use for guidance. (default: empty)\n");
 | |
|     printf("  --cfg-negative-prompt-file FNAME\n");
 | |
|     printf("                        negative prompt file to use for guidance. (default: empty)\n");
 | |
|     printf("  --cfg-scale N         strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
 | |
|     printf("  --rope-scaling {none,linear,yarn}\n");
 | |
|     printf("                        RoPE frequency scaling method, defaults to linear unless specified by the model\n");
 | |
|     printf("  --rope-scale N        RoPE context scaling factor, expands context by a factor of N\n");
 | |
|     printf("  --rope-freq-base N    RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
 | |
|     printf("  --rope-freq-scale N   RoPE frequency scaling factor, expands context by a factor of 1/N\n");
 | |
|     printf("  --yarn-orig-ctx N     YaRN: original context size of model (default: 0 = model training context size)\n");
 | |
|     printf("  --yarn-ext-factor N   YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
 | |
|     printf("  --yarn-attn-factor N  YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
 | |
|     printf("  --yarn-beta-slow N    YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
 | |
|     printf("  --yarn-beta-fast N    YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
 | |
|     printf("  --pooling {none,mean,cls}\n");
 | |
|     printf("                        pooling type for embeddings, use model default if unspecified\n");
 | |
|     printf("  -dt N, --defrag-thold N\n");
 | |
|     printf("                        KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
 | |
|     printf("  --ignore-eos          ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
 | |
|     printf("  --penalize-nl         penalize newline tokens\n");
 | |
|     printf("  --temp N              temperature (default: %.1f)\n", (double)sparams.temp);
 | |
|     printf("  --all-logits          return logits for all tokens in the batch (default: disabled)\n");
 | |
|     printf("  --hellaswag           compute HellaSwag score over random tasks from datafile supplied with -f\n");
 | |
|     printf("  --hellaswag-tasks N   number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
 | |
|     printf("  --winogrande          compute Winogrande score over random tasks from datafile supplied with -f\n");
 | |
|     printf("  --winogrande-tasks N  number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks);
 | |
|     printf("  --multiple-choice     compute multiple choice score over random tasks from datafile supplied with -f\n");
 | |
|     printf("  --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks);
 | |
|     printf("  --kl-divergence       computes KL-divergence to logits provided via --kl-divergence-base\n");
 | |
|     printf("  --keep N              number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
 | |
|     printf("  --draft N             number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
 | |
|     printf("  --chunks N            max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
 | |
|     printf("  -np N, --parallel N   number of parallel sequences to decode (default: %d)\n", params.n_parallel);
 | |
|     printf("  -ns N, --sequences N  number of sequences to decode (default: %d)\n", params.n_sequences);
 | |
|     printf("  -ps N, --p-split N    speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
 | |
|     printf("  -cb, --cont-batching  enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
 | |
|     printf("  --mmproj MMPROJ_FILE  path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
 | |
|     printf("  --image IMAGE_FILE    path to an image file. use with multimodal models\n");
 | |
|     if (llama_supports_mlock()) {
 | |
|         printf("  --mlock               force system to keep model in RAM rather than swapping or compressing\n");
 | |
|     }
 | |
|     if (llama_supports_mmap()) {
 | |
|         printf("  --no-mmap             do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
 | |
|     }
 | |
|     printf("  --numa TYPE           attempt optimizations that help on some NUMA systems\n");
 | |
|     printf("                          - distribute: spread execution evenly over all nodes\n");
 | |
|     printf("                          - isolate: only spawn threads on CPUs on the node that execution started on\n");
 | |
|     printf("                          - numactl: use the CPU map provided by numactl\n");
 | |
|     printf("                        if run without this previously, it is recommended to drop the system page cache before using this\n");
 | |
|     printf("                        see https://github.com/ggerganov/llama.cpp/issues/1437\n");
 | |
|     if (llama_supports_gpu_offload()) {
 | |
|         printf("  -ngl N, --n-gpu-layers N\n");
 | |
|         printf("                        number of layers to store in VRAM\n");
 | |
|         printf("  -ngld N, --n-gpu-layers-draft N\n");
 | |
|         printf("                        number of layers to store in VRAM for the draft model\n");
 | |
|         printf("  -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
 | |
|         printf("                        how to split the model across multiple GPUs, one of:\n");
 | |
|         printf("                          - none: use one GPU only\n");
 | |
|         printf("                          - layer (default): split layers and KV across GPUs\n");
 | |
|         printf("                          - row: split rows across GPUs\n");
 | |
|         printf("  -ts SPLIT, --tensor-split SPLIT\n");
 | |
|         printf("                        fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
 | |
|         printf("  -mg i, --main-gpu i   the GPU to use for the model (with split-mode = none),\n");
 | |
|         printf("                        or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
 | |
|     }
 | |
|     printf("  --verbose-prompt      print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
 | |
|     printf("  --no-display-prompt   don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
 | |
|     printf("  -gan N, --grp-attn-n N\n");
 | |
|     printf("                        group-attention factor (default: %d)\n", params.grp_attn_n);
 | |
|     printf("  -gaw N, --grp-attn-w N\n");
 | |
|     printf("                        group-attention width (default: %.1f)\n", (double)params.grp_attn_w);
 | |
|     printf("  -dkvc, --dump-kv-cache\n");
 | |
|     printf("                        verbose print of the KV cache\n");
 | |
|     printf("  -nkvo, --no-kv-offload\n");
 | |
|     printf("                        disable KV offload\n");
 | |
|     printf("  -ctk TYPE, --cache-type-k TYPE\n");
 | |
|     printf("                        KV cache data type for K (default: %s)\n", params.cache_type_k.c_str());
 | |
|     printf("  -ctv TYPE, --cache-type-v TYPE\n");
 | |
|     printf("                        KV cache data type for V (default: %s)\n", params.cache_type_v.c_str());
 | |
|     printf("  --simple-io           use basic IO for better compatibility in subprocesses and limited consoles\n");
 | |
|     printf("  --lora FNAME          apply LoRA adapter (implies --no-mmap)\n");
 | |
|     printf("  --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
 | |
|     printf("  --lora-base FNAME     optional model to use as a base for the layers modified by the LoRA adapter\n");
 | |
|     printf("  --control-vector FNAME\n");
 | |
|     printf("                        add a control vector\n");
 | |
|     printf("  --control-vector-scaled FNAME S\n");
 | |
|     printf("                        add a control vector with user defined scaling S\n");
 | |
|     printf("  --control-vector-layer-range START END\n");
 | |
|     printf("                        layer range to apply the control vector(s) to, start and end inclusive\n");
 | |
|     printf("  -m FNAME, --model FNAME\n");
 | |
|     printf("                        model path (default: %s)\n", params.model.c_str());
 | |
|     printf("  -md FNAME, --model-draft FNAME\n");
 | |
|     printf("                        draft model for speculative decoding (default: unused)\n");
 | |
|     printf("  -mu MODEL_URL, --model-url MODEL_URL\n");
 | |
|     printf("                        model download url (default: unused)\n");
 | |
|     printf("  -hfr REPO, --hf-repo REPO\n");
 | |
|     printf("                        Hugging Face model repository (default: unused)\n");
 | |
|     printf("  -hff FILE, --hf-file FILE\n");
 | |
|     printf("                        Hugging Face model file (default: unused)\n");
 | |
|     printf("  -ld LOGDIR, --logdir LOGDIR\n");
 | |
|     printf("                        path under which to save YAML logs (no logging if unset)\n");
 | |
|     printf("  -lcs FNAME, --lookup-cache-static FNAME\n");
 | |
|     printf("                        path to static lookup cache to use for lookup decoding (not updated by generation)\n");
 | |
|     printf("  -lcd FNAME, --lookup-cache-dynamic FNAME\n");
 | |
|     printf("                        path to dynamic lookup cache to use for lookup decoding (updated by generation)\n");
 | |
|     printf("  --override-kv KEY=TYPE:VALUE\n");
 | |
|     printf("                        advanced option to override model metadata by key. may be specified multiple times.\n");
 | |
|     printf("                        types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
 | |
|     printf("  -ptc N, --print-token-count N\n");
 | |
|     printf("                        print token count every N tokens (default: %d)\n", params.n_print);
 | |
|     printf("\n");
 | |
| #ifndef LOG_DISABLE_LOGS
 | |
|     log_print_usage();
 | |
| #endif // LOG_DISABLE_LOGS
 | |
| }
 | |
| 
 | |
| std::string get_system_info(const gpt_params & params) {
 | |
|     std::ostringstream os;
 | |
| 
 | |
|     os << "system_info: n_threads = " << params.n_threads;
 | |
|     if (params.n_threads_batch != -1) {
 | |
|         os << " (n_threads_batch = " << params.n_threads_batch << ")";
 | |
|     }
 | |
|     os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
 | |
| 
 | |
|     return os.str();
 | |
| }
 | |
| 
 | |
| std::string gpt_random_prompt(std::mt19937 & rng) {
 | |
|     const int r = rng() % 10;
 | |
|     switch (r) {
 | |
|         case 0: return "So";
 | |
|         case 1: return "Once upon a time";
 | |
|         case 2: return "When";
 | |
|         case 3: return "The";
 | |
|         case 4: return "After";
 | |
|         case 5: return "If";
 | |
|         case 6: return "import";
 | |
|         case 7: return "He";
 | |
|         case 8: return "She";
 | |
|         case 9: return "They";
 | |
|     }
 | |
| 
 | |
|     GGML_UNREACHABLE();
 | |
| }
 | |
| 
 | |
| // Validate if a filename is safe to use
 | |
| // To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
 | |
| bool validate_file_name(const std::string & filename) {
 | |
|     if (!filename.length()) {
 | |
|         // Empty filename invalid
 | |
|         return false;
 | |
|     }
 | |
|     if (filename.length() > 255) {
 | |
|         // Limit at common largest possible filename on Linux filesystems
 | |
|         // to avoid unnecessary further validation
 | |
|         // (On systems with smaller limits it will be caught by the OS)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     std::u32string filename_utf32;
 | |
|     try {
 | |
|         std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
 | |
|         filename_utf32 = converter.from_bytes(filename);
 | |
| 
 | |
|         // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
 | |
|         // or invalid encodings were encountered. Reject such attempts
 | |
|         std::string filename_reencoded = converter.to_bytes(filename_utf32);
 | |
|         if (filename_reencoded != filename) {
 | |
|             return false;
 | |
|         }
 | |
|     } catch (const std::exception &) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Check for forbidden codepoints:
 | |
|     // - Control characters
 | |
|     // - Unicode equivalents of illegal characters
 | |
|     // - UTF-16 surrogate pairs
 | |
|     // - UTF-8 replacement character
 | |
|     // - Byte order mark (BOM)
 | |
|     // - Illegal characters: / \ : * ? " < > |
 | |
|     for (char32_t c : filename_utf32) {
 | |
|         if (c <= 0x1F // Control characters (C0)
 | |
|             || c == 0x7F // Control characters (DEL)
 | |
|             || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
 | |
|             || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
 | |
|             || c == 0x2215 // Division Slash (forward slash equivalent)
 | |
|             || c == 0x2216 // Set Minus (backslash equivalent)
 | |
|             || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
 | |
|             || c == 0xFFFD // Replacement Character (UTF-8)
 | |
|             || c == 0xFEFF // Byte Order Mark (BOM)
 | |
|             || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
 | |
|             || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
 | |
|     // Unicode and other whitespace is not affected, only 0x20 space
 | |
|     if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
 | |
|     if (filename.find("..") != std::string::npos) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Reject "."
 | |
|     if (filename == ".") {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // String utils
 | |
| //
 | |
| 
 | |
| std::vector<std::string> string_split(std::string input, char separator) {
 | |
|     std::vector<std::string> parts;
 | |
|     size_t separator_pos = input.find(separator);
 | |
|     while (separator_pos != std::string::npos) {
 | |
|         std::string part = input.substr(0, separator_pos);
 | |
|         parts.emplace_back(part);
 | |
|         input = input.substr(separator_pos + 1);
 | |
|         separator_pos = input.find(separator);
 | |
|     }
 | |
|     parts.emplace_back(input);
 | |
|     return parts;
 | |
| }
 | |
| 
 | |
| std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
 | |
|     std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
 | |
|         {"top_k",       llama_sampler_type::TOP_K},
 | |
|         {"top_p",       llama_sampler_type::TOP_P},
 | |
|         {"typical_p",   llama_sampler_type::TYPICAL_P},
 | |
|         {"min_p",       llama_sampler_type::MIN_P},
 | |
|         {"tfs_z",       llama_sampler_type::TFS_Z},
 | |
|         {"temperature", llama_sampler_type::TEMPERATURE}
 | |
|     };
 | |
| 
 | |
|     // since samplers names are written multiple ways
 | |
|     // make it ready for both system names and input names
 | |
|     std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
 | |
|         {"top-k",       llama_sampler_type::TOP_K},
 | |
|         {"top-p",       llama_sampler_type::TOP_P},
 | |
|         {"nucleus",     llama_sampler_type::TOP_P},
 | |
|         {"typical-p",   llama_sampler_type::TYPICAL_P},
 | |
|         {"typical",     llama_sampler_type::TYPICAL_P},
 | |
|         {"min-p",       llama_sampler_type::MIN_P},
 | |
|         {"tfs-z",       llama_sampler_type::TFS_Z},
 | |
|         {"tfs",         llama_sampler_type::TFS_Z},
 | |
|         {"temp",        llama_sampler_type::TEMPERATURE}
 | |
|     };
 | |
| 
 | |
|     std::vector<llama_sampler_type> sampler_types;
 | |
|     sampler_types.reserve(names.size());
 | |
|     for (const auto & name : names)
 | |
|     {
 | |
|         auto sampler_item = sampler_canonical_name_map.find(name);
 | |
|         if (sampler_item != sampler_canonical_name_map.end())
 | |
|         {
 | |
|             sampler_types.push_back(sampler_item->second);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             if (allow_alt_names)
 | |
|             {
 | |
|                 sampler_item = sampler_alt_name_map.find(name);
 | |
|                 if (sampler_item != sampler_alt_name_map.end())
 | |
|                 {
 | |
|                     sampler_types.push_back(sampler_item->second);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return sampler_types;
 | |
| }
 | |
| 
 | |
| std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string) {
 | |
|     std::unordered_map<char, llama_sampler_type> sampler_name_map {
 | |
|         {'k', llama_sampler_type::TOP_K},
 | |
|         {'p', llama_sampler_type::TOP_P},
 | |
|         {'y', llama_sampler_type::TYPICAL_P},
 | |
|         {'m', llama_sampler_type::MIN_P},
 | |
|         {'f', llama_sampler_type::TFS_Z},
 | |
|         {'t', llama_sampler_type::TEMPERATURE}
 | |
|     };
 | |
| 
 | |
|     std::vector<llama_sampler_type> sampler_types;
 | |
|     sampler_types.reserve(names_string.size());
 | |
|     for (const auto & c : names_string) {
 | |
|         const auto sampler_item = sampler_name_map.find(c);
 | |
|         if (sampler_item != sampler_name_map.end()) {
 | |
|             sampler_types.push_back(sampler_item->second);
 | |
|         }
 | |
|     }
 | |
|     return sampler_types;
 | |
| }
 | |
| 
 | |
| std::string sampler_type_to_name_string(llama_sampler_type sampler_type) {
 | |
|     switch (sampler_type) {
 | |
|         case llama_sampler_type::TOP_K:       return "top_k";
 | |
|         case llama_sampler_type::TFS_Z:       return "tfs_z";
 | |
|         case llama_sampler_type::TYPICAL_P:   return "typical_p";
 | |
|         case llama_sampler_type::TOP_P:       return "top_p";
 | |
|         case llama_sampler_type::MIN_P:       return "min_p";
 | |
|         case llama_sampler_type::TEMPERATURE: return "temperature";
 | |
|         default : return "";
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Model utils
 | |
| //
 | |
| 
 | |
| struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
 | |
|     auto mparams = llama_model_default_params();
 | |
| 
 | |
|     if (params.n_gpu_layers != -1) {
 | |
|         mparams.n_gpu_layers = params.n_gpu_layers;
 | |
|     }
 | |
|     mparams.main_gpu        = params.main_gpu;
 | |
|     mparams.split_mode      = params.split_mode;
 | |
|     mparams.tensor_split    = params.tensor_split;
 | |
|     mparams.use_mmap        = params.use_mmap;
 | |
|     mparams.use_mlock       = params.use_mlock;
 | |
|     if (params.kv_overrides.empty()) {
 | |
|         mparams.kv_overrides = NULL;
 | |
|     } else {
 | |
|         GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
 | |
|         mparams.kv_overrides = params.kv_overrides.data();
 | |
|     }
 | |
| 
 | |
|     return mparams;
 | |
| }
 | |
| 
 | |
| static ggml_type kv_cache_type_from_str(const std::string & s) {
 | |
|     if (s == "f32") {
 | |
|         return GGML_TYPE_F32;
 | |
|     }
 | |
|     if (s == "f16") {
 | |
|         return GGML_TYPE_F16;
 | |
|     }
 | |
|     if (s == "q8_0") {
 | |
|         return GGML_TYPE_Q8_0;
 | |
|     }
 | |
|     if (s == "q4_0") {
 | |
|         return GGML_TYPE_Q4_0;
 | |
|     }
 | |
|     if (s == "q4_1") {
 | |
|         return GGML_TYPE_Q4_1;
 | |
|     }
 | |
|     if (s == "iq4_nl") {
 | |
|         return GGML_TYPE_IQ4_NL;
 | |
|     }
 | |
|     if (s == "q5_0") {
 | |
|         return GGML_TYPE_Q5_0;
 | |
|     }
 | |
|     if (s == "q5_1") {
 | |
|         return GGML_TYPE_Q5_1;
 | |
|     }
 | |
| 
 | |
|     throw std::runtime_error("Invalid cache type: " + s);
 | |
| }
 | |
| 
 | |
| struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
 | |
|     auto cparams = llama_context_default_params();
 | |
| 
 | |
|     cparams.n_ctx             = params.n_ctx;
 | |
|     cparams.n_seq_max         = params.n_parallel;
 | |
|     cparams.n_batch           = params.n_batch;
 | |
|     cparams.n_ubatch          = params.n_ubatch;
 | |
|     cparams.n_threads         = params.n_threads;
 | |
|     cparams.n_threads_batch   = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
 | |
|     cparams.seed              = params.seed;
 | |
|     cparams.logits_all        = params.logits_all;
 | |
|     cparams.embeddings        = params.embedding;
 | |
|     cparams.rope_scaling_type = params.rope_scaling_type;
 | |
|     cparams.rope_freq_base    = params.rope_freq_base;
 | |
|     cparams.rope_freq_scale   = params.rope_freq_scale;
 | |
|     cparams.yarn_ext_factor   = params.yarn_ext_factor;
 | |
|     cparams.yarn_attn_factor  = params.yarn_attn_factor;
 | |
|     cparams.yarn_beta_fast    = params.yarn_beta_fast;
 | |
|     cparams.yarn_beta_slow    = params.yarn_beta_slow;
 | |
|     cparams.yarn_orig_ctx     = params.yarn_orig_ctx;
 | |
|     cparams.pooling_type      = params.pooling_type;
 | |
|     cparams.defrag_thold      = params.defrag_thold;
 | |
|     cparams.cb_eval           = params.cb_eval;
 | |
|     cparams.cb_eval_user_data = params.cb_eval_user_data;
 | |
|     cparams.offload_kqv       = !params.no_kv_offload;
 | |
| 
 | |
|     cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
 | |
|     cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
 | |
| 
 | |
|     return cparams;
 | |
| }
 | |
| 
 | |
| void llama_batch_clear(struct llama_batch & batch) {
 | |
|     batch.n_tokens = 0;
 | |
| }
 | |
| 
 | |
| void llama_batch_add(
 | |
|                  struct llama_batch & batch,
 | |
|                         llama_token   id,
 | |
|                           llama_pos   pos,
 | |
|     const std::vector<llama_seq_id> & seq_ids,
 | |
|                                bool   logits) {
 | |
|     batch.token   [batch.n_tokens] = id;
 | |
|     batch.pos     [batch.n_tokens] = pos;
 | |
|     batch.n_seq_id[batch.n_tokens] = seq_ids.size();
 | |
|     for (size_t i = 0; i < seq_ids.size(); ++i) {
 | |
|         batch.seq_id[batch.n_tokens][i] = seq_ids[i];
 | |
|     }
 | |
|     batch.logits  [batch.n_tokens] = logits;
 | |
| 
 | |
|     batch.n_tokens++;
 | |
| }
 | |
| 
 | |
| #ifdef LLAMA_USE_CURL
 | |
| 
 | |
| static bool llama_download_file(CURL * curl, const char * url, const char * path) {
 | |
|     bool force_download = false;
 | |
| 
 | |
|     // Set the URL, allow to follow http redirection
 | |
|     curl_easy_setopt(curl, CURLOPT_URL, url);
 | |
|     curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
 | |
| 
 | |
| #if defined(_WIN32)
 | |
|     // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
 | |
|     //   operating system. Currently implemented under MS-Windows.
 | |
|     curl_easy_setopt(curl, CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
 | |
| #endif
 | |
| 
 | |
|     // Check if the file already exists locally
 | |
|     struct stat model_file_info;
 | |
|     auto file_exists = (stat(path, &model_file_info) == 0);
 | |
| 
 | |
|     // If the file exists, check for ${path_model}.etag or ${path_model}.lastModified files
 | |
|     char etag[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
 | |
|     char etag_path[PATH_MAX] = {0};
 | |
|     snprintf(etag_path, sizeof(etag_path), "%s.etag", path);
 | |
| 
 | |
|     char last_modified[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
 | |
|     char last_modified_path[PATH_MAX] = {0};
 | |
|     snprintf(last_modified_path, sizeof(last_modified_path), "%s.lastModified", path);
 | |
| 
 | |
|     if (file_exists) {
 | |
|         auto * f_etag = fopen(etag_path, "r");
 | |
|         if (f_etag) {
 | |
|             if (!fgets(etag, sizeof(etag), f_etag)) {
 | |
|                 fprintf(stderr, "%s: unable to read file %s\n", __func__, etag_path);
 | |
|             } else {
 | |
|                 fprintf(stderr, "%s: previous file found %s: %s\n", __func__, etag_path, etag);
 | |
|             }
 | |
|             fclose(f_etag);
 | |
|         }
 | |
| 
 | |
|         auto * f_last_modified = fopen(last_modified_path, "r");
 | |
|         if (f_last_modified) {
 | |
|             if (!fgets(last_modified, sizeof(last_modified), f_last_modified)) {
 | |
|                 fprintf(stderr, "%s: unable to read file %s\n", __func__, last_modified_path);
 | |
|             } else {
 | |
|                 fprintf(stderr, "%s: previous file found %s: %s\n", __func__, last_modified_path,
 | |
|                         last_modified);
 | |
|             }
 | |
|             fclose(f_last_modified);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Send a HEAD request to retrieve the etag and last-modified headers
 | |
|     struct llama_load_model_from_url_headers {
 | |
|         char etag[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
 | |
|         char last_modified[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
 | |
|     };
 | |
|     llama_load_model_from_url_headers headers;
 | |
|     {
 | |
|         typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
 | |
|         auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
 | |
|             llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
 | |
| 
 | |
|             // Convert header field name to lowercase
 | |
|             for (size_t i = 0; i < n_items && buffer[i] != ':'; ++i) {
 | |
|                 buffer[i] = tolower(buffer[i]);
 | |
|             }
 | |
| 
 | |
|             const char * etag_prefix = "etag: ";
 | |
|             if (strncmp(buffer, etag_prefix, strlen(etag_prefix)) == 0) {
 | |
|                 strncpy(headers->etag, buffer + strlen(etag_prefix), n_items - strlen(etag_prefix) - 2); // Remove CRLF
 | |
|             }
 | |
| 
 | |
|             const char * last_modified_prefix = "last-modified: ";
 | |
|             if (strncmp(buffer, last_modified_prefix, strlen(last_modified_prefix)) == 0) {
 | |
|                 strncpy(headers->last_modified, buffer + strlen(last_modified_prefix),
 | |
|                         n_items - strlen(last_modified_prefix) - 2); // Remove CRLF
 | |
|             }
 | |
|             return n_items;
 | |
|         };
 | |
| 
 | |
|         curl_easy_setopt(curl, CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
 | |
|         curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 1L); // hide head request progress
 | |
|         curl_easy_setopt(curl, CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
 | |
|         curl_easy_setopt(curl, CURLOPT_HEADERDATA, &headers);
 | |
| 
 | |
|         CURLcode res = curl_easy_perform(curl);
 | |
|         if (res != CURLE_OK) {
 | |
|             curl_easy_cleanup(curl);
 | |
|             fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         long http_code = 0;
 | |
|         curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &http_code);
 | |
|         if (http_code != 200) {
 | |
|             // HEAD not supported, we don't know if the file has changed
 | |
|             // force trigger downloading
 | |
|             force_download = true;
 | |
|             fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If the ETag or the Last-Modified headers are different: trigger a new download
 | |
|     bool should_download = !file_exists
 | |
|         || force_download
 | |
|         || (strlen(headers.etag) > 0 && strcmp(etag, headers.etag) != 0)
 | |
|         || (strlen(headers.last_modified) > 0 && strcmp(last_modified, headers.last_modified) != 0);
 | |
|     if (should_download) {
 | |
|         char path_temporary[PATH_MAX] = {0};
 | |
|         snprintf(path_temporary, sizeof(path_temporary), "%s.downloadInProgress", path);
 | |
|         if (file_exists) {
 | |
|             fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path);
 | |
|             if (remove(path) != 0) {
 | |
|                 curl_easy_cleanup(curl);
 | |
|                 fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path);
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Set the output file
 | |
|         auto * outfile = fopen(path_temporary, "wb");
 | |
|         if (!outfile) {
 | |
|             curl_easy_cleanup(curl);
 | |
|             fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
 | |
|         auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
 | |
|             return fwrite(data, size, nmemb, (FILE *)fd);
 | |
|         };
 | |
|         curl_easy_setopt(curl, CURLOPT_NOBODY, 0L);
 | |
|         curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
 | |
|         curl_easy_setopt(curl, CURLOPT_WRITEDATA, outfile);
 | |
| 
 | |
|         //  display download progress
 | |
|         curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L);
 | |
| 
 | |
|         // helper function to hide password in URL
 | |
|         auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
 | |
|             std::size_t protocol_pos = url.find("://");
 | |
|             if (protocol_pos == std::string::npos) {
 | |
|                 return url;  // Malformed URL
 | |
|             }
 | |
| 
 | |
|             std::size_t at_pos = url.find('@', protocol_pos + 3);
 | |
|             if (at_pos == std::string::npos) {
 | |
|                 return url;  // No password in URL
 | |
|             }
 | |
| 
 | |
|             return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
 | |
|         };
 | |
| 
 | |
|         // start the download
 | |
|         fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
 | |
|                 llama_download_hide_password_in_url(url).c_str(), path, headers.etag, headers.last_modified);
 | |
|         auto res = curl_easy_perform(curl);
 | |
|         if (res != CURLE_OK) {
 | |
|             fclose(outfile);
 | |
|             curl_easy_cleanup(curl);
 | |
|             fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         long http_code = 0;
 | |
|         curl_easy_getinfo (curl, CURLINFO_RESPONSE_CODE, &http_code);
 | |
|         if (http_code < 200 || http_code >= 400) {
 | |
|             fclose(outfile);
 | |
|             curl_easy_cleanup(curl);
 | |
|             fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // Clean up
 | |
|         fclose(outfile);
 | |
| 
 | |
|         // Write the new ETag to the .etag file
 | |
|         if (strlen(headers.etag) > 0) {
 | |
|             auto * etag_file = fopen(etag_path, "w");
 | |
|             if (etag_file) {
 | |
|                 fputs(headers.etag, etag_file);
 | |
|                 fclose(etag_file);
 | |
|                 fprintf(stderr, "%s: file etag saved %s: %s\n", __func__, etag_path, headers.etag);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Write the new lastModified to the .etag file
 | |
|         if (strlen(headers.last_modified) > 0) {
 | |
|             auto * last_modified_file = fopen(last_modified_path, "w");
 | |
|             if (last_modified_file) {
 | |
|                 fputs(headers.last_modified, last_modified_file);
 | |
|                 fclose(last_modified_file);
 | |
|                 fprintf(stderr, "%s: file last modified saved %s: %s\n", __func__, last_modified_path,
 | |
|                         headers.last_modified);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (rename(path_temporary, path) != 0) {
 | |
|             curl_easy_cleanup(curl);
 | |
|             fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary, path);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| struct llama_model * llama_load_model_from_url(
 | |
|         const char * model_url,
 | |
|         const char * path_model,
 | |
|         const struct llama_model_params & params) {
 | |
|     // Basic validation of the model_url
 | |
|     if (!model_url || strlen(model_url) == 0) {
 | |
|         fprintf(stderr, "%s: invalid model_url\n", __func__);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     // Initialize libcurl
 | |
|     auto * curl = curl_easy_init();
 | |
| 
 | |
|     if (!curl) {
 | |
|         fprintf(stderr, "%s: error initializing libcurl\n", __func__);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (!llama_download_file(curl, model_url, path_model)) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     // check for additional GGUFs split to download
 | |
|     int n_split = 0;
 | |
|     {
 | |
|         struct gguf_init_params gguf_params = {
 | |
|             /*.no_alloc = */ true,
 | |
|             /*.ctx      = */ NULL,
 | |
|         };
 | |
|         auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
 | |
|         if (!ctx_gguf) {
 | |
|             fprintf(stderr, "\n%s:  failed to load input GGUF from %s\n", __func__, path_model);
 | |
|             curl_easy_cleanup(curl);
 | |
|             return NULL;
 | |
|         }
 | |
| 
 | |
|         auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
 | |
|         if (key_n_split >= 0) {
 | |
|             n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
 | |
|         }
 | |
| 
 | |
|         gguf_free(ctx_gguf);
 | |
|     }
 | |
| 
 | |
|     curl_easy_cleanup(curl);
 | |
| 
 | |
|     if (n_split > 1) {
 | |
|         char split_prefix[PATH_MAX] = {0};
 | |
|         char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
 | |
| 
 | |
|         // Verify the first split file format
 | |
|         // and extract split URL and PATH prefixes
 | |
|         {
 | |
|             if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
 | |
|                 fprintf(stderr, "\n%s: unexpected model file name: %s"
 | |
|                                 " n_split=%d\n", __func__, path_model, n_split);
 | |
|                 return NULL;
 | |
|             }
 | |
| 
 | |
|             if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
 | |
|                 fprintf(stderr, "\n%s: unexpected model url: %s"
 | |
|                                 " n_split=%d\n", __func__, model_url, n_split);
 | |
|                 return NULL;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Prepare download in parallel
 | |
|         std::vector<std::future<bool>> futures_download;
 | |
|         for (int idx = 1; idx < n_split; idx++) {
 | |
|             futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split](int download_idx) -> bool {
 | |
|                 char split_path[PATH_MAX] = {0};
 | |
|                 llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
 | |
| 
 | |
|                 char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
 | |
|                 llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
 | |
| 
 | |
|                 auto * curl = curl_easy_init();
 | |
|                 bool res = llama_download_file(curl, split_url, split_path);
 | |
|                 curl_easy_cleanup(curl);
 | |
| 
 | |
|                 return res;
 | |
|             }, idx));
 | |
|         }
 | |
| 
 | |
|         // Wait for all downloads to complete
 | |
|         for (auto & f : futures_download) {
 | |
|             if (!f.get()) {
 | |
|                 return NULL;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return llama_load_model_from_file(path_model, params);
 | |
| }
 | |
| 
 | |
| struct llama_model * llama_load_model_from_hf(
 | |
|         const char * repo,
 | |
|         const char * model,
 | |
|         const char * path_model,
 | |
|         const struct llama_model_params & params) {
 | |
|     // construct hugging face model url:
 | |
|     //
 | |
|     //  --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
 | |
|     //    https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
 | |
|     //
 | |
|     //  --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
 | |
|     //    https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
 | |
|     //
 | |
| 
 | |
|     std::string model_url = "https://huggingface.co/";
 | |
|     model_url += repo;
 | |
|     model_url += "/resolve/main/";
 | |
|     model_url += model;
 | |
| 
 | |
|     return llama_load_model_from_url(model_url.c_str(), path_model, params);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| struct llama_model * llama_load_model_from_url(
 | |
|         const char * /*model_url*/,
 | |
|         const char * /*path_model*/,
 | |
|         const struct llama_model_params & /*params*/) {
 | |
|     fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| struct llama_model * llama_load_model_from_hf(
 | |
|         const char * /*repo*/,
 | |
|         const char * /*model*/,
 | |
|         const char * /*path_model*/,
 | |
|         const struct llama_model_params & /*params*/) {
 | |
|     fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| #endif // LLAMA_USE_CURL
 | |
| 
 | |
| std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
 | |
|     auto mparams = llama_model_params_from_gpt_params(params);
 | |
| 
 | |
|     llama_model * model = nullptr;
 | |
| 
 | |
|     if (!params.hf_repo.empty() && !params.hf_file.empty()) {
 | |
|         model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), mparams);
 | |
|     } else if (!params.model_url.empty()) {
 | |
|         model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams);
 | |
|     } else {
 | |
|         model = llama_load_model_from_file(params.model.c_str(), mparams);
 | |
|     }
 | |
| 
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
 | |
|         return std::make_tuple(nullptr, nullptr);
 | |
|     }
 | |
| 
 | |
|     auto cparams = llama_context_params_from_gpt_params(params);
 | |
| 
 | |
|     llama_context * lctx = llama_new_context_with_model(model, cparams);
 | |
|     if (lctx == NULL) {
 | |
|         fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
 | |
|         llama_free_model(model);
 | |
|         return std::make_tuple(nullptr, nullptr);
 | |
|     }
 | |
| 
 | |
|     if (!params.control_vectors.empty()) {
 | |
|         if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
 | |
|         if (params.control_vector_layer_end   <= 0) params.control_vector_layer_end   = llama_n_layer(model);
 | |
| 
 | |
|         const auto cvec = llama_control_vector_load(params.control_vectors);
 | |
|         if (cvec.n_embd == -1) {
 | |
|             llama_free(lctx);
 | |
|             llama_free_model(model);
 | |
|             return std::make_tuple(nullptr, nullptr);
 | |
|         }
 | |
| 
 | |
|         int err = llama_control_vector_apply(lctx,
 | |
|                                              cvec.data.data(),
 | |
|                                              cvec.data.size(),
 | |
|                                              cvec.n_embd,
 | |
|                                              params.control_vector_layer_start,
 | |
|                                              params.control_vector_layer_end);
 | |
|         if (err) {
 | |
|             llama_free(lctx);
 | |
|             llama_free_model(model);
 | |
|             return std::make_tuple(nullptr, nullptr);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
 | |
|         const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
 | |
|         float lora_scale = std::get<1>(params.lora_adapter[i]);
 | |
|         int err = llama_model_apply_lora_from_file(model,
 | |
|                                              lora_adapter.c_str(),
 | |
|                                              lora_scale,
 | |
|                                              ((i > 0) || params.lora_base.empty())
 | |
|                                                 ? NULL
 | |
|                                                 : params.lora_base.c_str(),
 | |
|                                              params.n_threads);
 | |
|         if (err != 0) {
 | |
|             fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
 | |
|             llama_free(lctx);
 | |
|             llama_free_model(model);
 | |
|             return std::make_tuple(nullptr, nullptr);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (params.ignore_eos) {
 | |
|         params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
 | |
|     }
 | |
| 
 | |
|     if (params.warmup) {
 | |
|         LOG("warming up the model with an empty run\n");
 | |
| 
 | |
|         std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
 | |
|         llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
 | |
|         llama_kv_cache_clear(lctx);
 | |
|         llama_synchronize(lctx);
 | |
|         llama_reset_timings(lctx);
 | |
|     }
 | |
| 
 | |
|     return std::make_tuple(model, lctx);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Vocab utils
 | |
| //
 | |
| 
 | |
| std::vector<llama_token> llama_tokenize(
 | |
|   const struct llama_context * ctx,
 | |
|            const std::string & text,
 | |
|                         bool   add_special,
 | |
|                         bool   parse_special) {
 | |
|     return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
 | |
| }
 | |
| 
 | |
| std::vector<llama_token> llama_tokenize(
 | |
|     const struct llama_model * model,
 | |
|            const std::string & text,
 | |
|                         bool   add_special,
 | |
|                         bool   parse_special) {
 | |
|     // upper limit for the number of tokens
 | |
|     int n_tokens = text.length() + 2 * add_special;
 | |
|     std::vector<llama_token> result(n_tokens);
 | |
|     n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
 | |
|     if (n_tokens < 0) {
 | |
|         result.resize(-n_tokens);
 | |
|         int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
 | |
|         GGML_ASSERT(check == -n_tokens);
 | |
|     } else {
 | |
|         result.resize(n_tokens);
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
 | |
|     std::vector<char> result(8, 0);
 | |
|     const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
 | |
|     if (n_tokens < 0) {
 | |
|         result.resize(-n_tokens);
 | |
|         int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
 | |
|         GGML_ASSERT(check == -n_tokens);
 | |
|     } else {
 | |
|         result.resize(n_tokens);
 | |
|     }
 | |
| 
 | |
|     return std::string(result.data(), result.size());
 | |
| }
 | |
| 
 | |
| std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
 | |
|     const llama_token bos_id = llama_token_bos(llama_get_model(ctx));
 | |
| 
 | |
|     std::string piece;
 | |
|     std::string result;
 | |
| 
 | |
|     for (size_t i = 0; i < tokens.size(); ++i) {
 | |
|         piece = llama_token_to_piece(ctx, tokens[i]);
 | |
| 
 | |
|         // remove the leading space of the first non-BOS token
 | |
|         if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
 | |
|             piece = piece.substr(1);
 | |
|         }
 | |
| 
 | |
|         result += piece;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
 | |
|     std::string piece;
 | |
|     std::string result;
 | |
| 
 | |
|     for (size_t i = 0; i < tokens.size(); ++i) {
 | |
|         piece = llama_token_to_piece(ctx, tokens[i]);
 | |
| 
 | |
|         result += piece;
 | |
|     }
 | |
| 
 | |
|     // NOTE: the original tokenizer decodes bytes after collecting the pieces.
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| bool llama_should_add_bos_token(const llama_model * model) {
 | |
|     const int add_bos = llama_add_bos_token(model);
 | |
| 
 | |
|     return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
 | |
| }
 | |
| 
 | |
| //
 | |
| // YAML utils
 | |
| //
 | |
| 
 | |
| // returns true if successful, false otherwise
 | |
| bool create_directory_with_parents(const std::string & path) {
 | |
| #ifdef _WIN32
 | |
|     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
 | |
|     std::wstring wpath = converter.from_bytes(path);
 | |
| 
 | |
|     // if the path already exists, check whether it's a directory
 | |
|     const DWORD attributes = GetFileAttributesW(wpath.c_str());
 | |
|     if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     size_t pos_slash = 0;
 | |
| 
 | |
|     // process path from front to back, procedurally creating directories
 | |
|     while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
 | |
|         const std::wstring subpath = wpath.substr(0, pos_slash);
 | |
|         const wchar_t * test = subpath.c_str();
 | |
| 
 | |
|         const bool success = CreateDirectoryW(test, NULL);
 | |
|         if (!success) {
 | |
|             const DWORD error = GetLastError();
 | |
| 
 | |
|             // if the path already exists, ensure that it's a directory
 | |
|             if (error == ERROR_ALREADY_EXISTS) {
 | |
|                 const DWORD attributes = GetFileAttributesW(subpath.c_str());
 | |
|                 if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
 | |
|                     return false;
 | |
|                 }
 | |
|             } else {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         pos_slash += 1;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| #else
 | |
|     // if the path already exists, check whether it's a directory
 | |
|     struct stat info;
 | |
|     if (stat(path.c_str(), &info) == 0) {
 | |
|         return S_ISDIR(info.st_mode);
 | |
|     }
 | |
| 
 | |
|     size_t pos_slash = 1; // skip leading slashes for directory creation
 | |
| 
 | |
|     // process path from front to back, procedurally creating directories
 | |
|     while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
 | |
|         const std::string subpath = path.substr(0, pos_slash);
 | |
|         struct stat info;
 | |
| 
 | |
|         // if the path already exists, ensure that it's a directory
 | |
|         if (stat(subpath.c_str(), &info) == 0) {
 | |
|             if (!S_ISDIR(info.st_mode)) {
 | |
|                 return false;
 | |
|             }
 | |
|         } else {
 | |
|             // create parent directories
 | |
|             const int ret = mkdir(subpath.c_str(), 0755);
 | |
|             if (ret != 0) {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         pos_slash += 1;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| #endif // _WIN32
 | |
| }
 | |
| 
 | |
| void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) {
 | |
|     if (data.empty()) {
 | |
|         fprintf(stream, "%s:\n", prop_name);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     fprintf(stream, "%s: [", prop_name);
 | |
|     for (size_t i = 0; i < data.size() - 1; ++i) {
 | |
|         fprintf(stream, "%e, ", data[i]);
 | |
|     }
 | |
|     fprintf(stream, "%e]\n", data.back());
 | |
| }
 | |
| 
 | |
| void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) {
 | |
|     if (data.empty()) {
 | |
|         fprintf(stream, "%s:\n", prop_name);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     fprintf(stream, "%s: [", prop_name);
 | |
|     for (size_t i = 0; i < data.size() - 1; ++i) {
 | |
|         fprintf(stream, "%d, ", data[i]);
 | |
|     }
 | |
|     fprintf(stream, "%d]\n", data.back());
 | |
| }
 | |
| 
 | |
| void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) {
 | |
|     std::string data_str(data == NULL ? "" : data);
 | |
| 
 | |
|     if (data_str.empty()) {
 | |
|         fprintf(stream, "%s:\n", prop_name);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     size_t pos_start = 0;
 | |
|     size_t pos_found = 0;
 | |
| 
 | |
|     if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
 | |
|         data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
 | |
|         data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
 | |
|         data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
 | |
|         data_str = "\"" + data_str + "\"";
 | |
|         fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (data_str.find('\n') == std::string::npos) {
 | |
|         fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     fprintf(stream, "%s: |\n", prop_name);
 | |
|     while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
 | |
|         fprintf(stream, "  %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
 | |
|         pos_start = pos_found + 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| std::string get_sortable_timestamp() {
 | |
|     using clock = std::chrono::system_clock;
 | |
| 
 | |
|     const clock::time_point current_time = clock::now();
 | |
|     const time_t as_time_t = clock::to_time_t(current_time);
 | |
|     char timestamp_no_ns[100];
 | |
|     std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
 | |
| 
 | |
|     const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
 | |
|         current_time.time_since_epoch() % 1000000000).count();
 | |
|     char timestamp_ns[11];
 | |
|     snprintf(timestamp_ns, 11, "%09" PRId64, ns);
 | |
| 
 | |
|     return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
 | |
| }
 | |
| 
 | |
| void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
 | |
|                                const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
 | |
|     const llama_sampling_params & sparams = params.sparams;
 | |
| 
 | |
|     fprintf(stream, "build_commit: %s\n",        LLAMA_COMMIT);
 | |
|     fprintf(stream, "build_number: %d\n",        LLAMA_BUILD_NUMBER);
 | |
|     fprintf(stream, "cpu_has_arm_fma: %s\n",     ggml_cpu_has_arm_fma()     ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_avx: %s\n",         ggml_cpu_has_avx()         ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_avx_vnni: %s\n",    ggml_cpu_has_avx_vnni()    ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_avx2: %s\n",        ggml_cpu_has_avx2()        ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_avx512: %s\n",      ggml_cpu_has_avx512()      ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_cuda: %s\n",        ggml_cpu_has_cuda()        ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_vulkan: %s\n",      ggml_cpu_has_vulkan()      ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_clblast: %s\n",     ggml_cpu_has_clblast()     ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_kompute: %s\n",     ggml_cpu_has_kompute()     ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_fma: %s\n",         ggml_cpu_has_fma()         ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_gpublas: %s\n",     ggml_cpu_has_gpublas()     ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_neon: %s\n",        ggml_cpu_has_neon()        ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_f16c: %s\n",        ggml_cpu_has_f16c()        ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_fp16_va: %s\n",     ggml_cpu_has_fp16_va()     ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_wasm_simd: %s\n",   ggml_cpu_has_wasm_simd()   ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_blas: %s\n",        ggml_cpu_has_blas()        ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_sse3: %s\n",        ggml_cpu_has_sse3()        ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_vsx: %s\n",         ggml_cpu_has_vsx()         ? "true" : "false");
 | |
|     fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
 | |
| 
 | |
| #ifdef NDEBUG
 | |
|     fprintf(stream, "debug: false\n");
 | |
| #else
 | |
|     fprintf(stream, "debug: true\n");
 | |
| #endif // NDEBUG
 | |
| 
 | |
|     fprintf(stream, "model_desc: %s\n", model_desc);
 | |
|     fprintf(stream, "n_vocab: %d  # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
 | |
| 
 | |
| #ifdef __OPTIMIZE__
 | |
|     fprintf(stream, "optimize: true\n");
 | |
| #else
 | |
|     fprintf(stream, "optimize: false\n");
 | |
| #endif // __OPTIMIZE__
 | |
| 
 | |
|     fprintf(stream, "time: %s\n", timestamp.c_str());
 | |
| 
 | |
|     fprintf(stream, "\n");
 | |
|     fprintf(stream, "###############\n");
 | |
|     fprintf(stream, "# User Inputs #\n");
 | |
|     fprintf(stream, "###############\n");
 | |
|     fprintf(stream, "\n");
 | |
| 
 | |
|     fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
 | |
|     fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
 | |
|     dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
 | |
|     fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
 | |
|     fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
 | |
|     fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
 | |
|     fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
 | |
|     fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
 | |
|     fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
 | |
|     fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
 | |
|     dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str());
 | |
|     fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
 | |
|     fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
 | |
|     fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
 | |
| 
 | |
|     const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
 | |
|     const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
 | |
|     fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
 | |
| 
 | |
|     dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
 | |
|     fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
 | |
|     dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
 | |
|     fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
 | |
|     fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
 | |
|     fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
 | |
|     fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
 | |
|     fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
 | |
| 
 | |
|     fprintf(stream, "logit_bias:\n");
 | |
|     for (std::pair<llama_token, float> lb : sparams.logit_bias) {
 | |
|         if (ignore_eos && lb.first == logit_bias_eos->first) {
 | |
|             continue;
 | |
|         }
 | |
|         fprintf(stream, "  %d: %f", lb.first, lb.second);
 | |
|     }
 | |
| 
 | |
|     fprintf(stream, "lora:\n");
 | |
|     for (std::tuple<std::string, float> la : params.lora_adapter) {
 | |
|         if (std::get<1>(la) != 1.0f) {
 | |
|             continue;
 | |
|         }
 | |
|         fprintf(stream, "  - %s\n", std::get<0>(la).c_str());
 | |
|     }
 | |
|     fprintf(stream, "lora_scaled:\n");
 | |
|     for (std::tuple<std::string, float> la : params.lora_adapter) {
 | |
|         if (std::get<1>(la) == 1.0f) {
 | |
|             continue;
 | |
|         }
 | |
|         fprintf(stream, "  - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
 | |
|     }
 | |
|     fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
 | |
|     fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
 | |
|     fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
 | |
|     fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
 | |
|     fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
 | |
|     fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
 | |
|     fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
 | |
|     fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
 | |
|     fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
 | |
|     fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
 | |
|     fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
 | |
|     fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
 | |
|     fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
 | |
|     fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
 | |
|     fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
 | |
|     fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
 | |
|     fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
 | |
|     fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
 | |
|     dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
 | |
|     fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
 | |
|     fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
 | |
|     fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
 | |
|     dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
 | |
|     fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
 | |
|     fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
 | |
| 
 | |
|     fprintf(stream, "reverse_prompt:\n");
 | |
|     for (std::string ap : params.antiprompt) {
 | |
|         size_t pos = 0;
 | |
|         while ((pos = ap.find('\n', pos)) != std::string::npos) {
 | |
|             ap.replace(pos, 1, "\\n");
 | |
|             pos += 1;
 | |
|         }
 | |
| 
 | |
|         fprintf(stream, "  - %s\n", ap.c_str());
 | |
|     }
 | |
| 
 | |
|     fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
 | |
|     fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
 | |
|     fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
 | |
|     fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
 | |
|     fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
 | |
|     fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
 | |
| 
 | |
|     const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
 | |
|     dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
 | |
| 
 | |
|     fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
 | |
|     fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency());
 | |
|     fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
 | |
|     fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
 | |
|     fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
 | |
|     fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
 | |
|     fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
 | |
|     fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
 | |
| }
 | |
| 
 | |
| //
 | |
| // KV cache utils
 | |
| //
 | |
| 
 | |
| void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) {
 | |
|     static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
 | |
| 
 | |
|     printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
 | |
|         view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
 | |
| 
 | |
|     llama_kv_cache_view_cell * c_curr = view.cells;
 | |
|     llama_seq_id * cs_curr = view.cells_sequences;
 | |
| 
 | |
|     for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
 | |
|         if (i % row_size == 0) {
 | |
|             printf("\n%5d: ", i);
 | |
|         }
 | |
|         int seq_count = 0;
 | |
|         for (int j = 0; j < view.n_seq_max; j++) {
 | |
|             if (cs_curr[j] >= 0) { seq_count++; }
 | |
|         }
 | |
|         putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
 | |
|     }
 | |
| 
 | |
|     printf("\n=== Done dumping\n");
 | |
| }
 | |
| 
 | |
| void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
 | |
|     static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
 | |
| 
 | |
|     printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
 | |
|         view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
 | |
| 
 | |
|     std::unordered_map<llama_seq_id, size_t> seqs;
 | |
|     llama_kv_cache_view_cell * c_curr = view.cells;
 | |
|     llama_seq_id * cs_curr = view.cells_sequences;
 | |
| 
 | |
|     for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
 | |
|         for (int j = 0; j < view.n_seq_max; j++) {
 | |
|             if (cs_curr[j] < 0) { continue; }
 | |
|             if (seqs.find(cs_curr[j]) == seqs.end()) {
 | |
|                 if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
 | |
|                 const size_t sz = seqs.size();
 | |
|                 seqs[cs_curr[j]] = sz;
 | |
|             }
 | |
|         }
 | |
|         if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
 | |
|     }
 | |
| 
 | |
|     printf("=== Sequence legend: ");
 | |
|     for (const auto & it : seqs) {
 | |
|         printf("%zu=%d, ", it.second, it.first);
 | |
|     }
 | |
|     printf("'+'=other sequence ids");
 | |
| 
 | |
|     c_curr = view.cells;
 | |
|     cs_curr = view.cells_sequences;
 | |
|     for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
 | |
|         if (i % row_size == 0) {
 | |
|             printf("\n%5d: ", i);
 | |
|         }
 | |
|         for (int j = 0; j < view.n_seq_max; j++) {
 | |
|             if (cs_curr[j] >= 0) {
 | |
|                 const auto & it = seqs.find(cs_curr[j]);
 | |
|                 putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
 | |
|             } else {
 | |
|                 putchar('.');
 | |
|             }
 | |
|         }
 | |
|         putchar(' ');
 | |
|     }
 | |
| 
 | |
|     printf("\n=== Done dumping\n");
 | |
| }
 | |
| 
 | |
| void llama_embd_normalize(const float * inp, float * out, int n) {
 | |
|     double sum = 0.0;
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         sum += inp[i] * inp[i];
 | |
|     }
 | |
|     sum = sqrt(sum);
 | |
| 
 | |
|     const float norm = sum > 0.0 ? 1.0f / sum : 0.0f;
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         out[i] = inp[i] * norm;
 | |
|     }
 | |
| }
 | |
| 
 | |
| float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
 | |
|     double sum  = 0.0;
 | |
|     double sum1 = 0.0;
 | |
|     double sum2 = 0.0;
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         sum  += embd1[i] * embd2[i];
 | |
|         sum1 += embd1[i] * embd1[i];
 | |
|         sum2 += embd2[i] * embd2[i];
 | |
|     }
 | |
| 
 | |
|     return sum / (sqrt(sum1) * sqrt(sum2));
 | |
| }
 | |
| 
 | |
| //
 | |
| // Control vector utils
 | |
| //
 | |
| 
 | |
| static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
 | |
|     int32_t n_tensors;
 | |
| 
 | |
|     size_t n_bytes = 0;
 | |
| 
 | |
|     uint32_t max_direction_layer = 0;
 | |
| 
 | |
|     llama_control_vector_data result = { -1, {} };
 | |
| 
 | |
|     // calculate size of ctx needed for tensors, ensure tensors are f32, and find max layer
 | |
|     {
 | |
|         struct ggml_init_params meta_params = {
 | |
|             /* .mem_size   = */ ggml_tensor_overhead() * 128 + ggml_graph_overhead(),
 | |
|             /* .mem_buffer = */ nullptr,
 | |
|             /* .no_alloc   = */ true,
 | |
|         };
 | |
|         ggml_context * meta_ctx = ggml_init(meta_params);
 | |
|         struct gguf_init_params meta_gguf_params = {
 | |
|             /* .no_alloc = */ true,
 | |
|             /* .ctx      = */ &meta_ctx,
 | |
|         };
 | |
|         struct gguf_context * meta_ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
 | |
|         if (!meta_ctx_gguf) {
 | |
|             fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
 | |
|             ggml_free(meta_ctx);
 | |
|             return result;
 | |
|         }
 | |
| 
 | |
|         n_tensors = gguf_get_n_tensors(meta_ctx_gguf);
 | |
|         for (int i = 0; i < n_tensors; i++) {
 | |
|             std::string name = gguf_get_tensor_name(meta_ctx_gguf, i);
 | |
| 
 | |
|             // split on '.'
 | |
|             size_t dotpos = name.find('.');
 | |
|             if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
 | |
|                 try {
 | |
|                     uint32_t layer = std::stoi(name.substr(dotpos + 1));
 | |
|                     if (layer == 0) {
 | |
|                         fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
 | |
|                         ggml_free(meta_ctx);
 | |
|                         gguf_free(meta_ctx_gguf);
 | |
|                         return result;
 | |
|                     }
 | |
|                     if (layer > max_direction_layer) {
 | |
|                         max_direction_layer = layer;
 | |
|                     }
 | |
|                 } catch (...) {
 | |
|                     fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
 | |
|                     ggml_free(meta_ctx);
 | |
|                     gguf_free(meta_ctx_gguf);
 | |
|                     return result;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * tensor_meta = ggml_get_tensor(meta_ctx, name.c_str());
 | |
|             if (tensor_meta->type != GGML_TYPE_F32 || ggml_n_dims(tensor_meta) != 1) {
 | |
|                 fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
 | |
|                 ggml_free(meta_ctx);
 | |
|                 gguf_free(meta_ctx_gguf);
 | |
|                 return result;
 | |
|             }
 | |
|             if (result.n_embd == -1) {
 | |
|                 result.n_embd = ggml_nelements(tensor_meta);
 | |
|             } else if (ggml_nelements(tensor_meta) != result.n_embd) {
 | |
|                 fprintf(stderr, "%s: direction tensor sizes mismatched in %s\n", __func__, load_info.fname.c_str());
 | |
|                 ggml_free(meta_ctx);
 | |
|                 gguf_free(meta_ctx_gguf);
 | |
|                 return result;
 | |
|             }
 | |
|             n_bytes += ggml_nbytes(tensor_meta);
 | |
|         }
 | |
|         ggml_free(meta_ctx);
 | |
|         gguf_free(meta_ctx_gguf);
 | |
|     }
 | |
| 
 | |
|     if (n_tensors == 0) {
 | |
|         fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     // load and scale tensors into final control vector context
 | |
|     struct ggml_init_params ggml_params = {
 | |
|         /* .mem_size   = */ ggml_tensor_overhead() * n_tensors + n_bytes,
 | |
|         /* .mem_buffer = */ nullptr,
 | |
|         /* .no_alloc   = */ false,
 | |
|     };
 | |
|     struct ggml_context * ctx = ggml_init(ggml_params);
 | |
| 
 | |
|     struct gguf_init_params params = {
 | |
|         /*.no_alloc = */ false,
 | |
|         /*.ctx      = */ &ctx,
 | |
|     };
 | |
|     struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), params);
 | |
|     if (!ctx_gguf) {
 | |
|         fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
 | |
|         ggml_free(ctx);
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     // do not store data for layer 0 (it's not used)
 | |
|     result.data.resize(result.n_embd * max_direction_layer);
 | |
| 
 | |
|     for (uint32_t il = 1; il <= max_direction_layer; il++) {
 | |
|         const std::string name = "direction." + std::to_string(il);
 | |
|         const ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
 | |
| 
 | |
|         float * dst = result.data.data() + result.n_embd * (il - 1);
 | |
| 
 | |
|         if (tensor) {
 | |
|             const float * src = (const float *) tensor->data;
 | |
|             for (int j = 0; j < result.n_embd; j++) {
 | |
|                 dst[j] = src[j] * load_info.strength;
 | |
|             }
 | |
|         } else {
 | |
|             for (int j = 0; j < result.n_embd; j++) {
 | |
|                 dst[j] = 0.0f;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
 | |
|     llama_control_vector_data result = { -1, {} };
 | |
| 
 | |
|     for (const auto & info : load_infos) {
 | |
|         auto cur = llama_control_vector_load_one(info);
 | |
| 
 | |
|         if (cur.n_embd == -1) {
 | |
|             return result;
 | |
|         }
 | |
|         if (result.n_embd != -1 && (result.n_embd != cur.n_embd || result.data.size() != cur.data.size())) {
 | |
|             fprintf(stderr, "%s: control vector in %s does not match previous vector dimensions\n", __func__, info.fname.c_str());
 | |
|             return result;
 | |
|         }
 | |
| 
 | |
|         if (result.n_embd == -1) {
 | |
|             result = std::move(cur);
 | |
|         } else {
 | |
|             for (size_t i = 0; i < cur.data.size(); i++) {
 | |
|                 result.data[i] += cur.data[i];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (result.n_embd == -1) {
 | |
|         fprintf(stderr, "%s: no vectors passed\n", __func__);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 |