mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 2b4ea35e56
			
		
	
	2b4ea35e56
	
	
	
		
			
			* cmake : add helper for faster CUDA builds * batched : add NGL arg * ggml : skip nops in compute_forward * cuda : minor indentation * cuda : batched cuBLAS GEMMs for src0 F16 and src1 F32 (attention ops) * Apply suggestions from code review These changes plus: ```c++ #define cublasGemmBatchedEx hipblasGemmBatchedEx ``` are needed to compile with ROCM. I haven't done performance testing, but it seems to work. I couldn't figure out how to propose a change for lines outside what the pull changed, also this is the first time trying to create a multi-part review so please forgive me if I mess something up. * cuda : add ROCm / hipBLAS cublasGemmBatchedEx define * cuda : add cublasGemmStridedBatchedEx for non-broadcasted cases * cuda : reduce mallocs in cublasGemmBatchedEx branch * cuda : add TODO for calling cublas from kernel + using mem pool --------- Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
		
			
				
	
	
		
			258 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			258 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (argc == 1 || argv[1][0] == '-') {
 | |
|         printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL] [LEN] [NGL]\n" , argv[0]);
 | |
|         return 1 ;
 | |
|     }
 | |
| 
 | |
|     // number of parallel batches
 | |
|     int n_parallel = 1;
 | |
| 
 | |
|     // total length of the sequences including the prompt
 | |
|     int n_len = 32;
 | |
| 
 | |
|     // number of layers to offload to the GPU
 | |
|     int n_gpu_layers = 0;
 | |
| 
 | |
|     if (argc >= 2) {
 | |
|         params.model = argv[1];
 | |
|     }
 | |
| 
 | |
|     if (argc >= 3) {
 | |
|         params.prompt = argv[2];
 | |
|     }
 | |
| 
 | |
|     if (argc >= 4) {
 | |
|         n_parallel = std::atoi(argv[3]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 5) {
 | |
|         n_len = std::atoi(argv[4]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 6) {
 | |
|         n_gpu_layers = std::atoi(argv[5]);
 | |
|     }
 | |
| 
 | |
|     if (params.prompt.empty()) {
 | |
|         params.prompt = "Hello my name is";
 | |
|     }
 | |
| 
 | |
|     // init LLM
 | |
| 
 | |
|     llama_backend_init(params.numa);
 | |
| 
 | |
|     // initialize the model
 | |
| 
 | |
|     llama_model_params model_params = llama_model_default_params();
 | |
| 
 | |
|     model_params.n_gpu_layers = n_gpu_layers;
 | |
| 
 | |
|     llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
 | |
| 
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr , "%s: error: unable to load model\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // tokenize the prompt
 | |
| 
 | |
|     std::vector<llama_token> tokens_list;
 | |
|     tokens_list = ::llama_tokenize(model, params.prompt, true);
 | |
|     const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
 | |
| 
 | |
|     // initialize the context
 | |
| 
 | |
|     llama_context_params ctx_params = llama_context_default_params();
 | |
| 
 | |
|     ctx_params.seed  = 1234;
 | |
|     ctx_params.n_ctx = n_kv_req;
 | |
|     ctx_params.n_batch = std::max(n_len, n_parallel);
 | |
|     ctx_params.n_threads       = params.n_threads;
 | |
|     ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
 | |
| 
 | |
|     llama_context * ctx = llama_new_context_with_model(model, ctx_params);
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     const int n_ctx    = llama_n_ctx(ctx);
 | |
| 
 | |
|     LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
 | |
| 
 | |
|     // make sure the KV cache is big enough to hold all the prompt and generated tokens
 | |
|     if (n_kv_req > n_ctx) {
 | |
|         LOG_TEE("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__,  n_kv_req);
 | |
|         LOG_TEE("%s:        either reduce n_parallel or increase n_ctx\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // print the prompt token-by-token
 | |
| 
 | |
|     fprintf(stderr, "\n");
 | |
| 
 | |
|     for (auto id : tokens_list) {
 | |
|         fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
 | |
|     }
 | |
| 
 | |
|     fflush(stderr);
 | |
| 
 | |
|     // create a llama_batch
 | |
|     // we use this object to submit token data for decoding
 | |
|     llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0, 1);
 | |
| 
 | |
|     // evaluate the initial prompt
 | |
|     for (size_t i = 0; i < tokens_list.size(); ++i) {
 | |
|         llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
 | |
|     }
 | |
|     GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
 | |
| 
 | |
|     // llama_decode will output logits only for the last token of the prompt
 | |
|     batch.logits[batch.n_tokens - 1] = true;
 | |
| 
 | |
|     if (llama_decode(ctx, batch) != 0) {
 | |
|         LOG_TEE("%s: llama_decode() failed\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // assign the system KV cache to all parallel sequences
 | |
|     // this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
 | |
|     for (int32_t i = 1; i < n_parallel; ++i) {
 | |
|         llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens);
 | |
|     }
 | |
| 
 | |
|     if (n_parallel > 1) {
 | |
|         LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
 | |
|     }
 | |
| 
 | |
|     // main loop
 | |
| 
 | |
|     // we will store the parallel decoded sequences in this vector
 | |
|     std::vector<std::string> streams(n_parallel);
 | |
| 
 | |
|     // remember the batch index of the last token for each parallel sequence
 | |
|     // we need this to determine which logits to sample from
 | |
|     std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
 | |
| 
 | |
|     int n_cur    = batch.n_tokens;
 | |
|     int n_decode = 0;
 | |
| 
 | |
|     const auto t_main_start = ggml_time_us();
 | |
| 
 | |
|     while (n_cur <= n_len) {
 | |
|         // prepare the next batch
 | |
|         llama_batch_clear(batch);
 | |
| 
 | |
|         // sample the next token for each parallel sequence / stream
 | |
|         for (int32_t i = 0; i < n_parallel; ++i) {
 | |
|             if (i_batch[i] < 0) {
 | |
|                 // the stream has already finished
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             auto   n_vocab = llama_n_vocab(model);
 | |
|             auto * logits  = llama_get_logits_ith(ctx, i_batch[i]);
 | |
| 
 | |
|             std::vector<llama_token_data> candidates;
 | |
|             candidates.reserve(n_vocab);
 | |
| 
 | |
|             for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|                 candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
 | |
|             }
 | |
| 
 | |
|             llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
| 
 | |
|             const int   top_k = 40;
 | |
|             const float top_p = 0.9f;
 | |
|             const float temp  = 0.4f;
 | |
| 
 | |
|             llama_sample_top_k(ctx, &candidates_p, top_k, 1);
 | |
|             llama_sample_top_p(ctx, &candidates_p, top_p, 1);
 | |
|             llama_sample_temp (ctx, &candidates_p, temp);
 | |
| 
 | |
|             const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
 | |
| 
 | |
|             //const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
 | |
| 
 | |
|             // is it an end of stream? -> mark the stream as finished
 | |
|             if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
 | |
|                 i_batch[i] = -1;
 | |
|                 LOG_TEE("\n");
 | |
|                 if (n_parallel > 1) {
 | |
|                     LOG_TEE("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
 | |
|                 }
 | |
| 
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             // if there is only one stream, we print immediately to stdout
 | |
|             if (n_parallel == 1) {
 | |
|                 LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
 | |
|                 fflush(stdout);
 | |
|             }
 | |
| 
 | |
|             streams[i] += llama_token_to_piece(ctx, new_token_id);
 | |
| 
 | |
|             i_batch[i] = batch.n_tokens;
 | |
| 
 | |
|             // push this new token for next evaluation
 | |
|             llama_batch_add(batch, new_token_id, n_cur, { i }, true);
 | |
| 
 | |
|             n_decode += 1;
 | |
|         }
 | |
| 
 | |
|         // all streams are finished
 | |
|         if (batch.n_tokens == 0) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         n_cur += 1;
 | |
| 
 | |
|         // evaluate the current batch with the transformer model
 | |
|         if (llama_decode(ctx, batch)) {
 | |
|             fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     LOG_TEE("\n");
 | |
| 
 | |
|     if (n_parallel > 1) {
 | |
|         LOG_TEE("\n");
 | |
| 
 | |
|         for (int32_t i = 0; i < n_parallel; ++i) {
 | |
|             LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const auto t_main_end = ggml_time_us();
 | |
| 
 | |
|     LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
 | |
|             __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
 | |
| 
 | |
|     llama_print_timings(ctx);
 | |
| 
 | |
|     fprintf(stderr, "\n");
 | |
| 
 | |
|     llama_batch_free(batch);
 | |
| 
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 |