mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 d9d54e498d
			
		
	
	d9d54e498d
	
	
	
		
			
			* speculative : refactor and add a simpler example ggml-ci * speculative : clean-up and add comments and TODOs [no ci] * speculative : manage context in common_speculative ggml-ci * speculative : simplify ggml-ci * speculative : simplify (cont) ggml-ci * speculative : add --draft-min CLI arg * speculative : minor fixup * make : build fixes * speculative : do not redraft previous drafts ggml-ci * speculative : fix the draft sampling ggml-ci * speculative : fix compile warning * common : refactor args ggml-ci * common : change defaults [no ci] * common : final touches ggml-ci
		
			
				
	
	
		
			592 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			592 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "arg.h"
 | |
| #include "common.h"
 | |
| #include "console.h"
 | |
| #include "sampling.h"
 | |
| #include "log.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cinttypes>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <ctime>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
| #include <signal.h>
 | |
| #include <unistd.h>
 | |
| #elif defined (_WIN32)
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #ifndef NOMINMAX
 | |
| #define NOMINMAX
 | |
| #endif
 | |
| #include <windows.h>
 | |
| #include <signal.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| static llama_context           ** g_ctx;
 | |
| static llama_model             ** g_model;
 | |
| static common_sampler          ** g_smpl;
 | |
| static common_params            * g_params;
 | |
| static std::vector<llama_token> * g_input_tokens;
 | |
| static std::ostringstream       * g_output_ss;
 | |
| static std::vector<llama_token> * g_output_tokens;
 | |
| 
 | |
| static bool is_interacting = false;
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | |
| static void sigint_handler(int signo) {
 | |
|     if (signo == SIGINT) {
 | |
|         if (!is_interacting) {
 | |
|             is_interacting = true;
 | |
|         } else {
 | |
|             console::cleanup();
 | |
|             LOG("\n");
 | |
|             common_perf_print(*g_ctx, *g_smpl);
 | |
| 
 | |
|             // make sure all logs are flushed
 | |
|             LOG("Interrupted by user\n");
 | |
|             common_log_pause(common_log_main());
 | |
| 
 | |
|             _exit(130);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     common_params params;
 | |
|     g_params = ¶ms;
 | |
| 
 | |
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     common_init();
 | |
| 
 | |
|     auto & sparams = params.sampling;
 | |
| 
 | |
|     console::init(params.simple_io, params.use_color);
 | |
|     atexit([]() { console::cleanup(); });
 | |
| 
 | |
|     if (params.logits_all) {
 | |
|         LOG_ERR("\n************\n");
 | |
|         LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
 | |
|         LOG_ERR("************\n\n");
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (params.embedding) {
 | |
|         LOG_ERR("\n************\n");
 | |
|         LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
 | |
|         LOG_ERR("************\n\n");
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (params.n_ctx != 0 && params.n_ctx < 8) {
 | |
|         LOG_WRN("%s: minimum context size is 8, using minimum size.\n", __func__);
 | |
|         params.n_ctx = 8;
 | |
|     }
 | |
| 
 | |
|     if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
 | |
|         LOG_ERR("\n************\n");
 | |
|         LOG_ERR("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
 | |
|         LOG_ERR("************\n\n");
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (params.rope_freq_base != 0.0) {
 | |
|         LOG_WRN("%s: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
 | |
|     }
 | |
| 
 | |
|     if (params.rope_freq_scale != 0.0) {
 | |
|         LOG_WRN("%s: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
 | |
|     }
 | |
| 
 | |
|     LOG_INF("%s: llama backend init\n", __func__);
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     llama_model * model = nullptr;
 | |
|     llama_context * ctx = nullptr;
 | |
|     common_sampler * smpl = nullptr;
 | |
| 
 | |
|     g_model = &model;
 | |
|     g_ctx = &ctx;
 | |
|     g_smpl = &smpl;
 | |
| 
 | |
|     // load the model and apply lora adapter, if any
 | |
|     LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
 | |
|     common_init_result llama_init = common_init_from_params(params);
 | |
| 
 | |
|     model = llama_init.model;
 | |
|     ctx = llama_init.context;
 | |
| 
 | |
|     if (model == NULL) {
 | |
|         LOG_ERR("%s: unable to load model\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     const int n_ctx_train = llama_n_ctx_train(model);
 | |
|     const int n_ctx = llama_n_ctx(ctx);
 | |
|     LOG_DBG("n_ctx: %d\n", n_ctx);
 | |
| 
 | |
|     if (n_ctx > n_ctx_train) {
 | |
|         LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
 | |
|     }
 | |
| 
 | |
|     // print system information
 | |
|     {
 | |
|         LOG_INF("\n");
 | |
|         LOG_INF("%s\n", common_params_get_system_info(params).c_str());
 | |
|     }
 | |
|     const bool add_bos = llama_add_bos_token(model);
 | |
|     GGML_ASSERT(!llama_add_eos_token(model));
 | |
| 
 | |
|     std::vector<llama_token> embd_inp;
 | |
|     std::vector<llama_token> embd_end;
 | |
|     std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
 | |
|     std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
 | |
| 
 | |
|     GGML_ASSERT(llama_token_fim_pre(model) >= 0);
 | |
|     GGML_ASSERT(llama_token_fim_suf(model) >= 0);
 | |
| 
 | |
|     inp_pfx.insert(inp_pfx.begin(), llama_token_fim_pre(model));
 | |
|     inp_sfx.insert(inp_sfx.begin(), llama_token_fim_suf(model));
 | |
| 
 | |
|     embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
 | |
|     embd_end = params.spm_infill ? inp_pfx : inp_sfx;
 | |
|     if (add_bos) {
 | |
|         embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
 | |
|     }
 | |
|     embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
 | |
| 
 | |
|     const llama_token middle_token = llama_token_fim_mid(model);
 | |
|     if (middle_token >= 0) {
 | |
|         embd_inp.push_back(middle_token);
 | |
|     }
 | |
| 
 | |
|     LOG_DBG("add_bos: %d\n", add_bos);
 | |
|     LOG_DBG("prefix: \"%s\"\n", params.input_prefix.c_str());
 | |
|     LOG_DBG("suffix: \"%s\"\n", params.input_suffix.c_str());
 | |
|     LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
 | |
| 
 | |
|     // Should not run without any tokens
 | |
|     if (embd_inp.empty()) {
 | |
|         embd_inp.push_back(llama_token_bos(model));
 | |
|         LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
 | |
|     }
 | |
| 
 | |
|     if ((int) embd_inp.size() > n_ctx - 4) {
 | |
|         LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // number of tokens to keep when resetting context
 | |
|     if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
 | |
|         params.n_keep = (int)embd_inp.size();
 | |
|     }
 | |
| 
 | |
|     LOG_INF("inp_pfx: %s\n", string_from(ctx, inp_pfx).c_str());
 | |
|     LOG_INF("inp_sfx: %s\n", string_from(ctx, inp_sfx).c_str());
 | |
| 
 | |
|     // enable interactive mode if interactive start is specified
 | |
|     if (params.interactive_first) {
 | |
|         params.interactive = true;
 | |
|     }
 | |
| 
 | |
|     if (params.verbose_prompt) {
 | |
|         LOG_INF("\n");
 | |
|         LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
 | |
|         LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
 | |
|         for (int i = 0; i < (int) embd_inp.size(); i++) {
 | |
|             LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
 | |
|         }
 | |
| 
 | |
|         if (params.n_keep > 0) {
 | |
|         LOG_INF("%s: static prompt based on n_keep: '", __func__);
 | |
|             for (int i = 0; i < params.n_keep; i++) {
 | |
|                 LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
 | |
|             }
 | |
|             LOG_CNT("'\n");
 | |
|         }
 | |
|         LOG_INF("\n");
 | |
|     }
 | |
| 
 | |
|     if (params.interactive) {
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
|         struct sigaction sigint_action;
 | |
|         sigint_action.sa_handler = sigint_handler;
 | |
|         sigemptyset (&sigint_action.sa_mask);
 | |
|         sigint_action.sa_flags = 0;
 | |
|         sigaction(SIGINT, &sigint_action, NULL);
 | |
| #elif defined (_WIN32)
 | |
|         auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
 | |
|             return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
 | |
|         };
 | |
|         SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
 | |
| #endif
 | |
| 
 | |
|         LOG_INF("%s: interactive mode on.\n", __func__);
 | |
| 
 | |
|         if (params.input_prefix_bos) {
 | |
|             LOG_INF("Input prefix with BOS\n");
 | |
|         }
 | |
| 
 | |
|         if (!params.input_prefix.empty()) {
 | |
|             LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
 | |
|         }
 | |
| 
 | |
|         if (!params.input_suffix.empty()) {
 | |
|             LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
 | |
|         }
 | |
|     }
 | |
|     smpl = common_sampler_init(model, sparams);
 | |
| 
 | |
|     LOG_INF("sampler seed: %u\n",     common_sampler_get_seed(smpl));
 | |
|     LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
 | |
|     LOG_INF("sampler chain: %s\n",    common_sampler_print(smpl).c_str());
 | |
| 
 | |
|     LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
 | |
| 
 | |
|     LOG_INF("\n");
 | |
|     LOG_INF("\n#####  Infill mode  #####\n\n");
 | |
|     if (params.interactive) {
 | |
|         const char *control_message;
 | |
|         if (params.multiline_input) {
 | |
|             control_message = " - To return control to LLaMA, end your input with '\\'.\n"
 | |
|                               " - To return control without starting a new line, end your input with '/'.\n";
 | |
|         } else {
 | |
|             control_message = " - Press Return to return control to LLaMA.\n"
 | |
|                               " - To return control without starting a new line, end your input with '/'.\n"
 | |
|                               " - If you want to submit another line, end your input with '\\'.\n";
 | |
|         }
 | |
|         LOG_INF("== Running in interactive mode. ==\n");
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | |
|         LOG_INF(       " - Press Ctrl+C to interject at any time.\n");
 | |
| #endif
 | |
|         LOG_INF(       "%s\n", control_message);
 | |
| 
 | |
|         is_interacting = params.interactive_first;
 | |
|     }
 | |
| 
 | |
|     bool input_echo = true;
 | |
| 
 | |
|     int n_past     = 0;
 | |
|     int n_remain   = params.n_predict;
 | |
|     int n_consumed = 0;
 | |
| 
 | |
|     std::vector<int>   input_tokens;  g_input_tokens  = &input_tokens;
 | |
|     std::vector<int>   output_tokens; g_output_tokens = &output_tokens;
 | |
|     std::ostringstream output_ss;     g_output_ss     = &output_ss;
 | |
| 
 | |
|     // the first thing we will do is to output the prompt, so set color accordingly
 | |
|     console::set_display(console::prompt);
 | |
| 
 | |
|     std::vector<llama_token> embd;
 | |
| 
 | |
|     while (n_remain != 0 || params.interactive) {
 | |
|         // predict
 | |
|         if (!embd.empty()) {
 | |
|             // Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
 | |
|             // --prompt or --file which uses the same value.
 | |
|             int max_embd_size = n_ctx - 4;
 | |
| 
 | |
|             // Ensure the input doesn't exceed the context size by truncating embd if necessary.
 | |
|             if ((int) embd.size() > max_embd_size) {
 | |
|                 const int skipped_tokens = (int) embd.size() - max_embd_size;
 | |
|                 embd.resize(max_embd_size);
 | |
| 
 | |
|                 console::set_display(console::error);
 | |
|                 LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
 | |
|                 console::set_display(console::reset);
 | |
|             }
 | |
| 
 | |
|             // infinite text generation via context swapping
 | |
|             // if we run out of context:
 | |
|             // - take the n_keep first tokens from the original prompt (via n_past)
 | |
|             // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
 | |
|             if (n_past + (int) embd.size() > n_ctx) {
 | |
|                 if (params.n_predict == -2) {
 | |
|                     LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 const int n_left    = n_past - params.n_keep - 1;
 | |
|                 const int n_discard = n_left/2;
 | |
| 
 | |
|                 LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
 | |
|                     n_past, n_left, n_ctx, params.n_keep, n_discard);
 | |
| 
 | |
|                 llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1            , params.n_keep + n_discard + 1);
 | |
|                 llama_kv_cache_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
 | |
| 
 | |
|                 n_past -= n_discard;
 | |
| 
 | |
|                 LOG_DBG("after swap: n_past = %d\n", n_past);
 | |
| 
 | |
|                 LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
 | |
| 
 | |
|             }
 | |
| 
 | |
|             // evaluate tokens in batches
 | |
|             // embd is typically prepared beforehand to fit within a batch, but not always
 | |
|             for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
 | |
|                 int n_eval = (int) embd.size() - i;
 | |
|                 if (n_eval > params.n_batch) {
 | |
|                     n_eval = params.n_batch;
 | |
|                 }
 | |
| 
 | |
|                 LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
 | |
| 
 | |
|                 if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
 | |
|                     LOG_ERR("%s : failed to eval\n", __func__);
 | |
|                     return 1;
 | |
|                 }
 | |
| 
 | |
|                 n_past += n_eval;
 | |
| 
 | |
|                 LOG_DBG("n_past = %d\n", n_past);
 | |
|             }
 | |
| 
 | |
|         }
 | |
| 
 | |
|         embd.clear();
 | |
| 
 | |
|         if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
 | |
|             const llama_token id = common_sampler_sample(smpl, ctx, -1);
 | |
| 
 | |
|             common_sampler_accept(smpl, id, true);
 | |
| 
 | |
|             // LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
 | |
| 
 | |
|             embd.push_back(id);
 | |
| 
 | |
|             // echo this to console
 | |
|             input_echo = true;
 | |
| 
 | |
|             // decrement remaining sampling budget
 | |
|             --n_remain;
 | |
| 
 | |
|             LOG_DBG("n_remain: %d\n", n_remain);
 | |
|         } else {
 | |
|             // some user input remains from prompt or interaction, forward it to processing
 | |
|             LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
 | |
|             while ((int) embd_inp.size() > n_consumed) {
 | |
|                 embd.push_back(embd_inp[n_consumed]);
 | |
| 
 | |
|                 // push the prompt in the sampling context in order to apply repetition penalties later
 | |
|                 // for the prompt, we don't apply grammar rules
 | |
|                 common_sampler_accept(smpl, embd_inp[n_consumed], false);
 | |
| 
 | |
|                 ++n_consumed;
 | |
|                 if ((int) embd.size() >= params.n_batch) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // display text
 | |
|         if (input_echo) {
 | |
|             for (auto id : embd) {
 | |
|                 const std::string token_str = common_token_to_piece(ctx, id);
 | |
|                 LOG("%s", token_str.c_str());
 | |
| 
 | |
|                 if (embd.size() > 1) {
 | |
|                     input_tokens.push_back(id);
 | |
|                 } else {
 | |
|                     output_tokens.push_back(id);
 | |
|                     output_ss << token_str;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         // reset color to default if we there is no pending user input
 | |
|         if (input_echo && (int) embd_inp.size() == n_consumed) {
 | |
|             console::set_display(console::reset);
 | |
|         }
 | |
| 
 | |
|         // if not currently processing queued inputs;
 | |
|         if ((int) embd_inp.size() <= n_consumed) {
 | |
|             // deal with eot token in infill mode
 | |
|             if ((common_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
 | |
|                 if (is_interacting && !params.interactive_first) {
 | |
|                     // print an eot token
 | |
|                     LOG("%s", common_token_to_piece(ctx, llama_token_eot(model)).c_str());
 | |
|                 }
 | |
|                 LOG("\n");
 | |
|                 console::set_display(console::user_input);
 | |
|                 std::string buffer;
 | |
|                 std::string line;
 | |
|                 bool another_line=true;
 | |
|                 // set a new prefix via stdin
 | |
|                 do {
 | |
|                     another_line = console::readline(line, params.multiline_input);
 | |
|                     buffer += line;
 | |
|                 } while (another_line);
 | |
|                 // check if we got an empty line, if so we use the old input
 | |
|                 if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
 | |
|                     params.input_prefix = buffer;
 | |
|                 }
 | |
|                 buffer.clear();
 | |
|                 // set a new suffix via stdin
 | |
|                 do {
 | |
|                     another_line = console::readline(line, params.multiline_input);
 | |
|                     buffer += line;
 | |
|                 } while (another_line);
 | |
|                 // check if we got an empty line
 | |
|                 if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
 | |
|                     params.input_suffix = buffer;
 | |
|                 }
 | |
|                 buffer.clear();
 | |
|                 // done taking input, reset color
 | |
|                 console::set_display(console::reset);
 | |
| 
 | |
|                 if (params.escape) {
 | |
|                     //process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
 | |
|                     string_process_escapes(params.input_prefix);
 | |
|                     string_process_escapes(params.input_suffix);
 | |
|                 }
 | |
| 
 | |
|                 // tokenize new prefix and suffix
 | |
|                 std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
 | |
|                 std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
 | |
| 
 | |
|                 inp_pfx.insert(inp_pfx.begin(), llama_token_fim_pre(model));
 | |
|                 inp_sfx.insert(inp_sfx.begin(), llama_token_fim_suf(model));
 | |
| 
 | |
|                 embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
 | |
|                 embd_end = params.spm_infill ? inp_pfx : inp_sfx;
 | |
|                 if (add_bos) {
 | |
|                     embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
 | |
|                 }
 | |
|                 embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
 | |
| 
 | |
|                 if (middle_token >= 0) {
 | |
|                     embd_inp.push_back(middle_token);
 | |
|                 }
 | |
| 
 | |
|                 embd.clear();
 | |
|                 n_remain = params.n_predict;
 | |
|                 n_past = 0;
 | |
|                 n_consumed = 0;
 | |
|                 is_interacting = false;
 | |
|             }
 | |
|             // deal with end of generation tokens in interactive mode
 | |
|             else if (llama_token_is_eog(model, common_sampler_last(smpl))) {
 | |
|                 LOG_DBG("found EOS token\n");
 | |
| 
 | |
|                 if (params.interactive) {
 | |
| 
 | |
|                     is_interacting = true;
 | |
|                     LOG("\n");
 | |
|                     console::set_display(console::user_input);
 | |
|                }
 | |
|             }
 | |
| 
 | |
|             if (n_past > 0 && is_interacting && !params.interactive) {
 | |
|                 LOG_DBG("waiting for user input\n");
 | |
| 
 | |
|                 if (params.input_prefix_bos) {
 | |
|                     LOG_DBG("adding input prefix BOS token\n");
 | |
|                     embd_inp.push_back(llama_token_bos(model));
 | |
|                 }
 | |
| 
 | |
|                 std::string buffer;
 | |
|                 if (!params.input_prefix.empty()) {
 | |
|                     LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
 | |
|                     buffer += params.input_prefix;
 | |
|                     LOG("%s", buffer.c_str());
 | |
|                 }
 | |
| 
 | |
|                 std::string line;
 | |
|                 bool another_line = true;
 | |
|                 do {
 | |
|                     another_line = console::readline(line, params.multiline_input);
 | |
|                     buffer += line;
 | |
|                 } while (another_line);
 | |
| 
 | |
|                 // done taking input, reset color
 | |
|                 console::set_display(console::reset);
 | |
| 
 | |
|                 // Add tokens to embd only if the input buffer is non-empty
 | |
|                 // Entering a empty line lets the user pass control back
 | |
|                 if (buffer.length() > 1) {
 | |
|                     // append input suffix if any
 | |
|                     if (!params.input_suffix.empty()) {
 | |
|                         LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
 | |
|                         buffer += params.input_suffix;
 | |
|                         LOG("%s", params.input_suffix.c_str());
 | |
|                     }
 | |
| 
 | |
|                     LOG_DBG("buffer: '%s'\n", buffer.c_str());
 | |
| 
 | |
|                     const size_t original_size = embd_inp.size();
 | |
| 
 | |
|                     const auto line_inp = common_tokenize(ctx, buffer, false);
 | |
|                     LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
 | |
| 
 | |
|                     embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
 | |
| 
 | |
|                     for (size_t i = original_size; i < embd_inp.size(); ++i) {
 | |
|                         const llama_token token = embd_inp[i];
 | |
|                         output_tokens.push_back(token);
 | |
|                         output_ss << common_token_to_piece(ctx, token);
 | |
|                     }
 | |
| 
 | |
|                     n_remain -= line_inp.size();
 | |
|                     LOG_DBG("n_remain: %d\n", n_remain);
 | |
|                 } else {
 | |
|                     LOG_DBG("empty line, passing control back\n");
 | |
|                 }
 | |
| 
 | |
|                 input_echo = false; // do not echo this again
 | |
|             }
 | |
| 
 | |
|             if (n_past > 0) {
 | |
|                 if (is_interacting) {
 | |
|                     common_sampler_reset(smpl);
 | |
|                 }
 | |
|                 is_interacting = false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // end of generation
 | |
|         if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !params.interactive) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
 | |
|         // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
 | |
|         if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
 | |
|             n_remain = params.n_predict;
 | |
|             is_interacting = true;
 | |
|         }
 | |
|     }
 | |
|     if (!params.interactive && n_remain <= 0) {
 | |
|         LOG("%s", common_token_to_piece(ctx, llama_token_eot(model)).c_str());
 | |
|     }
 | |
| 
 | |
|     LOG("\n");
 | |
|     common_perf_print(ctx, smpl);
 | |
| 
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     common_sampler_free(smpl);
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 |