mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* CUDA: int8 tensor cores for MMQ (legacy quants) * fix out-of-bounds writes * __builtin_assume -> GGML_CUDA_ASSUME * fix writeback returning too early
		
			
				
	
	
		
			96 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			96 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
#include "common.cuh"
 | 
						|
 | 
						|
struct mma_int_A_I16K8 {
 | 
						|
    static constexpr int I  = 16;
 | 
						|
    static constexpr int K  = 8;
 | 
						|
    static constexpr int ne = 4;
 | 
						|
 | 
						|
    int x[ne] = {0};
 | 
						|
 | 
						|
    static __device__ __forceinline__ int get_i(const int l) {
 | 
						|
        const int ret = (l%2) * (I/2) + threadIdx.x / (K/2);
 | 
						|
        GGML_CUDA_ASSUME(ret >= 0);
 | 
						|
        GGML_CUDA_ASSUME(ret <  I);
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    static __device__ __forceinline__ int get_k(const int l) {
 | 
						|
        const int ret = (l/2) * (K/2) + threadIdx.x % (K/2);
 | 
						|
        GGML_CUDA_ASSUME(ret >= 0);
 | 
						|
        GGML_CUDA_ASSUME(ret <  K);
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct mma_int_B_J8K8 {
 | 
						|
    static constexpr int J  = 8;
 | 
						|
    static constexpr int K  = 8;
 | 
						|
    static constexpr int ne = 2;
 | 
						|
 | 
						|
    int x[ne] = {0};
 | 
						|
 | 
						|
    static __device__ __forceinline__ int get_j(const int /* l */) {
 | 
						|
        const int ret = threadIdx.x / (K/2);
 | 
						|
        GGML_CUDA_ASSUME(ret >= 0);
 | 
						|
        GGML_CUDA_ASSUME(ret <  J);
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    static __device__ __forceinline__ int get_k(const int l) {
 | 
						|
        const int ret = l * (K/2) + threadIdx.x % (K/2);
 | 
						|
        GGML_CUDA_ASSUME(ret >= 0);
 | 
						|
        GGML_CUDA_ASSUME(ret <  K);
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
struct mma_int_C_I16J8 {
 | 
						|
    static constexpr int I  = 16;
 | 
						|
    static constexpr int J  = 8;
 | 
						|
    static constexpr int ne = 4;
 | 
						|
 | 
						|
    int x[ne] = {0};
 | 
						|
 | 
						|
    static __device__ __forceinline__ int get_i(const int l) {
 | 
						|
        const int ret = (l/2) * (I/2) + threadIdx.x / (J/2);
 | 
						|
        GGML_CUDA_ASSUME(ret >= 0);
 | 
						|
        GGML_CUDA_ASSUME(ret <  I);
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    static __device__ __forceinline__ int get_j(const int l) {
 | 
						|
        const int ret = 2 * (threadIdx.x % (J/2)) + l%2;
 | 
						|
        GGML_CUDA_ASSUME(ret >= 0);
 | 
						|
        GGML_CUDA_ASSUME(ret <  J);
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    __device__ __forceinline__ void mma_K8(const mma_int_A_I16K8 & mma_A, const mma_int_B_J8K8 & mma_B) {
 | 
						|
#ifdef INT8_MMA_AVAILABLE
 | 
						|
#if __CUDA_ARCH__ >= CC_AMPERE
 | 
						|
        asm("mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
 | 
						|
            : "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
 | 
						|
            : "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_A.x[2]), "r"(mma_A.x[3]), "r"(mma_B.x[0]), "r"(mma_B.x[1]));
 | 
						|
#else
 | 
						|
        // On Turing m16n8k32 mma is not available, use 4x m8n8k16 mma instead:
 | 
						|
        asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
 | 
						|
            : "+r"(x[0]), "+r"(x[1])
 | 
						|
            : "r"(mma_A.x[0]), "r"(mma_B.x[0]));
 | 
						|
        asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
 | 
						|
            : "+r"(x[2]), "+r"(x[3])
 | 
						|
            : "r"(mma_A.x[1]), "r"(mma_B.x[0]));
 | 
						|
        asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
 | 
						|
            : "+r"(x[0]), "+r"(x[1])
 | 
						|
            : "r"(mma_A.x[2]), "r"(mma_B.x[1]));
 | 
						|
        asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
 | 
						|
            : "+r"(x[2]), "+r"(x[3])
 | 
						|
            : "r"(mma_A.x[3]), "r"(mma_B.x[1]));
 | 
						|
#endif // __CUDA_ARCH__ >= CC_AMPERE
 | 
						|
#else
 | 
						|
        GGML_UNUSED(mma_A);
 | 
						|
        GGML_UNUSED(mma_B);
 | 
						|
        NO_DEVICE_CODE;
 | 
						|
#endif // INT8_MMA_AVAILABLE
 | 
						|
    }
 | 
						|
};
 |