mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* examples : do not use common library in simple example * add command line parser, simplify code
		
			
				
	
	
		
			202 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			202 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "llama.h"
 | 
						|
#include <cstdio>
 | 
						|
#include <cstring>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
static void print_usage(int, char ** argv) {
 | 
						|
    printf("\nexample usage:\n");
 | 
						|
    printf("\n    %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n", argv[0]);
 | 
						|
    printf("\n");
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    // path to the model gguf file
 | 
						|
    std::string model_path;
 | 
						|
    // prompt to generate text from
 | 
						|
    std::string prompt = "Hello my name is";
 | 
						|
    // number of layers to offload to the GPU
 | 
						|
    int ngl = 99;
 | 
						|
    // number of tokens to predict
 | 
						|
    int n_predict = 32;
 | 
						|
 | 
						|
    // parse command line arguments
 | 
						|
 | 
						|
    {
 | 
						|
        int i = 1;
 | 
						|
        for (; i < argc; i++) {
 | 
						|
            if (strcmp(argv[i], "-m") == 0) {
 | 
						|
                if (i + 1 < argc) {
 | 
						|
                    model_path = argv[++i];
 | 
						|
                } else {
 | 
						|
                    print_usage(argc, argv);
 | 
						|
                    return 1;
 | 
						|
                }
 | 
						|
            } else if (strcmp(argv[i], "-n") == 0) {
 | 
						|
                if (i + 1 < argc) {
 | 
						|
                    try {
 | 
						|
                        n_predict = std::stoi(argv[++i]);
 | 
						|
                    } catch (...) {
 | 
						|
                        print_usage(argc, argv);
 | 
						|
                        return 1;
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    print_usage(argc, argv);
 | 
						|
                    return 1;
 | 
						|
                }
 | 
						|
            } else if (strcmp(argv[i], "-ngl") == 0) {
 | 
						|
                if (i + 1 < argc) {
 | 
						|
                    try {
 | 
						|
                        ngl = std::stoi(argv[++i]);
 | 
						|
                    } catch (...) {
 | 
						|
                        print_usage(argc, argv);
 | 
						|
                        return 1;
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    print_usage(argc, argv);
 | 
						|
                    return 1;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                // prompt starts here
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (model_path.empty()) {
 | 
						|
            print_usage(argc, argv);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        if (i < argc) {
 | 
						|
            prompt = argv[i++];
 | 
						|
            for (; i < argc; i++) {
 | 
						|
                prompt += " ";
 | 
						|
                prompt += argv[i];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // initialize the model
 | 
						|
 | 
						|
    llama_model_params model_params = llama_model_default_params();
 | 
						|
    model_params.n_gpu_layers = ngl;
 | 
						|
 | 
						|
    llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params);
 | 
						|
 | 
						|
    if (model == NULL) {
 | 
						|
        fprintf(stderr , "%s: error: unable to load model\n" , __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // tokenize the prompt
 | 
						|
 | 
						|
    // find the number of tokens in the prompt
 | 
						|
    const int n_prompt = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
 | 
						|
 | 
						|
    // allocate space for the tokens and tokenize the prompt
 | 
						|
    std::vector<llama_token> prompt_tokens(n_prompt);
 | 
						|
    if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
 | 
						|
        fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // initialize the context
 | 
						|
 | 
						|
    llama_context_params ctx_params = llama_context_default_params();
 | 
						|
    // n_ctx is the context size
 | 
						|
    ctx_params.n_ctx = n_prompt + n_predict - 1;
 | 
						|
    // n_batch is the maximum number of tokens that can be processed in a single call to llama_decode
 | 
						|
    ctx_params.n_batch = n_prompt;
 | 
						|
    // enable performance counters
 | 
						|
    ctx_params.no_perf = false;
 | 
						|
 | 
						|
    llama_context * ctx = llama_new_context_with_model(model, ctx_params);
 | 
						|
 | 
						|
    if (ctx == NULL) {
 | 
						|
        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // initialize the sampler
 | 
						|
 | 
						|
    auto sparams = llama_sampler_chain_default_params();
 | 
						|
    sparams.no_perf = false;
 | 
						|
    llama_sampler * smpl = llama_sampler_chain_init(sparams);
 | 
						|
 | 
						|
    llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
 | 
						|
 | 
						|
    // print the prompt token-by-token
 | 
						|
 | 
						|
    for (auto id : prompt_tokens) {
 | 
						|
        char buf[128];
 | 
						|
        int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true);
 | 
						|
        if (n < 0) {
 | 
						|
            fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        std::string s(buf, n);
 | 
						|
        printf("%s", s.c_str());
 | 
						|
    }
 | 
						|
 | 
						|
    // prepare a batch for the prompt
 | 
						|
 | 
						|
    llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size(), 0, 0);
 | 
						|
 | 
						|
    // main loop
 | 
						|
 | 
						|
    const auto t_main_start = ggml_time_us();
 | 
						|
    int n_decode = 0;
 | 
						|
    llama_token new_token_id;
 | 
						|
 | 
						|
    for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) {
 | 
						|
        // evaluate the current batch with the transformer model
 | 
						|
        if (llama_decode(ctx, batch)) {
 | 
						|
            fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
 | 
						|
        n_pos += batch.n_tokens;
 | 
						|
 | 
						|
        // sample the next token
 | 
						|
        {
 | 
						|
            new_token_id = llama_sampler_sample(smpl, ctx, -1);
 | 
						|
 | 
						|
            // is it an end of generation?
 | 
						|
            if (llama_token_is_eog(model, new_token_id)) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            char buf[128];
 | 
						|
            int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true);
 | 
						|
            if (n < 0) {
 | 
						|
                fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
 | 
						|
                return 1;
 | 
						|
            }
 | 
						|
            std::string s(buf, n);
 | 
						|
            printf("%s", s.c_str());
 | 
						|
            fflush(stdout);
 | 
						|
 | 
						|
            // prepare the next batch with the sampled token
 | 
						|
            batch = llama_batch_get_one(&new_token_id, 1, n_pos, 0);
 | 
						|
 | 
						|
            n_decode += 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    printf("\n");
 | 
						|
 | 
						|
    const auto t_main_end = ggml_time_us();
 | 
						|
 | 
						|
    fprintf(stderr, "%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
 | 
						|
            __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
 | 
						|
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
    llama_perf_sampler_print(smpl);
 | 
						|
    llama_perf_context_print(ctx);
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
 | 
						|
    llama_sampler_free(smpl);
 | 
						|
    llama_free(ctx);
 | 
						|
    llama_free_model(model);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |