mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* Improve performance by changing std::map to std::unordered_map and std::map<id, token> id_to_token; to std::vector<token> id_to_token; * fix last commit on gpt_vocab_init add vocab.id_to_token.resize(vocab.token_to_id.size()); * Removed include <map> * Nest struct token score inside gpt_vocab * renamed token to tok
		
			
				
	
	
		
			1264 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1264 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "ggml.h"
 | 
						|
 | 
						|
#include "utils.h"
 | 
						|
 | 
						|
#include <cassert>
 | 
						|
#include <cinttypes>
 | 
						|
#include <cmath>
 | 
						|
#include <cstdio>
 | 
						|
#include <cstring>
 | 
						|
#include <fstream>
 | 
						|
#include <iostream>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | 
						|
#include <signal.h>
 | 
						|
#include <unistd.h>
 | 
						|
#elif defined (_WIN32)
 | 
						|
#include <signal.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined (_WIN32)
 | 
						|
#pragma comment(lib,"kernel32.lib")
 | 
						|
extern "C" __declspec(dllimport) void* __stdcall GetStdHandle(unsigned long nStdHandle);
 | 
						|
extern "C" __declspec(dllimport) int __stdcall GetConsoleMode(void* hConsoleHandle, unsigned long* lpMode);
 | 
						|
extern "C" __declspec(dllimport) int __stdcall SetConsoleMode(void* hConsoleHandle, unsigned long dwMode);
 | 
						|
#endif
 | 
						|
 | 
						|
#define ANSI_COLOR_RED     "\x1b[31m"
 | 
						|
#define ANSI_COLOR_GREEN   "\x1b[32m"
 | 
						|
#define ANSI_COLOR_YELLOW  "\x1b[33m"
 | 
						|
#define ANSI_COLOR_BLUE    "\x1b[34m"
 | 
						|
#define ANSI_COLOR_MAGENTA "\x1b[35m"
 | 
						|
#define ANSI_COLOR_CYAN    "\x1b[36m"
 | 
						|
#define ANSI_COLOR_RESET   "\x1b[0m"
 | 
						|
#define ANSI_BOLD          "\x1b[1m"
 | 
						|
 | 
						|
/* Keep track of current color of output, and emit ANSI code if it changes. */
 | 
						|
enum console_state {
 | 
						|
    CONSOLE_STATE_DEFAULT=0,
 | 
						|
    CONSOLE_STATE_PROMPT,
 | 
						|
    CONSOLE_STATE_USER_INPUT
 | 
						|
}; 
 | 
						|
 | 
						|
static console_state con_st = CONSOLE_STATE_DEFAULT;
 | 
						|
static bool con_use_color = false;
 | 
						|
 | 
						|
void set_console_state(console_state new_st)
 | 
						|
{
 | 
						|
    if (!con_use_color) return;
 | 
						|
    // only emit color code if state changed
 | 
						|
    if (new_st != con_st) {
 | 
						|
        con_st = new_st;
 | 
						|
        switch(con_st) {
 | 
						|
        case CONSOLE_STATE_DEFAULT:
 | 
						|
            printf(ANSI_COLOR_RESET);
 | 
						|
            return;
 | 
						|
        case CONSOLE_STATE_PROMPT:
 | 
						|
            printf(ANSI_COLOR_YELLOW);
 | 
						|
            return;
 | 
						|
        case CONSOLE_STATE_USER_INPUT:
 | 
						|
            printf(ANSI_BOLD ANSI_COLOR_GREEN);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static const int EOS_TOKEN_ID = 2;
 | 
						|
 | 
						|
// determine number of model parts based on the dimension
 | 
						|
static const std::unordered_map<int, int> LLAMA_N_PARTS = {
 | 
						|
    { 4096, 1 },
 | 
						|
    { 5120, 2 },
 | 
						|
    { 6656, 4 },
 | 
						|
    { 8192, 8 },
 | 
						|
};
 | 
						|
 | 
						|
// default hparams (LLaMA 7B)
 | 
						|
struct llama_hparams {
 | 
						|
    int32_t n_vocab = 32000;
 | 
						|
    int32_t n_ctx   = 512;   // this is provided as user input?
 | 
						|
    int32_t n_embd  = 4096;
 | 
						|
    int32_t n_mult  = 256;
 | 
						|
    int32_t n_head  = 32;
 | 
						|
    int32_t n_layer = 32;
 | 
						|
    int32_t n_rot   = 64;
 | 
						|
    int32_t f16     = 1;
 | 
						|
};
 | 
						|
 | 
						|
struct llama_layer {
 | 
						|
    // normalization
 | 
						|
    struct ggml_tensor * attention_norm;
 | 
						|
 | 
						|
    // attention
 | 
						|
    struct ggml_tensor * wq;
 | 
						|
    struct ggml_tensor * wk;
 | 
						|
    struct ggml_tensor * wv;
 | 
						|
    struct ggml_tensor * wo;
 | 
						|
 | 
						|
    // normalization
 | 
						|
    struct ggml_tensor * ffn_norm;
 | 
						|
 | 
						|
    // ff
 | 
						|
    struct ggml_tensor * w1;
 | 
						|
    struct ggml_tensor * w2;
 | 
						|
    struct ggml_tensor * w3;
 | 
						|
};
 | 
						|
 | 
						|
struct llama_model {
 | 
						|
    llama_hparams hparams;
 | 
						|
 | 
						|
    struct ggml_tensor * tok_embeddings;
 | 
						|
 | 
						|
    struct ggml_tensor * norm;
 | 
						|
    struct ggml_tensor * output;
 | 
						|
 | 
						|
    std::vector<llama_layer> layers;
 | 
						|
 | 
						|
    // key + value memory
 | 
						|
    struct ggml_tensor * memory_k;
 | 
						|
    struct ggml_tensor * memory_v;
 | 
						|
 | 
						|
    //
 | 
						|
    struct ggml_context * ctx;
 | 
						|
    std::unordered_map<std::string, struct ggml_tensor *> tensors;
 | 
						|
};
 | 
						|
 | 
						|
// load the model's weights from a file
 | 
						|
 | 
						|
bool llama_model_load(const std::string & fname, llama_model & model, llama_vocab & vocab, int n_ctx, int n_parts, ggml_type memory_type = GGML_TYPE_F32) {
 | 
						|
    fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
 | 
						|
 | 
						|
    std::vector<char> f_buf(1024*1024);
 | 
						|
 | 
						|
    auto fin = std::ifstream(fname, std::ios::binary);
 | 
						|
    fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
 | 
						|
    if (!fin) {
 | 
						|
        fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // verify magic
 | 
						|
    {
 | 
						|
        uint32_t magic;
 | 
						|
        fin.read((char *) &magic, sizeof(magic));
 | 
						|
        if (magic == FILE_MAGIC_UNVERSIONED) {
 | 
						|
            fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
 | 
						|
                    __func__, fname.c_str());
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        if (magic != FILE_MAGIC) {
 | 
						|
            fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        uint32_t format_version;
 | 
						|
        fin.read((char *) &format_version, sizeof(format_version));
 | 
						|
 | 
						|
        if (format_version != FILE_VERSION) {
 | 
						|
            fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
 | 
						|
                    __func__, fname.c_str(), format_version, FILE_VERSION);
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    int n_ff = 0;
 | 
						|
 | 
						|
    // load hparams
 | 
						|
    {
 | 
						|
        auto & hparams = model.hparams;
 | 
						|
 | 
						|
        fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
 | 
						|
        //fin.read((char *) &hparams.n_ctx,   sizeof(hparams.n_ctx));
 | 
						|
        fin.read((char *) &hparams.n_embd,  sizeof(hparams.n_embd));
 | 
						|
        fin.read((char *) &hparams.n_mult,  sizeof(hparams.n_mult));
 | 
						|
        fin.read((char *) &hparams.n_head,  sizeof(hparams.n_head));
 | 
						|
        fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
 | 
						|
        fin.read((char *) &hparams.n_rot,   sizeof(hparams.n_rot));
 | 
						|
        fin.read((char *) &hparams.f16,     sizeof(hparams.f16));
 | 
						|
 | 
						|
        hparams.n_ctx = n_ctx;
 | 
						|
 | 
						|
        n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
 | 
						|
 | 
						|
        if (n_parts < 1) {
 | 
						|
            n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
 | 
						|
        }
 | 
						|
 | 
						|
        // temp warning to tell the user to use "--n_parts"
 | 
						|
        if (hparams.f16 == 4 && n_parts != 1) {
 | 
						|
            fprintf(stderr, "%s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1\n", __func__, n_parts);
 | 
						|
            fprintf(stderr, "%s: use '--n_parts 1' if necessary\n", __func__);
 | 
						|
        }
 | 
						|
 | 
						|
        fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
 | 
						|
        fprintf(stderr, "%s: n_ctx   = %d\n", __func__, hparams.n_ctx);
 | 
						|
        fprintf(stderr, "%s: n_embd  = %d\n", __func__, hparams.n_embd);
 | 
						|
        fprintf(stderr, "%s: n_mult  = %d\n", __func__, hparams.n_mult);
 | 
						|
        fprintf(stderr, "%s: n_head  = %d\n", __func__, hparams.n_head);
 | 
						|
        fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer);
 | 
						|
        fprintf(stderr, "%s: n_rot   = %d\n", __func__, hparams.n_rot);
 | 
						|
        fprintf(stderr, "%s: f16     = %d\n", __func__, hparams.f16);
 | 
						|
        fprintf(stderr, "%s: n_ff    = %d\n", __func__, n_ff);
 | 
						|
        fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts);
 | 
						|
    }
 | 
						|
 | 
						|
    // load vocab
 | 
						|
    {
 | 
						|
        std::string word;
 | 
						|
        vocab.id_to_token.resize(model.hparams.n_vocab);
 | 
						|
        std::vector<char> tmp(64);
 | 
						|
 | 
						|
        for (int i = 0; i < model.hparams.n_vocab; i++) {
 | 
						|
            uint32_t len;
 | 
						|
            fin.read((char *) &len, sizeof(len));
 | 
						|
 | 
						|
            word.resize(len);
 | 
						|
            if (len > 0) {
 | 
						|
                tmp.resize(len);
 | 
						|
                fin.read(tmp.data(), len);
 | 
						|
                word.assign(tmp.data(), len);
 | 
						|
            } else {
 | 
						|
                word.clear();
 | 
						|
            }
 | 
						|
 | 
						|
            float score;
 | 
						|
            fin.read((char *) &score, sizeof(score));
 | 
						|
 | 
						|
            vocab.token_to_id[word] = i;
 | 
						|
 | 
						|
            auto &tok_score = vocab.id_to_token[i];
 | 
						|
            tok_score.tok = word;
 | 
						|
            tok_score.score = score;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // for the big tensors, we have the option to store the data in 16-bit floats or quantized
 | 
						|
    // in order to save memory and also to speed up the computation
 | 
						|
    // wtype is for per-layer weights, while vtype is for other weights
 | 
						|
    ggml_type wtype, vtype;
 | 
						|
    switch (model.hparams.f16) {
 | 
						|
        case 0: wtype = vtype = GGML_TYPE_F32;  break;
 | 
						|
        case 1: wtype = vtype = GGML_TYPE_F16;  break;
 | 
						|
        case 2: wtype = vtype = GGML_TYPE_Q4_0; break;
 | 
						|
        case 3: wtype = vtype = GGML_TYPE_Q4_1; break;
 | 
						|
        case 4: wtype = GGML_TYPE_Q4_1; vtype = GGML_TYPE_F16; break;
 | 
						|
        default:
 | 
						|
                {
 | 
						|
                    fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
 | 
						|
                            __func__, fname.c_str(), model.hparams.f16);
 | 
						|
                    return false;
 | 
						|
                }
 | 
						|
    }
 | 
						|
 | 
						|
    auto & ctx = model.ctx;
 | 
						|
 | 
						|
    size_t ctx_size = 0;
 | 
						|
 | 
						|
    {
 | 
						|
        const auto & hparams = model.hparams;
 | 
						|
 | 
						|
        const int n_embd  = hparams.n_embd;
 | 
						|
        const int n_layer = hparams.n_layer;
 | 
						|
        const int n_ctx   = hparams.n_ctx;
 | 
						|
        const int n_vocab = hparams.n_vocab;
 | 
						|
 | 
						|
        ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings
 | 
						|
 | 
						|
        ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
 | 
						|
 | 
						|
        ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
 | 
						|
 | 
						|
        ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
 | 
						|
 | 
						|
        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
 | 
						|
        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
 | 
						|
        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
 | 
						|
        ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
 | 
						|
 | 
						|
        ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
 | 
						|
 | 
						|
        ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
 | 
						|
        ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
 | 
						|
        ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
 | 
						|
 | 
						|
        ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
 | 
						|
        ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v
 | 
						|
 | 
						|
        ctx_size += (5 + 10*n_layer)*256; // object overhead
 | 
						|
 | 
						|
        fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
 | 
						|
    }
 | 
						|
 | 
						|
    // create the ggml context
 | 
						|
    {
 | 
						|
        struct ggml_init_params params = {
 | 
						|
            /*.mem_size   =*/ ctx_size,
 | 
						|
            /*.mem_buffer =*/ NULL,
 | 
						|
        };
 | 
						|
 | 
						|
        model.ctx = ggml_init(params);
 | 
						|
        if (!model.ctx) {
 | 
						|
            fprintf(stderr, "%s: ggml_init() failed\n", __func__);
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // prepare memory for the weights
 | 
						|
    {
 | 
						|
        const auto & hparams = model.hparams;
 | 
						|
 | 
						|
        const int n_embd  = hparams.n_embd;
 | 
						|
        const int n_layer = hparams.n_layer;
 | 
						|
        const int n_vocab = hparams.n_vocab;
 | 
						|
 | 
						|
        model.layers.resize(n_layer);
 | 
						|
 | 
						|
        model.tok_embeddings = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
 | 
						|
 | 
						|
        model.norm   = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | 
						|
        model.output = ggml_new_tensor_2d(ctx, vtype,         n_embd, n_vocab);
 | 
						|
 | 
						|
        // map by name
 | 
						|
        model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
 | 
						|
 | 
						|
        model.tensors["norm.weight"]   = model.norm;
 | 
						|
        model.tensors["output.weight"] = model.output;
 | 
						|
 | 
						|
        for (int i = 0; i < n_layer; ++i) {
 | 
						|
            auto & layer = model.layers[i];
 | 
						|
 | 
						|
            layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | 
						|
 | 
						|
            layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
 | 
						|
            layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
 | 
						|
            layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
 | 
						|
            layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
 | 
						|
 | 
						|
            layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | 
						|
 | 
						|
            layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd,   n_ff);
 | 
						|
            layer.w2 = ggml_new_tensor_2d(ctx, wtype,   n_ff, n_embd);
 | 
						|
            layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd,   n_ff);
 | 
						|
 | 
						|
            // map by name
 | 
						|
            model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
 | 
						|
 | 
						|
            model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
 | 
						|
            model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
 | 
						|
            model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
 | 
						|
            model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
 | 
						|
 | 
						|
            model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
 | 
						|
 | 
						|
            model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
 | 
						|
            model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
 | 
						|
            model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // key + value memory
 | 
						|
    {
 | 
						|
        const auto & hparams = model.hparams;
 | 
						|
 | 
						|
        const int n_embd  = hparams.n_embd;
 | 
						|
        const int n_layer = hparams.n_layer;
 | 
						|
        const int n_ctx   = hparams.n_ctx;
 | 
						|
 | 
						|
        const int n_mem      = n_layer*n_ctx;
 | 
						|
        const int n_elements = n_embd*n_mem;
 | 
						|
 | 
						|
        model.memory_k = ggml_new_tensor_1d(ctx, memory_type, n_elements);
 | 
						|
        model.memory_v = ggml_new_tensor_1d(ctx, memory_type, n_elements);
 | 
						|
 | 
						|
        const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
 | 
						|
 | 
						|
        fprintf(stderr, "%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
 | 
						|
    }
 | 
						|
 | 
						|
    const size_t file_offset = fin.tellg();
 | 
						|
 | 
						|
    fin.close();
 | 
						|
 | 
						|
    std::vector<uint8_t> tmp;
 | 
						|
 | 
						|
    for (int i = 0; i < n_parts; ++i) {
 | 
						|
        const int part_id = i;
 | 
						|
        //const int part_id = n_parts - i - 1;
 | 
						|
 | 
						|
        std::string fname_part = fname;
 | 
						|
        if (i > 0) {
 | 
						|
            fname_part += "." + std::to_string(i);
 | 
						|
        }
 | 
						|
 | 
						|
        fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
 | 
						|
 | 
						|
        fin = std::ifstream(fname_part, std::ios::binary);
 | 
						|
        fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
 | 
						|
        fin.seekg(file_offset);
 | 
						|
 | 
						|
        // load weights
 | 
						|
        {
 | 
						|
            int n_tensors = 0;
 | 
						|
            size_t total_size = 0;
 | 
						|
 | 
						|
            fprintf(stderr, "%s: ", __func__);
 | 
						|
 | 
						|
            while (true) {
 | 
						|
                int32_t n_dims;
 | 
						|
                int32_t length;
 | 
						|
                int32_t ftype;
 | 
						|
 | 
						|
                fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
 | 
						|
                fin.read(reinterpret_cast<char *>(&length), sizeof(length));
 | 
						|
                fin.read(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
 | 
						|
 | 
						|
                if (fin.eof()) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
 | 
						|
                int32_t nelements = 1;
 | 
						|
                int32_t ne[2] = { 1, 1 };
 | 
						|
                for (int i = 0; i < n_dims; ++i) {
 | 
						|
                    fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
 | 
						|
                    nelements *= ne[i];
 | 
						|
                }
 | 
						|
 | 
						|
                std::string name(length, 0);
 | 
						|
                fin.read(&name[0], length);
 | 
						|
 | 
						|
                if (model.tensors.find(name.data()) == model.tensors.end()) {
 | 
						|
                    fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
 | 
						|
                    return false;
 | 
						|
                }
 | 
						|
 | 
						|
                // split_type = 0: split by columns
 | 
						|
                // split_type = 1: split by rows
 | 
						|
                int split_type = 0;
 | 
						|
 | 
						|
                // split_type = 0:
 | 
						|
                // regex:
 | 
						|
                //   - tok_embeddings.*
 | 
						|
                //   - layers.*.attention.wo.weight
 | 
						|
                //   - layers.*.feed_forward.w2.weight
 | 
						|
 | 
						|
                // split_type = 1:
 | 
						|
                // regex:
 | 
						|
                //   - output.*
 | 
						|
                //   - layers.*.attention.wq.weight
 | 
						|
                //   - layers.*.attention.wk.weight
 | 
						|
                //   - layers.*.attention.wv.weight
 | 
						|
                //   - layers.*.feed_forward.w1.weight
 | 
						|
                //   - layers.*.feed_forward.w3.weight
 | 
						|
                if (name.find("tok_embeddings") != std::string::npos) {
 | 
						|
                    split_type = 0;
 | 
						|
                } else if (name.find("layers") != std::string::npos) {
 | 
						|
                    if (name.find("attention.wo.weight") != std::string::npos) {
 | 
						|
                        split_type = 0;
 | 
						|
                    } else if (name.find("feed_forward.w2.weight") != std::string::npos) {
 | 
						|
                        split_type = 0;
 | 
						|
                    } else {
 | 
						|
                        split_type = 1;
 | 
						|
                    }
 | 
						|
                } else if (name.find("output") != std::string::npos) {
 | 
						|
                    split_type = 1;
 | 
						|
                }
 | 
						|
 | 
						|
                auto tensor = model.tensors[name.data()];
 | 
						|
 | 
						|
                if (n_dims == 1) {
 | 
						|
                    if (ggml_nelements(tensor) != nelements) {
 | 
						|
                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    if (ggml_nelements(tensor)/n_parts != nelements) {
 | 
						|
                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                if (n_dims == 1) {
 | 
						|
                    if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
 | 
						|
                        fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
 | 
						|
                                __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    if (split_type == 0) {
 | 
						|
                        if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
 | 
						|
                            fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
 | 
						|
                                    __func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
 | 
						|
                            return false;
 | 
						|
                        }
 | 
						|
                    } else {
 | 
						|
                        if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
 | 
						|
                            fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
 | 
						|
                                    __func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
 | 
						|
                            return false;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                if (0) {
 | 
						|
                    static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
 | 
						|
                    fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
 | 
						|
                }
 | 
						|
 | 
						|
                size_t bpe = 0;
 | 
						|
 | 
						|
                switch (ftype) {
 | 
						|
                    case 0: bpe = ggml_type_size(GGML_TYPE_F32);  break;
 | 
						|
                    case 1: bpe = ggml_type_size(GGML_TYPE_F16);  break;
 | 
						|
                    case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
 | 
						|
                    case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
 | 
						|
                    default:
 | 
						|
                            {
 | 
						|
                                fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
 | 
						|
                                return false;
 | 
						|
                            }
 | 
						|
                };
 | 
						|
 | 
						|
                if (n_dims == 1 || n_parts == 1) {
 | 
						|
                    if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
 | 
						|
                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
 | 
						|
                                __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (part_id == 0) {
 | 
						|
                        fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
 | 
						|
                    } else {
 | 
						|
                        fin.seekg(ggml_nbytes(tensor), std::ios::cur);
 | 
						|
                    }
 | 
						|
 | 
						|
                    total_size += ggml_nbytes(tensor);
 | 
						|
                } else {
 | 
						|
                    if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
 | 
						|
                        fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
 | 
						|
                                __func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (split_type == 0) {
 | 
						|
                        const int np0 = ne[0];
 | 
						|
 | 
						|
                        const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
 | 
						|
                        assert(row_size == tensor->nb[1]);
 | 
						|
 | 
						|
                        for (int i1 = 0; i1 < ne[1]; ++i1) {
 | 
						|
                            const size_t offset_row = i1*row_size;
 | 
						|
                            const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
 | 
						|
                            fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
 | 
						|
                        }
 | 
						|
                    } else {
 | 
						|
                        const int np1 = ne[1];
 | 
						|
 | 
						|
                        const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
 | 
						|
 | 
						|
                        for (int i1 = 0; i1 < ne[1]; ++i1) {
 | 
						|
                            const size_t offset_row = (i1 + part_id*np1)*row_size;
 | 
						|
                            fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
 | 
						|
                    total_size += ggml_nbytes(tensor)/n_parts;
 | 
						|
                }
 | 
						|
 | 
						|
                //fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
 | 
						|
                if (++n_tensors % 8 == 0) {
 | 
						|
                    fprintf(stderr, ".");
 | 
						|
                    fflush(stderr);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            fprintf(stderr, " done\n");
 | 
						|
 | 
						|
            fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
 | 
						|
        }
 | 
						|
 | 
						|
        fin.close();
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
// evaluate the transformer
 | 
						|
//
 | 
						|
//   - model:     the model
 | 
						|
//   - n_threads: number of threads to use
 | 
						|
//   - n_past:    the context size so far
 | 
						|
//   - embd_inp:  the embeddings of the tokens in the context
 | 
						|
//   - embd_w:    the predicted logits for the next token
 | 
						|
//
 | 
						|
// The GPT-J model requires about 16MB of memory per input token.
 | 
						|
//
 | 
						|
bool llama_eval(
 | 
						|
        const llama_model & model,
 | 
						|
        const int n_threads,
 | 
						|
        const int n_past,
 | 
						|
        const std::vector<llama_vocab::id> & embd_inp,
 | 
						|
              std::vector<float>           & embd_w,
 | 
						|
              size_t                       & mem_per_token,
 | 
						|
              bool return_all_logits = false) {
 | 
						|
    const int N = embd_inp.size();
 | 
						|
 | 
						|
    const auto & hparams = model.hparams;
 | 
						|
 | 
						|
    const int n_embd  = hparams.n_embd;
 | 
						|
    const int n_layer = hparams.n_layer;
 | 
						|
    const int n_ctx   = hparams.n_ctx;
 | 
						|
    const int n_head  = hparams.n_head;
 | 
						|
    const int n_vocab = hparams.n_vocab;
 | 
						|
    const int n_rot   = hparams.n_embd/hparams.n_head;
 | 
						|
 | 
						|
    // TODO: check if this size scales with n_ctx linearly and remove constant. somehow I feel it wasn't the case
 | 
						|
    // static size_t buf_size = hparams.n_ctx*1024*1024;
 | 
						|
    static size_t buf_size = 512u*1024*1024;
 | 
						|
    static void * buf = malloc(buf_size);
 | 
						|
 | 
						|
    if (mem_per_token > 0 && mem_per_token*N > buf_size) {
 | 
						|
        const size_t buf_size_new = 1.3*(mem_per_token*N); // add 30% to account for ggml object overhead
 | 
						|
        //fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
 | 
						|
 | 
						|
        // reallocate
 | 
						|
        buf_size = buf_size_new;
 | 
						|
        buf = realloc(buf, buf_size);
 | 
						|
        if (buf == nullptr) {
 | 
						|
            fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    struct ggml_init_params params = {
 | 
						|
        /*.mem_size   =*/ buf_size,
 | 
						|
        /*.mem_buffer =*/ buf,
 | 
						|
    };
 | 
						|
 | 
						|
    struct ggml_context * ctx0 = ggml_init(params);
 | 
						|
    ggml_cgraph gf = {};
 | 
						|
    gf.n_threads = n_threads;
 | 
						|
 | 
						|
    struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
 | 
						|
    memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
 | 
						|
 | 
						|
    struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
 | 
						|
 | 
						|
    for (int il = 0; il < n_layer; ++il) {
 | 
						|
        struct ggml_tensor * inpSA = inpL;
 | 
						|
 | 
						|
        struct ggml_tensor * cur;
 | 
						|
 | 
						|
        // norm
 | 
						|
        {
 | 
						|
            cur = ggml_rms_norm(ctx0, inpL);
 | 
						|
 | 
						|
            // cur = attention_norm*cur
 | 
						|
            cur = ggml_mul(ctx0,
 | 
						|
                        ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
 | 
						|
                        cur);
 | 
						|
        }
 | 
						|
 | 
						|
        // self-attention
 | 
						|
        {
 | 
						|
            struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
 | 
						|
            struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
 | 
						|
            struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
 | 
						|
 | 
						|
            // store key and value to memory
 | 
						|
            if (N >= 1) {
 | 
						|
                struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
 | 
						|
                struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
 | 
						|
 | 
						|
                ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
 | 
						|
                ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
 | 
						|
            }
 | 
						|
 | 
						|
            // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
 | 
						|
            struct ggml_tensor * Q =
 | 
						|
                ggml_permute(ctx0,
 | 
						|
                        ggml_rope(ctx0,
 | 
						|
                            ggml_cpy(ctx0,
 | 
						|
                                Qcur,
 | 
						|
                                ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
 | 
						|
                            n_past, n_rot, 0),
 | 
						|
                        0, 2, 1, 3);
 | 
						|
 | 
						|
            // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
 | 
						|
            struct ggml_tensor * K =
 | 
						|
                ggml_permute(ctx0,
 | 
						|
                        ggml_rope(ctx0,
 | 
						|
                            ggml_reshape_3d(ctx0,
 | 
						|
                                ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
 | 
						|
                                n_embd/n_head, n_head, n_past + N),
 | 
						|
                            n_past, n_rot, 1),
 | 
						|
                        0, 2, 1, 3);
 | 
						|
 | 
						|
            // K * Q
 | 
						|
            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | 
						|
 | 
						|
            // KQ_scaled = KQ / sqrt(n_embd/n_head)
 | 
						|
            struct ggml_tensor * KQ_scaled =
 | 
						|
                ggml_scale(ctx0,
 | 
						|
                        KQ,
 | 
						|
                        ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
 | 
						|
                        );
 | 
						|
 | 
						|
            // KQ_masked = mask_past(KQ_scaled)
 | 
						|
            struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
 | 
						|
 | 
						|
            // KQ = soft_max(KQ_masked)
 | 
						|
            struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
 | 
						|
 | 
						|
            // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
 | 
						|
            struct ggml_tensor * V_trans =
 | 
						|
                ggml_permute(ctx0,
 | 
						|
                        ggml_reshape_3d(ctx0,
 | 
						|
                            ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
 | 
						|
                            n_embd/n_head, n_head, n_past + N),
 | 
						|
                        1, 2, 0, 3);
 | 
						|
 | 
						|
            // KQV = transpose(V) * KQ_soft_max
 | 
						|
            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
 | 
						|
 | 
						|
            // KQV_merged = KQV.permute(0, 2, 1, 3)
 | 
						|
            struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | 
						|
 | 
						|
            // cur = KQV_merged.contiguous().view(n_embd, N)
 | 
						|
            cur = ggml_cpy(ctx0,
 | 
						|
                    KQV_merged,
 | 
						|
                    ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
 | 
						|
 | 
						|
            // projection (no bias)
 | 
						|
            cur = ggml_mul_mat(ctx0,
 | 
						|
                    model.layers[il].wo,
 | 
						|
                    cur);
 | 
						|
        }
 | 
						|
 | 
						|
        struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
 | 
						|
 | 
						|
        // feed-forward network
 | 
						|
        {
 | 
						|
            // norm
 | 
						|
            {
 | 
						|
                cur = ggml_rms_norm(ctx0, inpFF);
 | 
						|
 | 
						|
                // cur = ffn_norm*cur
 | 
						|
                cur = ggml_mul(ctx0,
 | 
						|
                        ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
 | 
						|
                        cur);
 | 
						|
            }
 | 
						|
 | 
						|
            struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
 | 
						|
                    model.layers[il].w3,
 | 
						|
                    cur);
 | 
						|
 | 
						|
 | 
						|
            cur = ggml_mul_mat(ctx0,
 | 
						|
                    model.layers[il].w1,
 | 
						|
                    cur);
 | 
						|
 | 
						|
            // SILU activation
 | 
						|
            cur = ggml_silu(ctx0, cur);
 | 
						|
 | 
						|
            cur = ggml_mul(ctx0, cur, tmp);
 | 
						|
 | 
						|
            cur = ggml_mul_mat(ctx0,
 | 
						|
                    model.layers[il].w2,
 | 
						|
                    cur);
 | 
						|
        }
 | 
						|
 | 
						|
        cur  = ggml_add(ctx0, cur, inpFF);
 | 
						|
 | 
						|
        // input for next layer
 | 
						|
        inpL = cur;
 | 
						|
    }
 | 
						|
 | 
						|
    // norm
 | 
						|
    {
 | 
						|
        inpL = ggml_rms_norm(ctx0, inpL);
 | 
						|
 | 
						|
        // inpL = norm*inpL
 | 
						|
        inpL = ggml_mul(ctx0,
 | 
						|
                    ggml_repeat(ctx0, model.norm, inpL),
 | 
						|
                    inpL);
 | 
						|
    }
 | 
						|
 | 
						|
    // lm_head
 | 
						|
    {
 | 
						|
        inpL = ggml_mul_mat(ctx0, model.output, inpL);
 | 
						|
    }
 | 
						|
 | 
						|
    // logits -> probs
 | 
						|
    //inpL = ggml_soft_max(ctx0, inpL);
 | 
						|
 | 
						|
    // run the computation
 | 
						|
    ggml_build_forward_expand(&gf, inpL);
 | 
						|
    ggml_graph_compute       (ctx0, &gf);
 | 
						|
 | 
						|
    //if (n_past%100 == 0) {
 | 
						|
    //    ggml_graph_print   (&gf);
 | 
						|
    //    ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
 | 
						|
    //}
 | 
						|
 | 
						|
    //embd_w.resize(n_vocab*N);
 | 
						|
    //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
 | 
						|
 | 
						|
    if (return_all_logits) {
 | 
						|
        embd_w.resize(n_vocab * N);
 | 
						|
        memcpy(embd_w.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
 | 
						|
    } else {
 | 
						|
        // return result for just the last token
 | 
						|
        embd_w.resize(n_vocab);
 | 
						|
        memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
 | 
						|
    }
 | 
						|
 | 
						|
    if (mem_per_token == 0) {
 | 
						|
        mem_per_token = ggml_used_mem(ctx0)/N;
 | 
						|
    }
 | 
						|
    //fprintf(stderr, "used_mem = %zu\n", ggml_used_mem(ctx0));
 | 
						|
 | 
						|
    ggml_free(ctx0);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<double> softmax(const std::vector<float>& logits) {
 | 
						|
    std::vector<double> probs(logits.size());
 | 
						|
    float max_logit = logits[0];
 | 
						|
    for (float v : logits) max_logit = std::max(max_logit, v);
 | 
						|
    double sum_exp = 0.0;
 | 
						|
    for (size_t i = 0; i < logits.size(); i++) {
 | 
						|
        // Subtract the maximum logit value from the current logit value for numerical stability
 | 
						|
        float logit = logits[i] - max_logit;
 | 
						|
        double exp_logit = std::exp(logit);
 | 
						|
        sum_exp += exp_logit;
 | 
						|
        probs[i] = exp_logit;
 | 
						|
    }
 | 
						|
    for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
 | 
						|
    return probs;
 | 
						|
}
 | 
						|
 | 
						|
void perplexity(const llama_vocab &vocab, const llama_model &model, const gpt_params ¶ms, size_t mem_per_token) {
 | 
						|
    // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
 | 
						|
    // Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
 | 
						|
    // Output: `perplexity: 13.5106 [114/114]`
 | 
						|
    std::vector<llama_vocab::id> tokens = ::llama_tokenize(vocab, params.prompt, true);
 | 
						|
 | 
						|
    int count = 0;
 | 
						|
    double nll = 0.0;
 | 
						|
    int seq_count = tokens.size() / params.n_ctx;
 | 
						|
    printf("Calculating perplexity over %d chunks\n", seq_count);
 | 
						|
    for (int i = 0; i < seq_count; ++i) {
 | 
						|
        int start = i * params.n_ctx;
 | 
						|
        int end = start + params.n_ctx - 1;
 | 
						|
        std::vector<llama_vocab::id> embd(tokens.begin() + start, tokens.begin() + end);
 | 
						|
        std::vector<float> logits;
 | 
						|
        auto start_t = std::chrono::high_resolution_clock::now();
 | 
						|
        if (!llama_eval(model, params.n_threads, 0, embd, logits, mem_per_token, true)) {
 | 
						|
            fprintf(stderr, "Failed to predict\n");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        auto end_t = std::chrono::high_resolution_clock::now();
 | 
						|
        if (i == 0) {
 | 
						|
            double seconds = std::chrono::duration<double>(end_t - start_t).count();
 | 
						|
            printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
 | 
						|
        }
 | 
						|
        // We get the logits for all the tokens in the context window (params.n_ctx)
 | 
						|
        // from llama_eval above.  Now, based on https://huggingface.co/docs/transformers/perplexity,
 | 
						|
        // calculate the perplexity over the last half the window (so the model always has
 | 
						|
        // some context to predict the token).
 | 
						|
        //
 | 
						|
        // We rely on the fact that attention in the forward pass only looks at previous
 | 
						|
        // tokens here, so the logits returned for each token are an accurate representation
 | 
						|
        // of what the model would have predicted at that point.
 | 
						|
        //
 | 
						|
        // Example, we have a context window of 512, we will compute perplexity for each of the
 | 
						|
        // last 256 tokens.  Then, we split the input up into context window size chunks to
 | 
						|
        // process the entire prompt.
 | 
						|
        for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
 | 
						|
            // Calculate probability of next token, given the previous ones.
 | 
						|
            int n_vocab = model.hparams.n_vocab;
 | 
						|
            std::vector<float> tok_logits(
 | 
						|
                logits.begin() + j * n_vocab,
 | 
						|
                logits.begin() + (j + 1) * n_vocab);
 | 
						|
            double prob = softmax(tok_logits)[tokens[start + j + 1]];
 | 
						|
            nll += -std::log(prob);
 | 
						|
            ++count;
 | 
						|
        }
 | 
						|
        // perplexity is e^(average negative log-likelihood)
 | 
						|
        printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
 | 
						|
        fflush(stdout);
 | 
						|
    }
 | 
						|
    printf("\n");
 | 
						|
}
 | 
						|
 | 
						|
static bool is_interacting = false;
 | 
						|
 | 
						|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | 
						|
void sigint_handler(int signo) {
 | 
						|
    set_console_state(CONSOLE_STATE_DEFAULT);
 | 
						|
    printf("\n"); // this also force flush stdout.
 | 
						|
    if (signo == SIGINT) {
 | 
						|
        if (!is_interacting) {
 | 
						|
            is_interacting=true;
 | 
						|
        } else {
 | 
						|
            _exit(130);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
const char * llama_print_system_info(void) {
 | 
						|
    static std::string s;
 | 
						|
 | 
						|
    s  = "";
 | 
						|
    s += "AVX = "       + std::to_string(ggml_cpu_has_avx())       + " | ";
 | 
						|
    s += "AVX2 = "      + std::to_string(ggml_cpu_has_avx2())      + " | ";
 | 
						|
    s += "AVX512 = "    + std::to_string(ggml_cpu_has_avx512())    + " | ";
 | 
						|
    s += "FMA = "       + std::to_string(ggml_cpu_has_fma())       + " | ";
 | 
						|
    s += "NEON = "      + std::to_string(ggml_cpu_has_neon())      + " | ";
 | 
						|
    s += "ARM_FMA = "   + std::to_string(ggml_cpu_has_arm_fma())   + " | ";
 | 
						|
    s += "F16C = "      + std::to_string(ggml_cpu_has_f16c())      + " | ";
 | 
						|
    s += "FP16_VA = "   + std::to_string(ggml_cpu_has_fp16_va())   + " | ";
 | 
						|
    s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
 | 
						|
    s += "BLAS = "      + std::to_string(ggml_cpu_has_blas())      + " | ";
 | 
						|
    s += "SSE3 = "      + std::to_string(ggml_cpu_has_sse3())      + " | ";
 | 
						|
    s += "VSX = "       + std::to_string(ggml_cpu_has_vsx())       + " | ";
 | 
						|
 | 
						|
    return s.c_str();
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    ggml_time_init();
 | 
						|
    const int64_t t_main_start_us = ggml_time_us();
 | 
						|
 | 
						|
    gpt_params params;
 | 
						|
    params.model = "models/llama-7B/ggml-model.bin";
 | 
						|
 | 
						|
    if (gpt_params_parse(argc, argv, params) == false) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (params.n_ctx > 2048) {
 | 
						|
        fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
 | 
						|
                "expect poor results\n", __func__, params.n_ctx);
 | 
						|
    }
 | 
						|
 | 
						|
    if (params.seed < 0) {
 | 
						|
        params.seed = time(NULL);
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
 | 
						|
 | 
						|
    std::mt19937 rng(params.seed);
 | 
						|
    if (params.random_prompt) {
 | 
						|
        params.prompt = gpt_random_prompt(rng);
 | 
						|
    }
 | 
						|
 | 
						|
    // save choice to use color for later
 | 
						|
    // (note for later: this is a slightly awkward choice)
 | 
						|
    con_use_color = params.use_color;
 | 
						|
 | 
						|
//    params.prompt = R"(// this function checks if the number n is prime
 | 
						|
//bool is_prime(int n) {)";
 | 
						|
 | 
						|
    int64_t t_load_us = 0;
 | 
						|
 | 
						|
    llama_vocab vocab;
 | 
						|
    llama_model model;
 | 
						|
 | 
						|
    // load the model
 | 
						|
    {
 | 
						|
        const ggml_type memory_type = params.memory_f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
 | 
						|
        const int64_t t_start_us = ggml_time_us();
 | 
						|
        if (!llama_model_load(params.model, model, vocab, params.n_ctx, params.n_parts, memory_type)) {
 | 
						|
            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
 | 
						|
        t_load_us = ggml_time_us() - t_start_us;
 | 
						|
    }
 | 
						|
 | 
						|
    // print system information
 | 
						|
    {
 | 
						|
        fprintf(stderr, "\n");
 | 
						|
        fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
 | 
						|
                params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<float> logits;
 | 
						|
 | 
						|
    // determine the required inference memory per token:
 | 
						|
    size_t mem_per_token = 0;
 | 
						|
    llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
 | 
						|
 | 
						|
    if (params.perplexity) {
 | 
						|
        perplexity(vocab, model, params, mem_per_token);
 | 
						|
        exit(0);
 | 
						|
    }
 | 
						|
 | 
						|
    int n_past = 0;
 | 
						|
 | 
						|
    int64_t t_sample_us  = 0;
 | 
						|
    int64_t t_predict_us = 0;
 | 
						|
 | 
						|
    // Add a space in front of the first character to match OG llama tokenizer behavior
 | 
						|
    params.prompt.insert(0, 1, ' ');
 | 
						|
    // tokenize the prompt
 | 
						|
    std::vector<llama_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);
 | 
						|
 | 
						|
    params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
 | 
						|
 | 
						|
    // prefix & suffix for instruct mode
 | 
						|
    const std::vector<llama_vocab::id> inp_pfx = ::llama_tokenize(vocab, "\n\n### Instruction:\n\n", true);
 | 
						|
    const std::vector<llama_vocab::id> inp_sfx = ::llama_tokenize(vocab, "\n\n### Response:\n\n", false);
 | 
						|
 | 
						|
    // in instruct mode, we inject a prefix and a suffix to each input by the user
 | 
						|
    if (params.instruct) {
 | 
						|
        params.interactive = true;
 | 
						|
        params.antiprompt.push_back("### Instruction:\n\n");
 | 
						|
    }
 | 
						|
 | 
						|
    // enable interactive mode if reverse prompt is specified
 | 
						|
    if (params.antiprompt.size() != 0) {
 | 
						|
        params.interactive = true;
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
    fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
 | 
						|
    fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
 | 
						|
    for (int i = 0; i < (int) embd_inp.size(); i++) {
 | 
						|
        fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).tok.c_str());
 | 
						|
    }
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
    if (params.interactive) {
 | 
						|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | 
						|
        struct sigaction sigint_action;
 | 
						|
        sigint_action.sa_handler = sigint_handler;
 | 
						|
        sigemptyset (&sigint_action.sa_mask);
 | 
						|
        sigint_action.sa_flags = 0;
 | 
						|
        sigaction(SIGINT, &sigint_action, NULL);
 | 
						|
#elif defined (_WIN32)
 | 
						|
        signal(SIGINT, sigint_handler);
 | 
						|
#endif
 | 
						|
 | 
						|
        fprintf(stderr, "%s: interactive mode on.\n", __func__);
 | 
						|
 | 
						|
        if(params.antiprompt.size()) {
 | 
						|
            for (auto antiprompt : params.antiprompt) {
 | 
						|
                fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
 | 
						|
    fprintf(stderr, "\n\n");
 | 
						|
 | 
						|
    std::vector<llama_vocab::id> embd;
 | 
						|
 | 
						|
    int last_n_size = params.repeat_last_n;
 | 
						|
    std::vector<llama_vocab::id> last_n_tokens(last_n_size);
 | 
						|
    std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
 | 
						|
 | 
						|
    if (params.interactive) {
 | 
						|
        fprintf(stderr, "== Running in interactive mode. ==\n"
 | 
						|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | 
						|
               " - Press Ctrl+C to interject at any time.\n"
 | 
						|
#endif
 | 
						|
               " - Press Return to return control to LLaMa.\n"
 | 
						|
               " - If you want to submit another line, end your input in '\\'.\n\n");
 | 
						|
        is_interacting = true;
 | 
						|
    }
 | 
						|
 | 
						|
    int input_consumed = 0;
 | 
						|
    bool input_noecho = false;
 | 
						|
 | 
						|
    int remaining_tokens = params.n_predict;
 | 
						|
 | 
						|
#if defined (_WIN32)
 | 
						|
  if (params.use_color) {
 | 
						|
        // Enable ANSI colors on Windows 10+
 | 
						|
        unsigned long dwMode = 0;
 | 
						|
        void* hConOut = GetStdHandle((unsigned long)-11); // STD_OUTPUT_HANDLE (-11)
 | 
						|
        if (hConOut && hConOut != (void*)-1 && GetConsoleMode(hConOut, &dwMode) && !(dwMode & 0x4)) {
 | 
						|
            SetConsoleMode(hConOut, dwMode | 0x4); // ENABLE_VIRTUAL_TERMINAL_PROCESSING (0x4)
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    // the first thing we will do is to output the prompt, so set color accordingly
 | 
						|
    set_console_state(CONSOLE_STATE_PROMPT);
 | 
						|
 | 
						|
    while (remaining_tokens > 0 || params.interactive) {
 | 
						|
        // predict
 | 
						|
        if (embd.size() > 0) {
 | 
						|
            const int64_t t_start_us = ggml_time_us();
 | 
						|
 | 
						|
            if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
 | 
						|
                fprintf(stderr, "Failed to predict\n");
 | 
						|
                return 1;
 | 
						|
            }
 | 
						|
 | 
						|
            t_predict_us += ggml_time_us() - t_start_us;
 | 
						|
        }
 | 
						|
 | 
						|
        n_past += embd.size();
 | 
						|
        embd.clear();
 | 
						|
 | 
						|
        if ((int) embd_inp.size() <= input_consumed) {
 | 
						|
            // out of user input, sample next token
 | 
						|
            const float top_k = params.top_k;
 | 
						|
            const float top_p = params.top_p;
 | 
						|
            const float temp  = params.temp;
 | 
						|
            const float repeat_penalty = params.repeat_penalty;
 | 
						|
 | 
						|
            const int n_vocab = model.hparams.n_vocab;
 | 
						|
 | 
						|
            llama_vocab::id id = 0;
 | 
						|
 | 
						|
            {
 | 
						|
                const int64_t t_start_sample_us = ggml_time_us();
 | 
						|
 | 
						|
                if (params.ignore_eos) {
 | 
						|
                    // set the logit of the eos token to zero to avoid sampling it
 | 
						|
                    logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
 | 
						|
                }
 | 
						|
 | 
						|
                id = llama_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng);
 | 
						|
 | 
						|
                last_n_tokens.erase(last_n_tokens.begin());
 | 
						|
                last_n_tokens.push_back(id);
 | 
						|
 | 
						|
                t_sample_us += ggml_time_us() - t_start_sample_us;
 | 
						|
            }
 | 
						|
 | 
						|
            // add it to the context
 | 
						|
            embd.push_back(id);
 | 
						|
 | 
						|
            // echo this to console
 | 
						|
            input_noecho = false;
 | 
						|
 | 
						|
            // decrement remaining sampling budget
 | 
						|
            --remaining_tokens;
 | 
						|
        } else {
 | 
						|
            // some user input remains from prompt or interaction, forward it to processing
 | 
						|
            while ((int) embd_inp.size() > input_consumed) {
 | 
						|
                embd.push_back(embd_inp[input_consumed]);
 | 
						|
                last_n_tokens.erase(last_n_tokens.begin());
 | 
						|
                last_n_tokens.push_back(embd_inp[input_consumed]);
 | 
						|
                ++input_consumed;
 | 
						|
                if ((int) embd.size() >= params.n_batch) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // display text
 | 
						|
        if (!input_noecho) {
 | 
						|
            for (auto id : embd) {
 | 
						|
                printf("%s", vocab.id_to_token[id].tok.c_str());
 | 
						|
            }
 | 
						|
            fflush(stdout);
 | 
						|
        }
 | 
						|
        // reset color to default if we there is no pending user input
 | 
						|
        if (!input_noecho && (int)embd_inp.size() == input_consumed) {
 | 
						|
            set_console_state(CONSOLE_STATE_DEFAULT);
 | 
						|
        }
 | 
						|
 | 
						|
        // in interactive mode, and not currently processing queued inputs;
 | 
						|
        // check if we should prompt the user for more
 | 
						|
        if (params.interactive && (int) embd_inp.size() <= input_consumed) {
 | 
						|
            // check for reverse prompt
 | 
						|
            std::string last_output;
 | 
						|
            for (auto id : last_n_tokens) {
 | 
						|
                last_output += vocab.id_to_token[id].tok;
 | 
						|
            }
 | 
						|
 | 
						|
            // Check if each of the reverse prompts appears at the end of the output.
 | 
						|
            for (std::string antiprompt : params.antiprompt) {
 | 
						|
                if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
 | 
						|
                    is_interacting = true;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (is_interacting) {
 | 
						|
                // potentially set color to indicate we are taking user input
 | 
						|
                set_console_state(CONSOLE_STATE_USER_INPUT);
 | 
						|
 | 
						|
                if (params.instruct) {
 | 
						|
                    input_consumed = embd_inp.size();
 | 
						|
                    embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
 | 
						|
 | 
						|
                    printf("\n> ");
 | 
						|
                }
 | 
						|
 | 
						|
                std::string buffer;
 | 
						|
                std::string line;
 | 
						|
                bool another_line = true;
 | 
						|
                do {
 | 
						|
                    std::getline(std::cin, line);
 | 
						|
                    if (line.empty() || line.back() != '\\') {
 | 
						|
                        another_line = false;
 | 
						|
                    } else {
 | 
						|
                        line.pop_back(); // Remove the continue character
 | 
						|
                    }
 | 
						|
                    buffer += line + '\n'; // Append the line to the result
 | 
						|
                } while (another_line);
 | 
						|
 | 
						|
                // done taking input, reset color
 | 
						|
                set_console_state(CONSOLE_STATE_DEFAULT);
 | 
						|
 | 
						|
                std::vector<llama_vocab::id> line_inp = ::llama_tokenize(vocab, buffer, false);
 | 
						|
                embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
 | 
						|
 | 
						|
                if (params.instruct) {
 | 
						|
                    embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
 | 
						|
                }
 | 
						|
 | 
						|
                remaining_tokens -= line_inp.size();
 | 
						|
 | 
						|
                input_noecho = true; // do not echo this again
 | 
						|
            }
 | 
						|
            is_interacting = false;
 | 
						|
        }
 | 
						|
 | 
						|
        // end of text token
 | 
						|
        if (embd.back() == EOS_TOKEN_ID) {
 | 
						|
            if (params.interactive) {
 | 
						|
                is_interacting = true;
 | 
						|
            } else {
 | 
						|
                fprintf(stderr, " [end of text]\n");
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
 | 
						|
        if (params.interactive && remaining_tokens <= 0) {
 | 
						|
            remaining_tokens = params.n_predict;
 | 
						|
            is_interacting = true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#if defined (_WIN32)
 | 
						|
    signal(SIGINT, SIG_DFL);
 | 
						|
#endif
 | 
						|
 | 
						|
    // report timing
 | 
						|
    {
 | 
						|
        const int64_t t_main_end_us = ggml_time_us();
 | 
						|
 | 
						|
        fprintf(stderr, "\n\n");
 | 
						|
        fprintf(stderr, "%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
 | 
						|
        fprintf(stderr, "%s:     load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
 | 
						|
        fprintf(stderr, "%s:   sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
 | 
						|
        fprintf(stderr, "%s:  predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
 | 
						|
        fprintf(stderr, "%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
 | 
						|
    }
 | 
						|
 | 
						|
    ggml_free(model.ctx);
 | 
						|
 | 
						|
    set_console_state(CONSOLE_STATE_DEFAULT);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |