mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			97 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			97 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Recommended mapping of model tensor names for storage in gguf
 | |
| 
 | |
| def get_tensor_map( n_blocks : int):
 | |
|     tensor_map = {}
 | |
|     # Token embeddings
 | |
|     mapped_to = "transformer.token_embd"
 | |
|     tensor_map["gpt_neox.embed_in"] = mapped_to           # gptneox
 | |
|     tensor_map["transformer.wte"] = mapped_to             # gpt2 mpt
 | |
|     tensor_map["transformer.word_embeddings"] = mapped_to # falcon
 | |
|     tensor_map["model.embed_tokens"] = mapped_to          # llama-hf
 | |
|     tensor_map["tok_embeddings"] = mapped_to              # llama-pth
 | |
|     # Position embeddings
 | |
|     mapped_to = "transformer.pos_embd"
 | |
|     tensor_map["transformer.wpe"] = mapped_to # gpt2
 | |
|     # Output norm
 | |
|     mapped_to = "transformer.output_norm"
 | |
|     tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
 | |
|     tensor_map["transformer.ln_f"] = mapped_to          # gpt2 falcon
 | |
|     tensor_map["transformer.norm_f"] = mapped_to        # mpt
 | |
|     tensor_map["model.norm"] = mapped_to                # llama-hf
 | |
|     tensor_map["norm"] = mapped_to                      # llama-pth
 | |
|     # Output
 | |
|     mapped_to = "transformer.output"
 | |
|     tensor_map["embed_out"] = mapped_to # gptneox
 | |
|     tensor_map["lm_head"] = mapped_to   # gpt2 mpt falcon llama-hf
 | |
|     tensor_map["output"] = mapped_to    # llama-pth
 | |
|     # Attention and fee-forward layer blocks
 | |
|     for i in range(0,n_blocks):
 | |
|         # Attention norm
 | |
|         mapped_to = "transformer.blocks."+str(i)+".attn_norm"
 | |
|         tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
 | |
|         tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to              # gpt2
 | |
|         tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to       # mpt
 | |
|         tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to   # falcon7b
 | |
|         tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to           # falcon40b
 | |
|         tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to    # llama-hf
 | |
|         tensor_map["layers."+str(i)+".attention_norm"] = mapped_to           # llama-pth
 | |
|         # Attention norm 2
 | |
|         mapped_to = "transformer.blocks."+str(i)+".attn_norm_2"
 | |
|         tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b
 | |
|         # Attention query-key-value
 | |
|         mapped_to = "transformer.blocks."+str(i)+".attn_qkv"
 | |
|         tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to     # gptneox
 | |
|         tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to                     # gpt2
 | |
|         tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to                  # mpt
 | |
|         tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to  # falcon
 | |
|         # Attention query
 | |
|         mapped_to = "transformer.blocks."+str(i)+".attn_q"
 | |
|         tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
 | |
|         tensor_map["layers."+str(i)+".attention.wq"] = mapped_to           # llama-pth
 | |
|         # Attention key
 | |
|         mapped_to = "transformer.blocks."+str(i)+".attn_k"
 | |
|         tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
 | |
|         tensor_map["layers."+str(i)+".attention.wk"] = mapped_to           # llama-pth
 | |
|         # Attention value
 | |
|         mapped_to = "transformer.blocks."+str(i)+".attn_v"
 | |
|         tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
 | |
|         tensor_map["layers."+str(i)+".attention.wv"] = mapped_to           # llama-pth
 | |
|         # Attention output
 | |
|         mapped_to = "transformer.blocks."+str(i)+".attn_output"
 | |
|         tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to    # gptneox
 | |
|         tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to          # gpt2
 | |
|         tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to   # mpt
 | |
|         tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
 | |
|         tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to      # llama-hf
 | |
|         tensor_map["layers."+str(i)+".attention.wo"] = mapped_to                # llama-pth
 | |
|         # Feed-forward norm
 | |
|         mapped_to = "transformer.blocks."+str(i)+".ffn_norm"
 | |
|         tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
 | |
|         tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to                       # gpt2
 | |
|         tensor_map[" transformer.blocks."+str(i)+".norm_2"] = mapped_to               # mpt
 | |
|         tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to    # llama-hf
 | |
|         tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to                          # llama-pth
 | |
|         # Feed-forward up
 | |
|         mapped_to = "transformer.blocks."+str(i)+".ffn_up"
 | |
|         tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
 | |
|         tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to            # gpt2
 | |
|         tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to    # mpt
 | |
|         tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to   # falcon
 | |
|         tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to          # llama-hf
 | |
|         tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to            # llama-pth
 | |
|         # Feed-forward gate
 | |
|         mapped_to = "transformer.blocks."+str(i)+".ffn_gate"
 | |
|         tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
 | |
|         tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to     # llama-pth
 | |
|         # Feed-forward down
 | |
|         mapped_to = "transformer.blocks."+str(i)+".ffn_down"
 | |
|         tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
 | |
|         tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to          # gpt2
 | |
|         tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to  # mpt
 | |
|         tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to   # falcon
 | |
|         tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to        # llama-hf
 | |
|         tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to            # llama-pth
 | |
| 
 | |
|     return tensor_map
 | |
| 
 | 
