mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* check whether platform is 390x if yes->do not import immintrin.h * support s390x big endian * support --bigendian option for s390x 1. verified with baichuan7b-chat with float 16 on s390x 2. verified with baichuan7b-chat 3. verified with chinese-alpaca-2-13b-f16 * update format based on editor-config checker result * Update convert-baichuan-hf-to-gguf.py * 1. check in ggml.c if endianess is not match 2. update GGUF version 3. change get_pack_prefix to property 4. update information log * always use "GGUF" as beginng of GGUF file * Compare "GGUF" with file header char by char 1. Set GGUF_MAGIC to "GGUF" string instead of int value 2. Compare "GGUF" char by char to ensure its byte order 3. Move bytes swap code from convert.py to gguf.py write_tensor_data --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			1090 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1090 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python3
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
import json
 | 
						|
import os
 | 
						|
import shutil
 | 
						|
import struct
 | 
						|
import sys
 | 
						|
import tempfile
 | 
						|
from enum import IntEnum, auto
 | 
						|
from io import BufferedWriter
 | 
						|
from pathlib import Path
 | 
						|
from typing import IO, Any, BinaryIO, Callable, Sequence
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
#
 | 
						|
# constants
 | 
						|
#
 | 
						|
 | 
						|
GGUF_MAGIC             = 0x46554747
 | 
						|
GGUF_VERSION           = 3
 | 
						|
GGUF_DEFAULT_ALIGNMENT = 32
 | 
						|
 | 
						|
 | 
						|
# general
 | 
						|
KEY_GENERAL_ARCHITECTURE         = "general.architecture"
 | 
						|
KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
 | 
						|
KEY_GENERAL_ALIGNMENT            = "general.alignment"
 | 
						|
KEY_GENERAL_NAME                 = "general.name"
 | 
						|
KEY_GENERAL_AUTHOR               = "general.author"
 | 
						|
KEY_GENERAL_URL                  = "general.url"
 | 
						|
KEY_GENERAL_DESCRIPTION          = "general.description"
 | 
						|
KEY_GENERAL_LICENSE              = "general.license"
 | 
						|
KEY_GENERAL_SOURCE_URL           = "general.source.url"
 | 
						|
KEY_GENERAL_SOURCE_HF_REPO       = "general.source.huggingface.repository"
 | 
						|
KEY_GENERAL_FILE_TYPE            = "general.file_type"
 | 
						|
 | 
						|
# LLM
 | 
						|
KEY_CONTEXT_LENGTH        = "{arch}.context_length"
 | 
						|
KEY_EMBEDDING_LENGTH      = "{arch}.embedding_length"
 | 
						|
KEY_BLOCK_COUNT           = "{arch}.block_count"
 | 
						|
KEY_FEED_FORWARD_LENGTH   = "{arch}.feed_forward_length"
 | 
						|
KEY_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
 | 
						|
KEY_TENSOR_DATA_LAYOUT    = "{arch}.tensor_data_layout"
 | 
						|
 | 
						|
# attention
 | 
						|
KEY_ATTENTION_HEAD_COUNT        = "{arch}.attention.head_count"
 | 
						|
KEY_ATTENTION_HEAD_COUNT_KV     = "{arch}.attention.head_count_kv"
 | 
						|
KEY_ATTENTION_MAX_ALIBI_BIAS    = "{arch}.attention.max_alibi_bias"
 | 
						|
KEY_ATTENTION_CLAMP_KQV         = "{arch}.attention.clamp_kqv"
 | 
						|
KEY_ATTENTION_LAYERNORM_EPS     = "{arch}.attention.layer_norm_epsilon"
 | 
						|
KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
 | 
						|
 | 
						|
# RoPE
 | 
						|
KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
 | 
						|
KEY_ROPE_FREQ_BASE       = "{arch}.rope.freq_base"
 | 
						|
KEY_ROPE_SCALE_LINEAR    = "{arch}.rope.scale_linear"
 | 
						|
 | 
						|
# tokenization
 | 
						|
KEY_TOKENIZER_MODEL      = "tokenizer.ggml.model"
 | 
						|
KEY_TOKENIZER_LIST       = "tokenizer.ggml.tokens"
 | 
						|
KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"
 | 
						|
KEY_TOKENIZER_SCORES     = "tokenizer.ggml.scores"
 | 
						|
KEY_TOKENIZER_MERGES     = "tokenizer.ggml.merges"
 | 
						|
KEY_TOKENIZER_BOS_ID     = "tokenizer.ggml.bos_token_id"
 | 
						|
KEY_TOKENIZER_EOS_ID     = "tokenizer.ggml.eos_token_id"
 | 
						|
KEY_TOKENIZER_UNK_ID     = "tokenizer.ggml.unknown_token_id"
 | 
						|
KEY_TOKENIZER_SEP_ID     = "tokenizer.ggml.seperator_token_id"
 | 
						|
KEY_TOKENIZER_PAD_ID     = "tokenizer.ggml.padding_token_id"
 | 
						|
KEY_TOKENIZER_HF_JSON    = "tokenizer.huggingface.json"
 | 
						|
KEY_TOKENIZER_RWKV       = "tokenizer.rwkv.world"
 | 
						|
 | 
						|
 | 
						|
#
 | 
						|
# recommended mapping of model tensor names for storage in gguf
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
class MODEL_ARCH(IntEnum):
 | 
						|
    LLAMA         : int = auto()
 | 
						|
    FALCON        : int = auto()
 | 
						|
    BAICHUAN      : int = auto()
 | 
						|
    GPT2          : int = auto()
 | 
						|
    GPTJ          : int = auto()
 | 
						|
    GPTNEOX       : int = auto()
 | 
						|
    MPT           : int = auto()
 | 
						|
    STARCODER     : int = auto()
 | 
						|
    PERSIMMON     : int = auto()
 | 
						|
    REFACT        : int = auto()
 | 
						|
    BERT          : int = auto()
 | 
						|
    BLOOM         : int = auto()
 | 
						|
 | 
						|
 | 
						|
class MODEL_TENSOR(IntEnum):
 | 
						|
    TOKEN_EMBD      : int = auto()
 | 
						|
    TOKEN_EMBD_NORM : int = auto()
 | 
						|
    TOKEN_TYPES     : int = auto()
 | 
						|
    POS_EMBD        : int = auto()
 | 
						|
    OUTPUT          : int = auto()
 | 
						|
    OUTPUT_NORM     : int = auto()
 | 
						|
    ROPE_FREQS      : int = auto()
 | 
						|
    ATTN_Q          : int = auto()
 | 
						|
    ATTN_K          : int = auto()
 | 
						|
    ATTN_V          : int = auto()
 | 
						|
    ATTN_QKV        : int = auto()
 | 
						|
    ATTN_OUT        : int = auto()
 | 
						|
    ATTN_NORM       : int = auto()
 | 
						|
    ATTN_NORM_2     : int = auto()
 | 
						|
    ATTN_ROT_EMBD   : int = auto()
 | 
						|
    FFN_GATE        : int = auto()
 | 
						|
    FFN_DOWN        : int = auto()
 | 
						|
    FFN_UP          : int = auto()
 | 
						|
    FFN_NORM        : int = auto()
 | 
						|
    ATTN_Q_NORM     : int = auto()
 | 
						|
    ATTN_K_NORM     : int = auto()
 | 
						|
 | 
						|
 | 
						|
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
 | 
						|
    MODEL_ARCH.LLAMA:          "llama",
 | 
						|
    MODEL_ARCH.FALCON:         "falcon",
 | 
						|
    MODEL_ARCH.BAICHUAN:       "baichuan",
 | 
						|
    MODEL_ARCH.GPT2:           "gpt2",
 | 
						|
    MODEL_ARCH.GPTJ:           "gptj",
 | 
						|
    MODEL_ARCH.GPTNEOX:        "gptneox",
 | 
						|
    MODEL_ARCH.MPT:            "mpt",
 | 
						|
    MODEL_ARCH.STARCODER:      "starcoder",
 | 
						|
    MODEL_ARCH.PERSIMMON:      "persimmon",
 | 
						|
    MODEL_ARCH.REFACT:         "refact",
 | 
						|
    MODEL_ARCH.BERT:           "bert",
 | 
						|
    MODEL_ARCH.BLOOM:          "bloom",
 | 
						|
}
 | 
						|
 | 
						|
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
 | 
						|
    MODEL_TENSOR.TOKEN_EMBD:      "token_embd",
 | 
						|
    MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
 | 
						|
    MODEL_TENSOR.TOKEN_TYPES:     "token_types",
 | 
						|
    MODEL_TENSOR.POS_EMBD:        "position_embd",
 | 
						|
    MODEL_TENSOR.OUTPUT_NORM:     "output_norm",
 | 
						|
    MODEL_TENSOR.OUTPUT:          "output",
 | 
						|
    MODEL_TENSOR.ROPE_FREQS:      "rope_freqs",
 | 
						|
    MODEL_TENSOR.ATTN_NORM:       "blk.{bid}.attn_norm",
 | 
						|
    MODEL_TENSOR.ATTN_NORM_2:     "blk.{bid}.attn_norm_2",
 | 
						|
    MODEL_TENSOR.ATTN_QKV:        "blk.{bid}.attn_qkv",
 | 
						|
    MODEL_TENSOR.ATTN_Q:          "blk.{bid}.attn_q",
 | 
						|
    MODEL_TENSOR.ATTN_K:          "blk.{bid}.attn_k",
 | 
						|
    MODEL_TENSOR.ATTN_V:          "blk.{bid}.attn_v",
 | 
						|
    MODEL_TENSOR.ATTN_OUT:        "blk.{bid}.attn_output",
 | 
						|
    MODEL_TENSOR.ATTN_ROT_EMBD:   "blk.{bid}.attn_rot_embd",
 | 
						|
    MODEL_TENSOR.ATTN_Q_NORM:     "blk.{bid}.attn_q_norm",
 | 
						|
    MODEL_TENSOR.ATTN_K_NORM:     "blk.{bid}.attn_k_norm",
 | 
						|
    MODEL_TENSOR.FFN_NORM:        "blk.{bid}.ffn_norm",
 | 
						|
    MODEL_TENSOR.FFN_GATE:        "blk.{bid}.ffn_gate",
 | 
						|
    MODEL_TENSOR.FFN_DOWN:        "blk.{bid}.ffn_down",
 | 
						|
    MODEL_TENSOR.FFN_UP:          "blk.{bid}.ffn_up",
 | 
						|
}
 | 
						|
 | 
						|
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
 | 
						|
    MODEL_ARCH.LLAMA: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.GPTNEOX: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.FALCON: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_NORM_2,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.BAICHUAN: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.STARCODER: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.POS_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.BERT: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.TOKEN_TYPES,
 | 
						|
        MODEL_TENSOR.POS_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.MPT: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.GPTJ: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.PERSIMMON: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
        MODEL_TENSOR.ATTN_Q_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_K_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.REFACT: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_Q,
 | 
						|
        MODEL_TENSOR.ATTN_K,
 | 
						|
        MODEL_TENSOR.ATTN_V,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_GATE,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.BLOOM: [
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD,
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM,
 | 
						|
        MODEL_TENSOR.OUTPUT,
 | 
						|
        MODEL_TENSOR.ATTN_NORM,
 | 
						|
        MODEL_TENSOR.ATTN_QKV,
 | 
						|
        MODEL_TENSOR.ATTN_OUT,
 | 
						|
        MODEL_TENSOR.FFN_NORM,
 | 
						|
        MODEL_TENSOR.FFN_DOWN,
 | 
						|
        MODEL_TENSOR.FFN_UP,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.GPT2: [
 | 
						|
        # TODO
 | 
						|
    ],
 | 
						|
    # TODO
 | 
						|
}
 | 
						|
 | 
						|
# tensors that will not be serialized
 | 
						|
MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
 | 
						|
    MODEL_ARCH.LLAMA: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.BAICHUAN: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD,
 | 
						|
    ],
 | 
						|
    MODEL_ARCH.PERSIMMON: [
 | 
						|
        MODEL_TENSOR.ROPE_FREQS,
 | 
						|
    ]
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
class TensorNameMap:
 | 
						|
    mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
 | 
						|
        # Token embeddings
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD: (
 | 
						|
            "gpt_neox.embed_in",                        # gptneox
 | 
						|
            "transformer.wte",                          # gpt2 gpt-j mpt refact
 | 
						|
            "transformer.word_embeddings",              # falcon
 | 
						|
            "word_embeddings",                          # bloom
 | 
						|
            "model.embed_tokens",                       # llama-hf
 | 
						|
            "tok_embeddings",                           # llama-pth
 | 
						|
            "embeddings.word_embeddings",               # bert
 | 
						|
            "language_model.embedding.word_embeddings", # persimmon
 | 
						|
        ),
 | 
						|
 | 
						|
        # Token type embeddings
 | 
						|
        MODEL_TENSOR.TOKEN_TYPES: (
 | 
						|
            "embeddings.token_type_embeddings",  # bert
 | 
						|
        ),
 | 
						|
 | 
						|
        # Normalization of token embeddings
 | 
						|
        MODEL_TENSOR.TOKEN_EMBD_NORM: (
 | 
						|
            "word_embeddings_layernorm",  # bloom
 | 
						|
        ),
 | 
						|
 | 
						|
        # Position embeddings
 | 
						|
        MODEL_TENSOR.POS_EMBD: (
 | 
						|
            "transformer.wpe",                 # gpt2
 | 
						|
            "embeddings.position_embeddings",  # bert
 | 
						|
        ),
 | 
						|
 | 
						|
        # Output
 | 
						|
        MODEL_TENSOR.OUTPUT: (
 | 
						|
            "embed_out",                # gptneox
 | 
						|
            "lm_head",                  # gpt2 mpt falcon llama-hf baichuan
 | 
						|
            "output",                   # llama-pth bloom
 | 
						|
            "word_embeddings_for_head", # persimmon
 | 
						|
        ),
 | 
						|
 | 
						|
        # Output norm
 | 
						|
        MODEL_TENSOR.OUTPUT_NORM: (
 | 
						|
            "gpt_neox.final_layer_norm",              # gptneox
 | 
						|
            "transformer.ln_f",                       # gpt2 gpt-j falcon
 | 
						|
            "model.norm",                             # llama-hf baichuan
 | 
						|
            "norm",                                   # llama-pth
 | 
						|
            "embeddings.LayerNorm",                   # bert
 | 
						|
            "transformer.norm_f",                     # mpt
 | 
						|
            "ln_f",                                   # refact bloom
 | 
						|
            "language_model.encoder.final_layernorm", # persimmon
 | 
						|
        ),
 | 
						|
 | 
						|
        # Rope frequencies
 | 
						|
        MODEL_TENSOR.ROPE_FREQS: (
 | 
						|
            "rope.freqs", # llama-pth
 | 
						|
        ),
 | 
						|
    }
 | 
						|
 | 
						|
    block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
 | 
						|
        # Attention norm
 | 
						|
        MODEL_TENSOR.ATTN_NORM: (
 | 
						|
            "gpt_neox.layers.{bid}.input_layernorm",               # gptneox
 | 
						|
            "transformer.h.{bid}.ln_1",                            # gpt2 gpt-j refact
 | 
						|
            "transformer.blocks.{bid}.norm_1",                     # mpt
 | 
						|
            "transformer.h.{bid}.input_layernorm",                 # falcon7b
 | 
						|
            "h.{bid}.input_layernorm",                             # bloom
 | 
						|
            "transformer.h.{bid}.ln_mlp",                          # falcon40b
 | 
						|
            "model.layers.{bid}.input_layernorm",                  # llama-hf
 | 
						|
            "layers.{bid}.attention_norm",                         # llama-pth
 | 
						|
            "encoder.layer.{bid}.attention.output.LayerNorm",      # bert
 | 
						|
            "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
 | 
						|
        ),
 | 
						|
 | 
						|
        # Attention norm 2
 | 
						|
        MODEL_TENSOR.ATTN_NORM_2: (
 | 
						|
            "transformer.h.{bid}.ln_attn", # falcon40b
 | 
						|
        ),
 | 
						|
 | 
						|
        # Attention query-key-value
 | 
						|
        MODEL_TENSOR.ATTN_QKV: (
 | 
						|
            "gpt_neox.layers.{bid}.attention.query_key_value",                    # gptneox
 | 
						|
            "transformer.h.{bid}.attn.c_attn",                                    # gpt2
 | 
						|
            "transformer.blocks.{bid}.attn.Wqkv",                                 # mpt
 | 
						|
            "transformer.h.{bid}.self_attention.query_key_value",                 # falcon
 | 
						|
            "h.{bid}.self_attention.query_key_value",                             # bloom
 | 
						|
            "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
 | 
						|
        ),
 | 
						|
 | 
						|
        # Attention query
 | 
						|
        MODEL_TENSOR.ATTN_Q: (
 | 
						|
            "model.layers.{bid}.self_attn.q_proj",       # llama-hf
 | 
						|
            "layers.{bid}.attention.wq",                 # llama-pth
 | 
						|
            "encoder.layer.{bid}.attention.self.query",  # bert
 | 
						|
            "transformer.h.{bid}.attn.q_proj",           # gpt-j
 | 
						|
        ),
 | 
						|
 | 
						|
        # Attention key
 | 
						|
        MODEL_TENSOR.ATTN_K: (
 | 
						|
            "model.layers.{bid}.self_attn.k_proj",     # llama-hf
 | 
						|
            "layers.{bid}.attention.wk",               # llama-pth
 | 
						|
            "encoder.layer.{bid}.attention.self.key",  # bert
 | 
						|
            "transformer.h.{bid}.attn.k_proj",         # gpt-j
 | 
						|
        ),
 | 
						|
 | 
						|
        # Attention value
 | 
						|
        MODEL_TENSOR.ATTN_V: (
 | 
						|
            "model.layers.{bid}.self_attn.v_proj",       # llama-hf
 | 
						|
            "layers.{bid}.attention.wv",                 # llama-pth
 | 
						|
            "encoder.layer.{bid}.attention.self.value",  # bert
 | 
						|
            "transformer.h.{bid}.attn.v_proj",           # gpt-j
 | 
						|
        ),
 | 
						|
 | 
						|
        # Attention output
 | 
						|
        MODEL_TENSOR.ATTN_OUT: (
 | 
						|
            "gpt_neox.layers.{bid}.attention.dense",                   # gptneox
 | 
						|
            "transformer.h.{bid}.attn.c_proj",                         # gpt2 refact
 | 
						|
            "transformer.blocks.{bid}.attn.out_proj",                  # mpt
 | 
						|
            "transformer.h.{bid}.self_attention.dense",                # falcon
 | 
						|
            "h.{bid}.self_attention.dense",                            # bloom
 | 
						|
            "model.layers.{bid}.self_attn.o_proj",                     # llama-hf
 | 
						|
            "layers.{bid}.attention.wo",                               # llama-pth
 | 
						|
            "encoder.layer.{bid}.attention.output.dense",              # bert
 | 
						|
            "transformer.h.{bid}.attn.out_proj",                       # gpt-j
 | 
						|
            "language_model.encoder.layers.{bid}.self_attention.dense" # persimmon
 | 
						|
        ),
 | 
						|
 | 
						|
        # Rotary embeddings
 | 
						|
        MODEL_TENSOR.ATTN_ROT_EMBD: (
 | 
						|
            "model.layers.{bid}.self_attn.rotary_emb.inv_freq",  # llama-hf
 | 
						|
            "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
 | 
						|
        ),
 | 
						|
 | 
						|
        # Feed-forward norm
 | 
						|
        MODEL_TENSOR.FFN_NORM: (
 | 
						|
            "gpt_neox.layers.{bid}.post_attention_layernorm",               # gptneox
 | 
						|
            "transformer.h.{bid}.ln_2",                                     # gpt2 refact
 | 
						|
            "h.{bid}.post_attention_layernorm",                             # bloom
 | 
						|
            "transformer.blocks.{bid}.norm_2",                              # mpt
 | 
						|
            "model.layers.{bid}.post_attention_layernorm",                  # llama-hf
 | 
						|
            "layers.{bid}.ffn_norm",                                        # llama-pth
 | 
						|
            "encoder.layer.{bid}.output.LayerNorm",                         # bert
 | 
						|
            "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
 | 
						|
        ),
 | 
						|
 | 
						|
        # Feed-forward up
 | 
						|
        MODEL_TENSOR.FFN_UP: (
 | 
						|
            "gpt_neox.layers.{bid}.mlp.dense_h_to_4h",               # gptneox
 | 
						|
            "transformer.h.{bid}.mlp.c_fc",                          # gpt2
 | 
						|
            "transformer.blocks.{bid}.ffn.up_proj",                  # mpt
 | 
						|
            "transformer.h.{bid}.mlp.dense_h_to_4h",                 # falcon
 | 
						|
            "h.{bid}.mlp.dense_h_to_4h",                             # bloom
 | 
						|
            "model.layers.{bid}.mlp.up_proj",                        # llama-hf refact
 | 
						|
            "layers.{bid}.feed_forward.w3",                          # llama-pth
 | 
						|
            "encoder.layer.{bid}.intermediate.dense",                # bert
 | 
						|
            "transformer.h.{bid}.mlp.fc_in",                         # gpt-j
 | 
						|
            "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
 | 
						|
        ),
 | 
						|
 | 
						|
        # Feed-forward gate
 | 
						|
        MODEL_TENSOR.FFN_GATE: (
 | 
						|
            "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
 | 
						|
            "layers.{bid}.feed_forward.w1",     # llama-pth
 | 
						|
        ),
 | 
						|
 | 
						|
        # Feed-forward down
 | 
						|
        MODEL_TENSOR.FFN_DOWN: (
 | 
						|
            "gpt_neox.layers.{bid}.mlp.dense_4h_to_h",               # gptneox
 | 
						|
            "transformer.h.{bid}.mlp.c_proj",                        # gpt2 refact
 | 
						|
            "transformer.blocks.{bid}.ffn.down_proj",                # mpt
 | 
						|
            "transformer.h.{bid}.mlp.dense_4h_to_h",                 # falcon
 | 
						|
            "h.{bid}.mlp.dense_4h_to_h",                             # bloom
 | 
						|
            "model.layers.{bid}.mlp.down_proj",                      # llama-hf
 | 
						|
            "layers.{bid}.feed_forward.w2",                          # llama-pth
 | 
						|
            "encoder.layer.{bid}.output.dense",                      # bert
 | 
						|
            "transformer.h.{bid}.mlp.fc_out",                        # gpt-j
 | 
						|
            "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
 | 
						|
        ),
 | 
						|
 | 
						|
        MODEL_TENSOR.ATTN_Q_NORM: (
 | 
						|
            "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
 | 
						|
        ),
 | 
						|
 | 
						|
        MODEL_TENSOR.ATTN_K_NORM: (
 | 
						|
            "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
 | 
						|
        ),
 | 
						|
 | 
						|
        MODEL_TENSOR.ROPE_FREQS: (
 | 
						|
            "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
 | 
						|
        )
 | 
						|
    }
 | 
						|
 | 
						|
    mapping: dict[str, tuple[MODEL_TENSOR, str]]
 | 
						|
 | 
						|
    def __init__(self, arch: MODEL_ARCH, n_blocks: int):
 | 
						|
        self.mapping = {}
 | 
						|
        for tensor, keys in self.mappings_cfg.items():
 | 
						|
            if tensor not in MODEL_TENSORS[arch]:
 | 
						|
                continue
 | 
						|
            tensor_name = TENSOR_NAMES[tensor]
 | 
						|
            self.mapping[tensor_name] = (tensor, tensor_name)
 | 
						|
            for key in keys:
 | 
						|
                self.mapping[key] = (tensor, tensor_name)
 | 
						|
        for bid in range(n_blocks):
 | 
						|
            for tensor, keys in self.block_mappings_cfg.items():
 | 
						|
                if tensor not in MODEL_TENSORS[arch]:
 | 
						|
                    continue
 | 
						|
                tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
 | 
						|
                self.mapping[tensor_name] = (tensor, tensor_name)
 | 
						|
                for key in keys:
 | 
						|
                    key = key.format(bid = bid)
 | 
						|
                    self.mapping[key] = (tensor, tensor_name)
 | 
						|
 | 
						|
    def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
 | 
						|
        result = self.mapping.get(key)
 | 
						|
        if result is not None:
 | 
						|
            return result
 | 
						|
        for suffix in try_suffixes:
 | 
						|
            if key.endswith(suffix):
 | 
						|
                result = self.mapping.get(key[:-len(suffix)])
 | 
						|
                if result is not None:
 | 
						|
                    return (result[0], result[1] + suffix)
 | 
						|
        return None
 | 
						|
 | 
						|
    def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
 | 
						|
        result = self.get_type_and_name(key, try_suffixes = try_suffixes)
 | 
						|
        if result is None:
 | 
						|
            return None
 | 
						|
        return result[1]
 | 
						|
 | 
						|
    def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
 | 
						|
        result = self.get_type_and_name(key, try_suffixes = try_suffixes)
 | 
						|
        if result is None:
 | 
						|
            return None
 | 
						|
        return result[0]
 | 
						|
 | 
						|
    def __getitem__(self, key: str) -> str:
 | 
						|
        try:
 | 
						|
            return self.mapping[key][1]
 | 
						|
        except KeyError:
 | 
						|
            raise KeyError(key)
 | 
						|
 | 
						|
    def __contains__(self, key: str) -> bool:
 | 
						|
        return key in self.mapping
 | 
						|
 | 
						|
    def __repr__(self) -> str:
 | 
						|
        return repr(self.mapping)
 | 
						|
 | 
						|
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
 | 
						|
    return TensorNameMap(arch, n_blocks)
 | 
						|
 | 
						|
class TokenType(IntEnum):
 | 
						|
    NORMAL       = 1
 | 
						|
    UNKNOWN      = 2
 | 
						|
    CONTROL      = 3
 | 
						|
    USER_DEFINED = 4
 | 
						|
    UNUSED       = 5
 | 
						|
    BYTE         = 6
 | 
						|
 | 
						|
#
 | 
						|
# implementation
 | 
						|
#
 | 
						|
 | 
						|
 | 
						|
class GGMLQuantizationType(IntEnum):
 | 
						|
    F32  = 0
 | 
						|
    F16  = 1
 | 
						|
    Q4_0 = 2
 | 
						|
    Q4_1 = 3
 | 
						|
    Q5_0 = 6
 | 
						|
    Q5_1 = 7
 | 
						|
    Q8_0 = 8
 | 
						|
    Q8_1 = 9
 | 
						|
    Q2_K = 10
 | 
						|
    Q3_K = 11
 | 
						|
    Q4_K = 12
 | 
						|
    Q5_K = 13
 | 
						|
    Q6_K = 14
 | 
						|
    Q8_K = 15
 | 
						|
 | 
						|
class GGUFEndian(IntEnum):
 | 
						|
    LITTLE = 0
 | 
						|
    BIG = 1
 | 
						|
 | 
						|
 | 
						|
class GGUFValueType(IntEnum):
 | 
						|
    UINT8   = 0
 | 
						|
    INT8    = 1
 | 
						|
    UINT16  = 2
 | 
						|
    INT16   = 3
 | 
						|
    UINT32  = 4
 | 
						|
    INT32   = 5
 | 
						|
    FLOAT32 = 6
 | 
						|
    BOOL    = 7
 | 
						|
    STRING  = 8
 | 
						|
    ARRAY   = 9
 | 
						|
    UINT64  = 10
 | 
						|
    INT64   = 11
 | 
						|
    FLOAT64 = 12
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_type(val):
 | 
						|
        if isinstance(val, str) or isinstance(val, bytes) or isinstance(val, bytearray):
 | 
						|
            return GGUFValueType.STRING
 | 
						|
        elif isinstance(val, list):
 | 
						|
            return GGUFValueType.ARRAY
 | 
						|
        elif isinstance(val, float):
 | 
						|
            return GGUFValueType.FLOAT32
 | 
						|
        elif isinstance(val, bool):
 | 
						|
            return GGUFValueType.BOOL
 | 
						|
        elif isinstance(val, int):
 | 
						|
            return GGUFValueType.INT32
 | 
						|
        # TODO: need help with 64-bit types in Python
 | 
						|
        else:
 | 
						|
            print("Unknown type: "+str(type(val)))
 | 
						|
            sys.exit()
 | 
						|
 | 
						|
 | 
						|
class GGUFWriter:
 | 
						|
    fout: BufferedWriter
 | 
						|
    arch: str
 | 
						|
    offset_tensor = 0
 | 
						|
    data_alignment = GGUF_DEFAULT_ALIGNMENT
 | 
						|
    kv_data = b""
 | 
						|
    kv_data_count = 0
 | 
						|
    ti_data = b""
 | 
						|
    ti_data_count = 0
 | 
						|
    use_temp_file: bool
 | 
						|
    temp_file: tempfile.SpooledTemporaryFile[bytes] | None = None
 | 
						|
    tensors: list[tuple[np.ndarray[Any, Any], int]]
 | 
						|
 | 
						|
    @property
 | 
						|
    def pack_prefix(self):
 | 
						|
        if self.endianess==GGUFEndian.LITTLE:
 | 
						|
            return "<"
 | 
						|
        else:
 | 
						|
            return ">"
 | 
						|
 | 
						|
    def __init__(self, path: os.PathLike[str] | str, arch: str, use_temp_file = True, endianess=GGUFEndian.LITTLE):
 | 
						|
        self.fout = open(path, "wb")
 | 
						|
        self.arch = arch
 | 
						|
        self.endianess = endianess
 | 
						|
        self._simple_value_packing = {
 | 
						|
            GGUFValueType.UINT8:   f"{self.pack_prefix}B",
 | 
						|
            GGUFValueType.INT8:    f"{self.pack_prefix}b",
 | 
						|
            GGUFValueType.UINT16:  f"{self.pack_prefix}H",
 | 
						|
            GGUFValueType.INT16:   f"{self.pack_prefix}h",
 | 
						|
            GGUFValueType.UINT32:  f"{self.pack_prefix}I",
 | 
						|
            GGUFValueType.INT32:   f"{self.pack_prefix}i",
 | 
						|
            GGUFValueType.FLOAT32: f"{self.pack_prefix}f",
 | 
						|
            GGUFValueType.UINT64:  f"{self.pack_prefix}Q",
 | 
						|
            GGUFValueType.INT64:   f"{self.pack_prefix}q",
 | 
						|
            GGUFValueType.FLOAT64: f"{self.pack_prefix}d",
 | 
						|
            GGUFValueType.BOOL:    "?" ,
 | 
						|
        }
 | 
						|
        self.add_architecture()
 | 
						|
        self.use_temp_file = use_temp_file
 | 
						|
        self.tensors = []
 | 
						|
        endianess_str = "Big Endian" if self.endianess == GGUFEndian.BIG else "Little Endian"
 | 
						|
        print(f"This gguf file is for {endianess_str} only")
 | 
						|
 | 
						|
    def write_header_to_file(self):
 | 
						|
        self.fout.write(struct.pack("<I", GGUF_MAGIC))
 | 
						|
        self.fout.write(struct.pack(f"{self.pack_prefix}I", GGUF_VERSION))
 | 
						|
        self.fout.write(struct.pack(f"{self.pack_prefix}Q", self.ti_data_count))
 | 
						|
        self.fout.write(struct.pack(f"{self.pack_prefix}Q", self.kv_data_count))
 | 
						|
        self.flush()
 | 
						|
#        print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count))
 | 
						|
 | 
						|
    def write_kv_data_to_file(self):
 | 
						|
        self.fout.write(self.kv_data)
 | 
						|
        self.flush()
 | 
						|
 | 
						|
    def write_ti_data_to_file(self):
 | 
						|
        self.fout.write(self.ti_data)
 | 
						|
        self.flush()
 | 
						|
 | 
						|
    def add_key(self, key: str):
 | 
						|
        self.add_val(key, GGUFValueType.STRING, add_vtype=False)
 | 
						|
 | 
						|
    def add_uint8(self, key: str, val: int):
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.UINT8)
 | 
						|
 | 
						|
    def add_int8(self, key: str, val: int):
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.INT8)
 | 
						|
 | 
						|
    def add_uint16(self, key: str, val: int):
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.UINT16)
 | 
						|
 | 
						|
    def add_int16(self, key: str, val: int):
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.INT16)
 | 
						|
 | 
						|
    def add_uint32(self, key: str, val: int):
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.UINT32)
 | 
						|
 | 
						|
    def add_int32(self, key: str, val: int):
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.INT32)
 | 
						|
 | 
						|
    def add_float32(self, key: str, val: float):
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.FLOAT32)
 | 
						|
 | 
						|
    def add_uint64(self, key: str, val: int):
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.UINT64)
 | 
						|
 | 
						|
    def add_int64(self, key: str, val: int):
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.INT64)
 | 
						|
 | 
						|
    def add_float64(self, key: str, val: float):
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.FLOAT64)
 | 
						|
 | 
						|
    def add_bool(self, key: str, val: bool):
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.BOOL)
 | 
						|
 | 
						|
    def add_string(self, key: str, val: str):
 | 
						|
        if len(val) == 0:
 | 
						|
            return
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.STRING)
 | 
						|
 | 
						|
    def add_array(self, key: str, val: Sequence[Any]):
 | 
						|
        if not isinstance(val, Sequence):
 | 
						|
            raise ValueError("Value must be a sequence for array type")
 | 
						|
 | 
						|
        self.add_key(key)
 | 
						|
        self.add_val(val, GGUFValueType.ARRAY)
 | 
						|
 | 
						|
    def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True):
 | 
						|
        if vtype is None:
 | 
						|
            vtype = GGUFValueType.get_type(val)
 | 
						|
 | 
						|
        if add_vtype:
 | 
						|
            self.kv_data += struct.pack(f"{self.pack_prefix}I", vtype)
 | 
						|
            self.kv_data_count += 1
 | 
						|
 | 
						|
        pack_fmt = self._simple_value_packing.get(vtype)
 | 
						|
        if pack_fmt is not None:
 | 
						|
            self.kv_data += struct.pack(pack_fmt, val)
 | 
						|
        elif vtype == GGUFValueType.STRING:
 | 
						|
            encoded_val = val.encode("utf8") if isinstance(val, str) else val
 | 
						|
            self.kv_data += struct.pack(f"{self.pack_prefix}Q", len(encoded_val))
 | 
						|
            self.kv_data += encoded_val
 | 
						|
        elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and len(val) > 0:
 | 
						|
            ltype = GGUFValueType.get_type(val[0])
 | 
						|
            if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
 | 
						|
                raise ValueError("All items in a GGUF array should be of the same type")
 | 
						|
            self.kv_data += struct.pack(f"{self.pack_prefix}I", ltype)
 | 
						|
            self.kv_data += struct.pack(f"{self.pack_prefix}Q", len(val))
 | 
						|
            for item in val:
 | 
						|
                self.add_val(item, add_vtype=False)
 | 
						|
        else:
 | 
						|
            raise ValueError("Invalid GGUF metadata value type or value")
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def ggml_pad(x: int, n: int) -> int:
 | 
						|
        return ((x + n - 1) // n) * n
 | 
						|
 | 
						|
    def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32], tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None):
 | 
						|
        assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
 | 
						|
 | 
						|
        encoded_name = name.encode("utf8")
 | 
						|
        self.ti_data += struct.pack(f"{self.pack_prefix}Q", len(encoded_name))
 | 
						|
        self.ti_data += encoded_name
 | 
						|
        n_dims = len(tensor_shape)
 | 
						|
        self.ti_data += struct.pack(f"{self.pack_prefix}I", n_dims)
 | 
						|
        for i in range(n_dims):
 | 
						|
            self.ti_data += struct.pack(f"{self.pack_prefix}Q", tensor_shape[n_dims - 1 - i])
 | 
						|
        if raw_dtype is None:
 | 
						|
            dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
 | 
						|
        else:
 | 
						|
            dtype = raw_dtype
 | 
						|
        self.ti_data += struct.pack(f"{self.pack_prefix}I", dtype)
 | 
						|
        self.ti_data += struct.pack(f"{self.pack_prefix}Q", self.offset_tensor)
 | 
						|
        self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
 | 
						|
        self.ti_data_count += 1
 | 
						|
 | 
						|
    def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, raw_dtype: GGMLQuantizationType | None = None):
 | 
						|
        if self.endianess == GGUFEndian.BIG:
 | 
						|
            tensor.byteswap(inplace=True)
 | 
						|
        if self.use_temp_file and self.temp_file is None:
 | 
						|
            fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
 | 
						|
            fp.seek(0)
 | 
						|
            self.temp_file = fp
 | 
						|
 | 
						|
        shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
 | 
						|
        self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
 | 
						|
 | 
						|
        pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
 | 
						|
 | 
						|
        if  self.temp_file is None:
 | 
						|
            self.tensors.append((tensor, pad))
 | 
						|
            return
 | 
						|
 | 
						|
        tensor.tofile(self.temp_file)
 | 
						|
 | 
						|
        if pad != 0:
 | 
						|
            self.temp_file.write(bytes([0] * pad))
 | 
						|
 | 
						|
    def write_padding(self, fp: BinaryIO, n: int, align: int | None = None):
 | 
						|
        pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
 | 
						|
        if pad != 0:
 | 
						|
            fp.write(bytes([0] * pad))
 | 
						|
 | 
						|
    def write_tensor_data(self, tensor: np.ndarray[Any, Any]):
 | 
						|
        if self.endianess==GGUFEndian.BIG:
 | 
						|
            tensor.byteswap(inplace=True)
 | 
						|
        self.write_padding(self.fout, self.fout.tell())
 | 
						|
        tensor.tofile(self.fout)
 | 
						|
        self.write_padding(self.fout, tensor.nbytes)
 | 
						|
 | 
						|
    def write_tensors_to_file(self):
 | 
						|
        self.write_ti_data_to_file()
 | 
						|
 | 
						|
        self.write_padding(self.fout, self.fout.tell())
 | 
						|
 | 
						|
        if self.temp_file is None:
 | 
						|
            for (currtensor, currpad) in self.tensors:
 | 
						|
                currtensor.tofile(self.fout)
 | 
						|
                if currpad != 0:
 | 
						|
                    self.fout.write(bytes([0] * currpad))
 | 
						|
            return
 | 
						|
 | 
						|
        self.temp_file.seek(0)
 | 
						|
 | 
						|
        shutil.copyfileobj(self.temp_file, self.fout)
 | 
						|
        self.flush()
 | 
						|
        self.temp_file.close()
 | 
						|
 | 
						|
    def flush(self):
 | 
						|
        self.fout.flush()
 | 
						|
 | 
						|
    def close(self):
 | 
						|
        self.fout.close()
 | 
						|
 | 
						|
    def add_architecture(self):
 | 
						|
        self.add_string(KEY_GENERAL_ARCHITECTURE, self.arch)
 | 
						|
 | 
						|
    def add_author(self, author: str):
 | 
						|
        self.add_string(KEY_GENERAL_AUTHOR, author)
 | 
						|
 | 
						|
    def add_tensor_data_layout(self, layout: str):
 | 
						|
        self.add_string(KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
 | 
						|
 | 
						|
    def add_url(self, url: str):
 | 
						|
        self.add_string(KEY_GENERAL_URL, url)
 | 
						|
 | 
						|
    def add_description(self, description: str):
 | 
						|
        self.add_string(KEY_GENERAL_DESCRIPTION, description)
 | 
						|
 | 
						|
    def add_source_url(self, url: str):
 | 
						|
        self.add_string(KEY_GENERAL_SOURCE_URL, url)
 | 
						|
 | 
						|
    def add_source_hf_repo(self, repo: str):
 | 
						|
        self.add_string(KEY_GENERAL_SOURCE_HF_REPO, repo)
 | 
						|
 | 
						|
    def add_file_type(self, ftype: int):
 | 
						|
        self.add_uint32(KEY_GENERAL_FILE_TYPE, ftype)
 | 
						|
 | 
						|
    def add_name(self, name: str):
 | 
						|
        self.add_string(KEY_GENERAL_NAME, name)
 | 
						|
 | 
						|
    def add_quantization_version(self, quantization_version: GGMLQuantizationType):
 | 
						|
        self.add_uint32(
 | 
						|
            KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
 | 
						|
 | 
						|
    def add_custom_alignment(self, alignment: int):
 | 
						|
        self.data_alignment = alignment
 | 
						|
        self.add_uint32(KEY_GENERAL_ALIGNMENT, alignment)
 | 
						|
 | 
						|
    def add_context_length(self, length: int):
 | 
						|
        self.add_uint32(
 | 
						|
            KEY_CONTEXT_LENGTH.format(arch=self.arch), length)
 | 
						|
 | 
						|
    def add_embedding_length(self, length: int):
 | 
						|
        self.add_uint32(
 | 
						|
            KEY_EMBEDDING_LENGTH.format(arch=self.arch), length)
 | 
						|
 | 
						|
    def add_block_count(self, length: int):
 | 
						|
        self.add_uint32(
 | 
						|
            KEY_BLOCK_COUNT.format(arch=self.arch), length)
 | 
						|
 | 
						|
    def add_feed_forward_length(self, length: int):
 | 
						|
        self.add_uint32(
 | 
						|
            KEY_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
 | 
						|
 | 
						|
    def add_parallel_residual(self, use: bool):
 | 
						|
        self.add_bool(
 | 
						|
            KEY_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
 | 
						|
 | 
						|
    def add_head_count(self, count: int):
 | 
						|
        self.add_uint32(
 | 
						|
            KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count)
 | 
						|
 | 
						|
    def add_head_count_kv(self, count: int):
 | 
						|
        self.add_uint32(
 | 
						|
            KEY_ATTENTION_HEAD_COUNT_KV.format(arch=self.arch), count)
 | 
						|
 | 
						|
    def add_max_alibi_bias(self, bias: float):
 | 
						|
        self.add_float32(
 | 
						|
            KEY_ATTENTION_MAX_ALIBI_BIAS.format(arch=self.arch), bias)
 | 
						|
 | 
						|
    def add_clamp_kqv(self, value: float):
 | 
						|
        self.add_float32(
 | 
						|
            KEY_ATTENTION_CLAMP_KQV.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_layer_norm_eps(self, value: float):
 | 
						|
        self.add_float32(
 | 
						|
            KEY_ATTENTION_LAYERNORM_EPS.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_layer_norm_rms_eps(self, value: float):
 | 
						|
        self.add_float32(
 | 
						|
            KEY_ATTENTION_LAYERNORM_RMS_EPS.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_rope_dimension_count(self, count: int):
 | 
						|
        self.add_uint32(
 | 
						|
            KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count)
 | 
						|
 | 
						|
    def add_rope_freq_base(self, value: float):
 | 
						|
        self.add_float32(KEY_ROPE_FREQ_BASE.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_rope_scale_linear(self, value: float):
 | 
						|
        self.add_float32(KEY_ROPE_SCALE_LINEAR.format(arch=self.arch), value)
 | 
						|
 | 
						|
    def add_tokenizer_model(self, model: str):
 | 
						|
        self.add_string(KEY_TOKENIZER_MODEL, model)
 | 
						|
 | 
						|
    def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]):
 | 
						|
        self.add_array(KEY_TOKENIZER_LIST, tokens)
 | 
						|
 | 
						|
    def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]):
 | 
						|
        self.add_array(KEY_TOKENIZER_MERGES, merges)
 | 
						|
 | 
						|
    def add_token_types(self, types: Sequence[TokenType] | Sequence[int]):
 | 
						|
        self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types)
 | 
						|
 | 
						|
    def add_token_scores(self, scores: Sequence[float]):
 | 
						|
        self.add_array(KEY_TOKENIZER_SCORES, scores)
 | 
						|
 | 
						|
    def add_bos_token_id(self, id: int):
 | 
						|
        self.add_uint32(KEY_TOKENIZER_BOS_ID, id)
 | 
						|
 | 
						|
    def add_eos_token_id(self, id: int):
 | 
						|
        self.add_uint32(KEY_TOKENIZER_EOS_ID, id)
 | 
						|
 | 
						|
    def add_unk_token_id(self, id: int):
 | 
						|
        self.add_uint32(KEY_TOKENIZER_UNK_ID, id)
 | 
						|
 | 
						|
    def add_sep_token_id(self, id: int):
 | 
						|
        self.add_uint32(KEY_TOKENIZER_SEP_ID, id)
 | 
						|
 | 
						|
    def add_pad_token_id(self, id: int):
 | 
						|
        self.add_uint32(KEY_TOKENIZER_PAD_ID, id)
 | 
						|
 | 
						|
 | 
						|
class SpecialVocab:
 | 
						|
    load_merges: bool = False
 | 
						|
    merges: list[str] = []
 | 
						|
    special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad')
 | 
						|
    special_token_ids: dict[str, int] = {}
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self, path: str | os.PathLike[str], load_merges: bool = False,
 | 
						|
        special_token_types: tuple[str, ...] | None = None,
 | 
						|
    ):
 | 
						|
        self.special_token_ids = {}
 | 
						|
        self.load_merges = load_merges
 | 
						|
        if special_token_types is not None:
 | 
						|
            self.special_token_types = special_token_types
 | 
						|
        self._load(Path(path))
 | 
						|
 | 
						|
    def _load(self, path: Path) -> None:
 | 
						|
        if not self._try_load_from_tokenizer_json(path):
 | 
						|
            self._try_load_from_config_json(path)
 | 
						|
 | 
						|
    def _try_load_from_tokenizer_json(self, path: Path) -> bool:
 | 
						|
        tokenizer_file = path / 'tokenizer.json'
 | 
						|
        if not tokenizer_file.is_file():
 | 
						|
            return False
 | 
						|
        with open(tokenizer_file, encoding = 'utf-8') as f:
 | 
						|
            tokenizer = json.load(f)
 | 
						|
        if self.load_merges:
 | 
						|
            merges = tokenizer.get('model', {}).get('merges')
 | 
						|
            if isinstance(merges, list) and len(merges) > 0 and isinstance(merges[0], str):
 | 
						|
                self.merges = merges
 | 
						|
        tokenizer_config_file = path / 'tokenizer_config.json'
 | 
						|
        added_tokens = tokenizer.get('added_tokens')
 | 
						|
        if added_tokens is None or not tokenizer_config_file.is_file():
 | 
						|
            return True
 | 
						|
        with open(tokenizer_config_file, encoding = 'utf-8') as f:
 | 
						|
            tokenizer_config = json.load(f)
 | 
						|
        for typ in self.special_token_types:
 | 
						|
            entry = tokenizer_config.get(f'{typ}_token')
 | 
						|
            if isinstance(entry, str):
 | 
						|
                tc_content = entry
 | 
						|
            elif isinstance(entry, dict):
 | 
						|
                entry_content = entry.get('content')
 | 
						|
                if not isinstance(entry_content, str):
 | 
						|
                    continue
 | 
						|
                tc_content = entry_content
 | 
						|
            else:
 | 
						|
                continue
 | 
						|
            for maybe_token_id in (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content):
 | 
						|
                if isinstance(maybe_token_id, int) and maybe_token_id >= 0:
 | 
						|
                    self.special_token_ids[typ] = maybe_token_id
 | 
						|
                break
 | 
						|
        return True
 | 
						|
 | 
						|
    def _try_load_from_config_json(self, path: Path) -> bool:
 | 
						|
        config_file = path / 'config.json'
 | 
						|
        if not config_file.is_file():
 | 
						|
            return False
 | 
						|
        with open(config_file, encoding = 'utf-8') as f:
 | 
						|
            config = json.load(f)
 | 
						|
        for typ in self.special_token_types:
 | 
						|
            maybe_token_id = config.get(f'{typ}_token_id')
 | 
						|
            if isinstance(maybe_token_id, int) and maybe_token_id >= 0:
 | 
						|
                self.special_token_ids[typ] = maybe_token_id
 | 
						|
        return True
 | 
						|
 | 
						|
    def add_to_gguf(self, gw: GGUFWriter) -> None:
 | 
						|
        if len(self.merges) > 0:
 | 
						|
            print(f'gguf: Adding {len(self.merges)} merge(s).')
 | 
						|
            gw.add_token_merges(self.merges)
 | 
						|
        for typ, tokid in self.special_token_ids.items():
 | 
						|
            handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None)
 | 
						|
            if handler is None:
 | 
						|
                print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping')
 | 
						|
                continue
 | 
						|
            print(f'gguf: Setting special token type {typ} to {tokid}')
 | 
						|
            handler(tokid)
 | 
						|
 | 
						|
    def __repr__(self) -> str:
 | 
						|
        return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids or "unset"}>'
 | 
						|
 | 
						|
 | 
						|
# Example usage:
 | 
						|
if __name__ == "__main__":
 | 
						|
    # Example usage with a file
 | 
						|
    gguf_writer = GGUFWriter("example.gguf", "llama")
 | 
						|
 | 
						|
    gguf_writer.add_architecture()
 | 
						|
    gguf_writer.add_block_count(12)
 | 
						|
    gguf_writer.add_uint32("answer", 42)  # Write a 32-bit integer
 | 
						|
    gguf_writer.add_float32("answer_in_float", 42.0)  # Write a 32-bit float
 | 
						|
    gguf_writer.add_custom_alignment(64)
 | 
						|
 | 
						|
    tensor1 = np.ones((32,), dtype=np.float32) * 100.0
 | 
						|
    tensor2 = np.ones((64,), dtype=np.float32) * 101.0
 | 
						|
    tensor3 = np.ones((96,), dtype=np.float32) * 102.0
 | 
						|
 | 
						|
    gguf_writer.add_tensor("tensor1", tensor1)
 | 
						|
    gguf_writer.add_tensor("tensor2", tensor2)
 | 
						|
    gguf_writer.add_tensor("tensor3", tensor3)
 | 
						|
 | 
						|
    gguf_writer.write_header_to_file()
 | 
						|
    gguf_writer.write_kv_data_to_file()
 | 
						|
    gguf_writer.write_tensors_to_file()
 | 
						|
 | 
						|
    gguf_writer.close()
 |