mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 852aafb163
			
		
	
	852aafb163
	
	
	
		
			
			* update HIP_UMA #7399 add use of hipMemAdviseSetCoarseGrain when LLAMA_HIP_UMA is enable. - get x2 on prompte eval and x1.5 on token gen with rocm6.0 on ryzen 7940HX iGPU (780M/gfx1103) * simplify code, more consistent style --------- Co-authored-by: slaren <slarengh@gmail.com>
		
			
				
	
	
		
			3100 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			3100 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| #include "ggml-cuda.h"
 | |
| #include "ggml.h"
 | |
| #include "ggml-backend-impl.h"
 | |
| 
 | |
| #include "ggml-cuda/common.cuh"
 | |
| #include "ggml-cuda/acc.cuh"
 | |
| #include "ggml-cuda/arange.cuh"
 | |
| #include "ggml-cuda/argsort.cuh"
 | |
| #include "ggml-cuda/binbcast.cuh"
 | |
| #include "ggml-cuda/clamp.cuh"
 | |
| #include "ggml-cuda/concat.cuh"
 | |
| #include "ggml-cuda/convert.cuh"
 | |
| #include "ggml-cuda/cpy.cuh"
 | |
| #include "ggml-cuda/diagmask.cuh"
 | |
| #include "ggml-cuda/dmmv.cuh"
 | |
| #include "ggml-cuda/fattn.cuh"
 | |
| #include "ggml-cuda/getrows.cuh"
 | |
| #include "ggml-cuda/im2col.cuh"
 | |
| #include "ggml-cuda/mmq.cuh"
 | |
| #include "ggml-cuda/mmvq.cuh"
 | |
| #include "ggml-cuda/norm.cuh"
 | |
| #include "ggml-cuda/pad.cuh"
 | |
| #include "ggml-cuda/pool2d.cuh"
 | |
| #include "ggml-cuda/quantize.cuh"
 | |
| #include "ggml-cuda/rope.cuh"
 | |
| #include "ggml-cuda/scale.cuh"
 | |
| #include "ggml-cuda/softmax.cuh"
 | |
| #include "ggml-cuda/sumrows.cuh"
 | |
| #include "ggml-cuda/tsembd.cuh"
 | |
| #include "ggml-cuda/unary.cuh"
 | |
| #include "ggml-cuda/upscale.cuh"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <array>
 | |
| #include <atomic>
 | |
| #include <cinttypes>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <float.h>
 | |
| #include <limits>
 | |
| #include <map>
 | |
| #include <memory>
 | |
| #include <mutex>
 | |
| #include <stdint.h>
 | |
| #include <stdio.h>
 | |
| #include <stdarg.h>
 | |
| #include <stdlib.h>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
 | |
| 
 | |
| static void ggml_cuda_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
 | |
|     GGML_UNUSED(level);
 | |
|     GGML_UNUSED(user_data);
 | |
|     fprintf(stderr, "%s", msg);
 | |
| }
 | |
| 
 | |
| ggml_log_callback ggml_cuda_log_callback = ggml_cuda_default_log_callback;
 | |
| void * ggml_cuda_log_user_data = NULL;
 | |
| 
 | |
| GGML_API void ggml_backend_cuda_log_set_callback(ggml_log_callback log_callback, void * user_data) {
 | |
|     ggml_cuda_log_callback = log_callback;
 | |
|     ggml_cuda_log_user_data = user_data;
 | |
| }
 | |
| 
 | |
| #define GGML_CUDA_LOG_INFO(...) ggml_cuda_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
 | |
| #define GGML_CUDA_LOG_WARN(...) ggml_cuda_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
 | |
| #define GGML_CUDA_LOG_ERROR(...) ggml_cuda_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
 | |
| 
 | |
| GGML_ATTRIBUTE_FORMAT(2, 3)
 | |
| static void ggml_cuda_log(enum ggml_log_level level, const char * format, ...) {
 | |
|     if (ggml_cuda_log_callback != NULL) {
 | |
|         va_list args;
 | |
|         va_start(args, format);
 | |
|         char buffer[128];
 | |
|         int len = vsnprintf(buffer, 128, format, args);
 | |
|         if (len < 128) {
 | |
|             ggml_cuda_log_callback(level, buffer, ggml_cuda_log_user_data);
 | |
|         } else {
 | |
|             std::vector<char> buffer2(len + 1);  // vsnprintf adds a null terminator
 | |
|             va_end(args);
 | |
|             va_start(args, format);
 | |
|             vsnprintf(&buffer2[0], buffer2.size(), format, args);
 | |
|             ggml_cuda_log_callback(level, buffer2.data(), ggml_cuda_log_user_data);
 | |
|         }
 | |
|         va_end(args);
 | |
|     }
 | |
| }
 | |
| 
 | |
| [[noreturn]]
 | |
| void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
 | |
|     int id = -1; // in case cudaGetDevice fails
 | |
|     cudaGetDevice(&id);
 | |
| 
 | |
|     GGML_CUDA_LOG_ERROR("CUDA error: %s\n", msg);
 | |
|     GGML_CUDA_LOG_ERROR("  current device: %d, in function %s at %s:%d\n", id, func, file, line);
 | |
|     GGML_CUDA_LOG_ERROR("  %s\n", stmt);
 | |
|     // abort with GGML_ASSERT to get a stack trace
 | |
|     GGML_ASSERT(!"CUDA error");
 | |
| }
 | |
| 
 | |
| // this is faster on Windows
 | |
| // probably because the Windows CUDA libraries forget to make this check before invoking the drivers
 | |
| void ggml_cuda_set_device(int device) {
 | |
|     int current_device;
 | |
|     CUDA_CHECK(cudaGetDevice(¤t_device));
 | |
| 
 | |
|     if (device == current_device) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     CUDA_CHECK(cudaSetDevice(device));
 | |
| }
 | |
| 
 | |
| int ggml_cuda_get_device() {
 | |
|     int id;
 | |
|     CUDA_CHECK(cudaGetDevice(&id));
 | |
|     return id;
 | |
| }
 | |
| 
 | |
| static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
 | |
|     ggml_cuda_set_device(device);
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(GGML_HIP_UMA)
 | |
|     auto res = hipMallocManaged(ptr, size);
 | |
|     if (res == hipSuccess) {
 | |
|         // if error we "need" to know why...
 | |
|         CUDA_CHECK(hipMemAdvise(*ptr, size, hipMemAdviseSetCoarseGrain, device));
 | |
|     }
 | |
|     return res;
 | |
| #else
 | |
|     return cudaMalloc(ptr, size);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static ggml_cuda_device_info ggml_cuda_init() {
 | |
| #ifdef __HIP_PLATFORM_AMD__
 | |
|     // Workaround for a rocBLAS bug when using multiple graphics cards:
 | |
|     // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
 | |
|     rocblas_initialize();
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
| #endif
 | |
| 
 | |
|     ggml_cuda_device_info info = {};
 | |
| 
 | |
|     cudaError_t err = cudaGetDeviceCount(&info.device_count);
 | |
|     if (err != cudaSuccess) {
 | |
|         GGML_CUDA_LOG_ERROR("%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
 | |
|         return info;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
 | |
| 
 | |
|     int64_t total_vram = 0;
 | |
| #if defined(GGML_CUDA_FORCE_MMQ)
 | |
|     GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ:   yes\n", __func__);
 | |
| #else
 | |
|     GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ:   no\n", __func__);
 | |
| #endif
 | |
| #if defined(CUDA_USE_TENSOR_CORES)
 | |
|     GGML_CUDA_LOG_INFO("%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
 | |
| #else
 | |
|     GGML_CUDA_LOG_INFO("%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
 | |
| #endif
 | |
|     GGML_CUDA_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
 | |
|     for (int id = 0; id < info.device_count; ++id) {
 | |
|         int device_vmm = 0;
 | |
| 
 | |
| #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
 | |
|         CUdevice device;
 | |
|         CU_CHECK(cuDeviceGet(&device, id));
 | |
|         CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
 | |
| 
 | |
|         if (device_vmm) {
 | |
|             CUmemAllocationProp alloc_prop = {};
 | |
|             alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
 | |
|             alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
 | |
|             alloc_prop.location.id = id;
 | |
|             CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
 | |
|         }
 | |
| #endif // !defined(GGML_USE_HIPBLAS)
 | |
|         info.devices[id].vmm = !!device_vmm;
 | |
| 
 | |
|         cudaDeviceProp prop;
 | |
|         CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
 | |
|         GGML_CUDA_LOG_INFO("  Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
 | |
| 
 | |
|         info.default_tensor_split[id] = total_vram;
 | |
|         total_vram += prop.totalGlobalMem;
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
|         info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
 | |
| #else
 | |
|         info.devices[id].cc = 100*prop.major + 10*prop.minor;
 | |
| #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
|         info.devices[id].smpb = prop.sharedMemPerBlock;
 | |
|         info.devices[id].nsm  = prop.multiProcessorCount;
 | |
|     }
 | |
| 
 | |
|     for (int id = 0; id < info.device_count; ++id) {
 | |
|         info.default_tensor_split[id] /= total_vram;
 | |
|     }
 | |
| 
 | |
|     // configure logging to stdout
 | |
|     // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
 | |
| 
 | |
|     return info;
 | |
| }
 | |
| 
 | |
| const ggml_cuda_device_info & ggml_cuda_info() {
 | |
|     static ggml_cuda_device_info info = ggml_cuda_init();
 | |
|     return info;
 | |
| }
 | |
| 
 | |
| // #define DEBUG_CUDA_MALLOC
 | |
| 
 | |
| // buffer pool for cuda (legacy)
 | |
| struct ggml_cuda_pool_leg : public ggml_cuda_pool {
 | |
|     static const int MAX_BUFFERS = 256;
 | |
| 
 | |
|     int device;
 | |
|     struct ggml_cuda_buffer {
 | |
|         void * ptr = nullptr;
 | |
|         size_t size = 0;
 | |
|     };
 | |
| 
 | |
|     ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
 | |
|     size_t pool_size = 0;
 | |
| 
 | |
|     explicit ggml_cuda_pool_leg(int device) :
 | |
|         device(device) {
 | |
|     }
 | |
| 
 | |
|     ~ggml_cuda_pool_leg() {
 | |
|         ggml_cuda_set_device(device);
 | |
|         for (int i = 0; i < MAX_BUFFERS; ++i) {
 | |
|             ggml_cuda_buffer & b = buffer_pool[i];
 | |
|             if (b.ptr != nullptr) {
 | |
|                 CUDA_CHECK(cudaFree(b.ptr));
 | |
|                 pool_size -= b.size;
 | |
|             }
 | |
|         }
 | |
|         GGML_ASSERT(pool_size == 0);
 | |
|     }
 | |
| 
 | |
|     void * alloc(size_t size, size_t * actual_size) override {
 | |
| #ifdef DEBUG_CUDA_MALLOC
 | |
|         int nnz = 0;
 | |
|         size_t max_size = 0;
 | |
| #endif
 | |
|         size_t best_diff = 1ull << 36;
 | |
|         int ibest = -1;
 | |
|         for (int i = 0; i < MAX_BUFFERS; ++i) {
 | |
|             ggml_cuda_buffer& b = buffer_pool[i];
 | |
|             if (b.ptr != nullptr) {
 | |
| #ifdef DEBUG_CUDA_MALLOC
 | |
|                 ++nnz;
 | |
|                 if (b.size > max_size) max_size = b.size;
 | |
| #endif
 | |
|                 if (b.size >= size) {
 | |
|                     size_t diff = b.size - size;
 | |
|                     if (diff < best_diff) {
 | |
|                         best_diff = diff;
 | |
|                         ibest = i;
 | |
|                         if (!best_diff) {
 | |
|                             void * ptr = b.ptr;
 | |
|                             *actual_size = b.size;
 | |
|                             b.ptr = nullptr;
 | |
|                             b.size = 0;
 | |
|                             return ptr;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (ibest >= 0) {
 | |
|             ggml_cuda_buffer& b = buffer_pool[ibest];
 | |
|             void * ptr = b.ptr;
 | |
|             *actual_size = b.size;
 | |
|             b.ptr = nullptr;
 | |
|             b.size = 0;
 | |
|             return ptr;
 | |
|         }
 | |
|         void * ptr;
 | |
|         size_t look_ahead_size = (size_t) (1.05 * size);
 | |
|         look_ahead_size = 256 * ((look_ahead_size + 255)/256);
 | |
|         ggml_cuda_set_device(device);
 | |
|         CUDA_CHECK(ggml_cuda_device_malloc(&ptr, look_ahead_size, device));
 | |
|         *actual_size = look_ahead_size;
 | |
|         pool_size += look_ahead_size;
 | |
| #ifdef DEBUG_CUDA_MALLOC
 | |
|         GGML_CUDA_LOG_INFO("%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
 | |
|                            (uint32_t)(max_size / 1024 / 1024), (uint32_t)(pool_size / 1024 / 1024), (uint32_t)(size / 1024 / 1024));
 | |
| #endif
 | |
|         return ptr;
 | |
|     }
 | |
| 
 | |
|     void free(void * ptr, size_t size) override {
 | |
|         for (int i = 0; i < MAX_BUFFERS; ++i) {
 | |
|             ggml_cuda_buffer& b = buffer_pool[i];
 | |
|             if (b.ptr == nullptr) {
 | |
|                 b.ptr = ptr;
 | |
|                 b.size = size;
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         GGML_CUDA_LOG_WARN("Cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
 | |
|         ggml_cuda_set_device(device);
 | |
|         CUDA_CHECK(cudaFree(ptr));
 | |
|         pool_size -= size;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // pool with virtual memory
 | |
| #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
 | |
| struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
 | |
|     static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
 | |
| 
 | |
|     int device;
 | |
|     CUdeviceptr pool_addr = 0;
 | |
|     size_t pool_used = 0;
 | |
|     size_t pool_size = 0;
 | |
|     size_t granularity;
 | |
| 
 | |
|     explicit ggml_cuda_pool_vmm(int device) :
 | |
|         device(device),
 | |
|         granularity(ggml_cuda_info().devices[device].vmm_granularity) {
 | |
|     }
 | |
| 
 | |
|     ~ggml_cuda_pool_vmm() {
 | |
|         if (pool_addr != 0) {
 | |
|             CU_CHECK(cuMemUnmap(pool_addr, pool_size));
 | |
|             CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void * alloc(size_t size, size_t * actual_size) override {
 | |
|         // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
 | |
|         const size_t alignment = 128;
 | |
|         size = alignment * ((size + alignment - 1) / alignment);
 | |
| 
 | |
|         size_t avail = pool_size - pool_used;
 | |
| 
 | |
|         if (size > avail) {
 | |
|             // round up to the next multiple of the granularity
 | |
|             size_t reserve_size = size - avail;
 | |
|             reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
 | |
| 
 | |
|             GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
 | |
| 
 | |
|             // allocate more physical memory
 | |
|             CUmemAllocationProp prop = {};
 | |
|             prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
 | |
|             prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
 | |
|             prop.location.id = device;
 | |
|             CUmemGenericAllocationHandle handle;
 | |
|             CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
 | |
| 
 | |
|             // reserve virtual address space (if not already reserved)
 | |
|             if (pool_addr == 0) {
 | |
|                 CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
 | |
|             }
 | |
| 
 | |
|             // map at the end of the pool
 | |
|             CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
 | |
| 
 | |
|             // the memory allocation handle is no longer needed after mapping
 | |
|             CU_CHECK(cuMemRelease(handle));
 | |
| 
 | |
|             // set access
 | |
|             CUmemAccessDesc access = {};
 | |
|             access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
 | |
|             access.location.id = device;
 | |
|             access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
 | |
|             CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
 | |
| 
 | |
|             // add to the pool
 | |
|             pool_size += reserve_size;
 | |
| 
 | |
|             //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
 | |
|             //       device, (unsigned long long) (pool_size/1024/1024),
 | |
|             //       (unsigned long long) (reserve_size/1024/1024));
 | |
|         }
 | |
| 
 | |
|         GGML_ASSERT(pool_addr != 0);
 | |
| 
 | |
|         void * ptr = (void *) (pool_addr + pool_used);
 | |
|         *actual_size = size;
 | |
|         pool_used += size;
 | |
| 
 | |
| #ifdef DEBUG_CUDA_MALLOC
 | |
|         printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
 | |
| #endif
 | |
| 
 | |
|         return ptr;
 | |
|     }
 | |
| 
 | |
|     void free(void * ptr, size_t size) override {
 | |
| #ifdef DEBUG_CUDA_MALLOC
 | |
|         printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
 | |
| #endif
 | |
| 
 | |
|         pool_used -= size;
 | |
| 
 | |
|         // all deallocations must be in reverse order of the allocations
 | |
|         GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
 | |
|     }
 | |
| };
 | |
| #endif // !defined(GGML_USE_HIPBLAS)
 | |
| 
 | |
| std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
 | |
| #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
 | |
|     if (ggml_cuda_info().devices[device].vmm) {
 | |
|         return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
 | |
|     }
 | |
| #endif
 | |
|     return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
 | |
| }
 | |
| 
 | |
| // cuda buffer
 | |
| 
 | |
| struct ggml_backend_cuda_buffer_context {
 | |
|     int device;
 | |
|     void * dev_ptr = nullptr;
 | |
|     std::string name;
 | |
| 
 | |
|     ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
 | |
|         device(device), dev_ptr(dev_ptr),
 | |
|         name(GGML_CUDA_NAME + std::to_string(device)) {
 | |
|     }
 | |
| 
 | |
|     ~ggml_backend_cuda_buffer_context() {
 | |
|         CUDA_CHECK(cudaFree(dev_ptr));
 | |
|     }
 | |
| };
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
 | |
|     ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 | |
|     return ctx->name.c_str();
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
 | |
|     return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | |
|     ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 | |
|     delete ctx;
 | |
| }
 | |
| 
 | |
| GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
 | |
|     ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 | |
|     return ctx->dev_ptr;
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
 | |
|     ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 | |
| 
 | |
|     if (tensor->view_src != NULL) {
 | |
|         assert(tensor->view_src->buffer->buft == buffer->buft);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (ggml_is_quantized(tensor->type)) {
 | |
|         // initialize padding to 0 to avoid possible NaN values
 | |
|         size_t original_size = ggml_nbytes(tensor);
 | |
|         size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
 | |
| 
 | |
|         if (padded_size > original_size && tensor->view_src == nullptr) {
 | |
|             ggml_cuda_set_device(ctx->device);
 | |
|             CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
 | |
|     ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 | |
| 
 | |
|     ggml_cuda_set_device(ctx->device);
 | |
|     CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
 | |
|     CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
 | |
|     ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 | |
| 
 | |
|     ggml_cuda_set_device(ctx->device);
 | |
|     CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
 | |
|     CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
 | |
|     if (ggml_backend_buffer_is_cuda(src->buffer)) {
 | |
|         ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
 | |
|         ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
 | |
|         if (src_ctx->device == dst_ctx->device) {
 | |
|             CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
 | |
|         } else {
 | |
| #ifdef GGML_CUDA_NO_PEER_COPY
 | |
|             return false;
 | |
| #else
 | |
|             CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
 | |
| #endif
 | |
|         }
 | |
|         CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| 
 | |
|     GGML_UNUSED(buffer);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
 | |
|     ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
 | |
| 
 | |
|     ggml_cuda_set_device(ctx->device);
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
 | |
|     /* .get_name        = */ ggml_backend_cuda_buffer_get_name,
 | |
|     /* .free_buffer     = */ ggml_backend_cuda_buffer_free_buffer,
 | |
|     /* .get_base        = */ ggml_backend_cuda_buffer_get_base,
 | |
|     /* .init_tensor     = */ ggml_backend_cuda_buffer_init_tensor,
 | |
|     /* .set_tensor      = */ ggml_backend_cuda_buffer_set_tensor,
 | |
|     /* .get_tensor      = */ ggml_backend_cuda_buffer_get_tensor,
 | |
|     /* .cpy_tensor      = */ ggml_backend_cuda_buffer_cpy_tensor,
 | |
|     /* .clear           = */ ggml_backend_cuda_buffer_clear,
 | |
|     /* .reset           = */ NULL,
 | |
| };
 | |
| 
 | |
| // cuda buffer type
 | |
| struct ggml_backend_cuda_buffer_type_context {
 | |
|     int device;
 | |
|     std::string name;
 | |
| };
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
 | |
|     ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
 | |
| 
 | |
|     return ctx->name.c_str();
 | |
| }
 | |
| 
 | |
| GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | |
|     ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
 | |
| 
 | |
|     ggml_cuda_set_device(buft_ctx->device);
 | |
| 
 | |
|     size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
 | |
| 
 | |
|     void * dev_ptr;
 | |
|     cudaError_t err = ggml_cuda_device_malloc(&dev_ptr, size, buft_ctx->device);
 | |
|     if (err != cudaSuccess) {
 | |
|         // clear the error
 | |
|         cudaGetLastError();
 | |
|         GGML_CUDA_LOG_ERROR("%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size / 1024.0 / 1024.0, buft_ctx->device, cudaGetErrorString(err));
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
 | |
| 
 | |
|     return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
 | |
| }
 | |
| 
 | |
| GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
 | |
|     return 128;
 | |
| 
 | |
|     GGML_UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
 | |
|     size_t size = ggml_nbytes(tensor);
 | |
|     int64_t ne0 = tensor->ne[0];
 | |
| 
 | |
|     if (ggml_is_quantized(tensor->type)) {
 | |
|         if (ne0 % MATRIX_ROW_PADDING != 0) {
 | |
|             size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return size;
 | |
| 
 | |
|     GGML_UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
 | |
|     if (!ggml_backend_is_cuda(backend)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
 | |
|     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | |
| 
 | |
|     return buft_ctx->device == cuda_ctx->device;
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
 | |
|     /* .get_name         = */ ggml_backend_cuda_buffer_type_name,
 | |
|     /* .alloc_buffer     = */ ggml_backend_cuda_buffer_type_alloc_buffer,
 | |
|     /* .get_alignment    = */ ggml_backend_cuda_buffer_type_get_alignment,
 | |
|     /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
 | |
|     /* .get_alloc_size   = */ ggml_backend_cuda_buffer_type_get_alloc_size,
 | |
|     /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
 | |
|     /* .is_host          = */ NULL,
 | |
| };
 | |
| 
 | |
| GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
 | |
|     static std::mutex mutex;
 | |
|     std::lock_guard<std::mutex> lock(mutex);
 | |
| 
 | |
|     if (device >= ggml_backend_cuda_get_device_count()) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
 | |
| 
 | |
|     static bool ggml_backend_cuda_buffer_type_initialized = false;
 | |
| 
 | |
|     if (!ggml_backend_cuda_buffer_type_initialized) {
 | |
|         for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
 | |
|             ggml_backend_cuda_buffer_types[i] = {
 | |
|                 /* .iface    = */ ggml_backend_cuda_buffer_type_interface,
 | |
|                 /* .context  = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
 | |
|             };
 | |
|         }
 | |
|         ggml_backend_cuda_buffer_type_initialized = true;
 | |
|     }
 | |
| 
 | |
|     return &ggml_backend_cuda_buffer_types[device];
 | |
| }
 | |
| 
 | |
| // cuda split buffer
 | |
| 
 | |
| static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
 | |
|     int64_t min_compute_capability = INT_MAX;
 | |
|     int64_t max_compute_capability = INT_MIN;
 | |
|     for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | |
|         if (tensor_split[id] < (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
 | |
|             if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
 | |
|                 min_compute_capability = ggml_cuda_info().devices[id].cc;
 | |
|             }
 | |
|             if (max_compute_capability < ggml_cuda_info().devices[id].cc) {
 | |
|                 max_compute_capability = ggml_cuda_info().devices[id].cc;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
|     switch(type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|         case GGML_TYPE_Q4_1:
 | |
|         case GGML_TYPE_Q5_0:
 | |
|         case GGML_TYPE_Q5_1:
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return max_compute_capability >= CC_RDNA2 ? 128 : 64;
 | |
|         case GGML_TYPE_F16:
 | |
|         case GGML_TYPE_F32:
 | |
|             return 1;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             return max_compute_capability >= CC_RDNA2 ? 128 : 32;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             return min_compute_capability < CC_RDNA2 ? 128 : 64;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|         case GGML_TYPE_Q5_K:
 | |
|         case GGML_TYPE_Q6_K:
 | |
|         case GGML_TYPE_IQ2_XXS:
 | |
|         case GGML_TYPE_IQ2_XS:
 | |
|         case GGML_TYPE_IQ2_S:
 | |
|         case GGML_TYPE_IQ3_XXS:
 | |
|         case GGML_TYPE_IQ1_S:
 | |
|         case GGML_TYPE_IQ1_M:
 | |
|         case GGML_TYPE_IQ4_NL:
 | |
|         case GGML_TYPE_IQ4_XS:
 | |
|         case GGML_TYPE_IQ3_S:
 | |
|             return max_compute_capability >= CC_RDNA2 ? 128 : 64;
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|     }
 | |
| #else
 | |
|     switch(type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             return max_compute_capability >= CC_VOLTA ? 128 : 64;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|         case GGML_TYPE_Q5_1:
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return 64;
 | |
|         case GGML_TYPE_F16:
 | |
|         case GGML_TYPE_F32:
 | |
|             return 1;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|         case GGML_TYPE_Q3_K:
 | |
|         case GGML_TYPE_Q4_K:
 | |
|         case GGML_TYPE_Q5_K:
 | |
|         case GGML_TYPE_IQ2_XXS:
 | |
|         case GGML_TYPE_IQ2_XS:
 | |
|         case GGML_TYPE_IQ2_S:
 | |
|         case GGML_TYPE_IQ3_XXS:
 | |
|         case GGML_TYPE_IQ1_S:
 | |
|         case GGML_TYPE_IQ1_M:
 | |
|         case GGML_TYPE_IQ4_NL:
 | |
|         case GGML_TYPE_IQ4_XS:
 | |
|         case GGML_TYPE_IQ3_S:
 | |
|             return max_compute_capability >= CC_VOLTA ? 128 : 64;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             return 64;
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|     }
 | |
| #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| }
 | |
| 
 | |
| static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
 | |
|     const int64_t nrows = ggml_nrows(tensor);
 | |
|     const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
 | |
| 
 | |
|     *row_low = id == 0 ? 0 : nrows*tensor_split[id];
 | |
|     *row_low -= *row_low % rounding;
 | |
| 
 | |
|     if (id == ggml_backend_cuda_get_device_count() - 1) {
 | |
|         *row_high = nrows;
 | |
|     } else {
 | |
|         *row_high = nrows*tensor_split[id + 1];
 | |
|         *row_high -= *row_high % rounding;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
 | |
| }
 | |
| 
 | |
| struct ggml_backend_cuda_split_buffer_type_context {
 | |
|     std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
 | |
| };
 | |
| 
 | |
| struct ggml_backend_cuda_split_buffer_context {
 | |
|     ~ggml_backend_cuda_split_buffer_context() {
 | |
|         for (ggml_tensor_extra_gpu * extra : tensor_extras) {
 | |
|             for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) {
 | |
|                 for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
 | |
|                     if (extra->events[id][is] != nullptr) {
 | |
|                         CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
 | |
|                     }
 | |
|                 }
 | |
|                 if (extra->data_device[id] != nullptr) {
 | |
|                     CUDA_CHECK(cudaFree(extra->data_device[id]));
 | |
|                 }
 | |
|             }
 | |
|             delete extra;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     std::vector<ggml_tensor_extra_gpu *> tensor_extras;
 | |
| };
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
 | |
|     return GGML_CUDA_NAME "_Split";
 | |
| 
 | |
|     GGML_UNUSED(buffer);
 | |
| }
 | |
| 
 | |
| static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
 | |
|     return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
 | |
|     GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | |
|     ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
 | |
|     delete ctx;
 | |
| }
 | |
| 
 | |
| GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
 | |
|     // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
 | |
|     return (void *)0x1000;
 | |
| 
 | |
|     GGML_UNUSED(buffer);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
 | |
|     GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
 | |
| 
 | |
|     ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
 | |
|     ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
 | |
| 
 | |
|     const int64_t ne0 = tensor->ne[0];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
 | |
|     ctx->tensor_extras.push_back(extra);
 | |
| 
 | |
|     for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | |
|         int64_t row_low, row_high;
 | |
|         get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
 | |
| 
 | |
|         int64_t nrows_split = row_high - row_low;
 | |
|         if (nrows_split == 0) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         size_t size = ggml_nbytes_split(tensor, nrows_split);
 | |
|         const size_t original_size = size;
 | |
| 
 | |
|         // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
 | |
|         if (ne0 % MATRIX_ROW_PADDING != 0) {
 | |
|             size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | |
|         }
 | |
| 
 | |
|         // FIXME: do not crash if cudaMalloc fails
 | |
|         // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
 | |
|         ggml_cuda_set_device(id);
 | |
|         char * buf;
 | |
|         CUDA_CHECK(ggml_cuda_device_malloc((void**)&buf, size, id));
 | |
| 
 | |
|         // set padding to 0 to avoid possible NaN values
 | |
|         if (size > original_size) {
 | |
|             CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
 | |
|         }
 | |
| 
 | |
|         extra->data_device[id] = buf;
 | |
| 
 | |
|         for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
 | |
|             CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
 | |
|         }
 | |
|     }
 | |
|     tensor->extra = extra;
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
 | |
|     // split tensors must always be set in their entirety at once
 | |
|     GGML_ASSERT(offset == 0);
 | |
|     GGML_ASSERT(size == ggml_nbytes(tensor));
 | |
| 
 | |
|     ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
 | |
| 
 | |
|     const int64_t ne0 = tensor->ne[0];
 | |
|     const size_t nb1 = tensor->nb[1];
 | |
|     ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
 | |
| 
 | |
|     for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | |
|         int64_t row_low, row_high;
 | |
|         get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
 | |
| 
 | |
|         int64_t nrows_split = row_high - row_low;
 | |
|         if (nrows_split == 0) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         const size_t offset_split = row_low*nb1;
 | |
|         size_t size = ggml_nbytes_split(tensor, nrows_split);
 | |
|         const size_t original_size = size;
 | |
| 
 | |
|         // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
 | |
|         if (ne0 % MATRIX_ROW_PADDING != 0) {
 | |
|             size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | |
|         }
 | |
| 
 | |
|         const char * buf_host = (const char *)data + offset_split;
 | |
|         CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
 | |
|     }
 | |
| 
 | |
|     for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | |
|         CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
 | |
|     }
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
 | |
|     // split tensors must always be set in their entirety at once
 | |
|     GGML_ASSERT(offset == 0);
 | |
|     GGML_ASSERT(size == ggml_nbytes(tensor));
 | |
| 
 | |
|     ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
 | |
| 
 | |
|     const int64_t ne0 = tensor->ne[0];
 | |
|     const size_t nb1 = tensor->nb[1];
 | |
|     ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
 | |
| 
 | |
|     for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | |
|         int64_t row_low, row_high;
 | |
|         get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
 | |
| 
 | |
|         int64_t nrows_split = row_high - row_low;
 | |
|         if (nrows_split == 0) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         const size_t offset_split = row_low*nb1;
 | |
|         size_t size = ggml_nbytes_split(tensor, nrows_split);
 | |
|         const size_t original_size = size;
 | |
| 
 | |
|         // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
 | |
|         if (ne0 % MATRIX_ROW_PADDING != 0) {
 | |
|             size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | |
|         }
 | |
| 
 | |
|         char * buf_host = (char *)data + offset_split;
 | |
|         CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
 | |
|     }
 | |
| 
 | |
|     for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | |
|         CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
 | |
|     }
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
 | |
|     GGML_UNUSED(buffer);
 | |
|     GGML_UNUSED(value);
 | |
| }
 | |
| 
 | |
| static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
 | |
|     /* .get_name        = */ ggml_backend_cuda_split_buffer_get_name,
 | |
|     /* .free_buffer     = */ ggml_backend_cuda_split_buffer_free_buffer,
 | |
|     /* .get_base        = */ ggml_backend_cuda_split_buffer_get_base,
 | |
|     /* .init_tensor     = */ ggml_backend_cuda_split_buffer_init_tensor,
 | |
|     /* .set_tensor      = */ ggml_backend_cuda_split_buffer_set_tensor,
 | |
|     /* .get_tensor      = */ ggml_backend_cuda_split_buffer_get_tensor,
 | |
|     /* .cpy_tensor      = */ NULL,
 | |
|     /* .clear           = */ ggml_backend_cuda_split_buffer_clear,
 | |
|     /* .reset           = */ NULL,
 | |
| };
 | |
| 
 | |
| // cuda split buffer type
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
 | |
|     return GGML_CUDA_NAME "_Split";
 | |
| 
 | |
|     GGML_UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | |
|     // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
 | |
|     // instead, we allocate them for each tensor separately in init_tensor
 | |
|     // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
 | |
|     // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
 | |
|     ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
 | |
| 
 | |
|     return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
 | |
| }
 | |
| 
 | |
| GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
 | |
|     return 128;
 | |
| 
 | |
|     GGML_UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
 | |
|     ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
 | |
| 
 | |
|     size_t total_size = 0;
 | |
| 
 | |
|     const int64_t ne0 = tensor->ne[0];
 | |
| 
 | |
|     for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | |
|         int64_t row_low, row_high;
 | |
|         get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
 | |
| 
 | |
|         int64_t nrows_split = row_high - row_low;
 | |
|         if (nrows_split == 0) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         total_size += ggml_nbytes_split(tensor, nrows_split);
 | |
| 
 | |
|         // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
 | |
|         if (ne0 % MATRIX_ROW_PADDING != 0) {
 | |
|             total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return total_size;
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
 | |
|     return ggml_backend_is_cuda(backend);
 | |
| 
 | |
|     GGML_UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
 | |
|     return false;
 | |
| 
 | |
|     GGML_UNUSED(buft);
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
 | |
|     /* .get_name         = */ ggml_backend_cuda_split_buffer_type_name,
 | |
|     /* .alloc_buffer     = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
 | |
|     /* .get_alignment    = */ ggml_backend_cuda_split_buffer_type_get_alignment,
 | |
|     /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
 | |
|     /* .get_alloc_size   = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
 | |
|     /* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
 | |
|     /* .is_host          = */ ggml_backend_cuda_split_buffer_type_is_host,
 | |
| };
 | |
| 
 | |
| GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
 | |
|     static std::mutex mutex;
 | |
|     std::lock_guard<std::mutex> lock(mutex);
 | |
| 
 | |
|     static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
 | |
| 
 | |
|     std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
 | |
| 
 | |
|     bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
 | |
|     if (all_zero) {
 | |
|         tensor_split_arr = ggml_cuda_info().default_tensor_split;
 | |
|     } else {
 | |
|         float split_sum = 0.0f;
 | |
|         for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
 | |
|             tensor_split_arr[i] = split_sum;
 | |
|             split_sum += tensor_split[i];
 | |
|         }
 | |
|         for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
 | |
|             tensor_split_arr[i] /= split_sum;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     auto it = buft_map.find(tensor_split_arr);
 | |
|     if (it != buft_map.end()) {
 | |
|         return &it->second;
 | |
|     }
 | |
| 
 | |
|     struct ggml_backend_buffer_type buft {
 | |
|         /* .iface   = */ ggml_backend_cuda_split_buffer_type_interface,
 | |
|         /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
 | |
|     };
 | |
| 
 | |
|     auto result = buft_map.emplace(tensor_split_arr, buft);
 | |
|     return &result.first->second;
 | |
| }
 | |
| 
 | |
| // host buffer type
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
 | |
|     return GGML_CUDA_NAME "_Host";
 | |
| 
 | |
|     GGML_UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
 | |
|     return GGML_CUDA_NAME "_Host";
 | |
| 
 | |
|     GGML_UNUSED(buffer);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | |
|     CUDA_CHECK(cudaFreeHost(buffer->context));
 | |
| }
 | |
| 
 | |
| static void * ggml_cuda_host_malloc(size_t size) {
 | |
|     if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     void * ptr = nullptr;
 | |
|     cudaError_t err = cudaMallocHost((void **) &ptr, size);
 | |
|     if (err != cudaSuccess) {
 | |
|         // clear the error
 | |
|         cudaGetLastError();
 | |
|         GGML_CUDA_LOG_WARN("%s: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
 | |
|                            size / 1024.0 / 1024.0, cudaGetErrorString(err));
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | |
|     void * ptr = ggml_cuda_host_malloc(size);
 | |
| 
 | |
|     if (ptr == nullptr) {
 | |
|         // fallback to cpu buffer
 | |
|         return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
 | |
|     }
 | |
| 
 | |
|     ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
 | |
|     buffer->buft = buft;
 | |
|     buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
 | |
|     buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
 | |
| 
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
 | |
|     static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
 | |
|         /* .iface    = */ {
 | |
|             /* .get_name         = */ ggml_backend_cuda_host_buffer_type_name,
 | |
|             /* .alloc_buffer     = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
 | |
|             /* .get_alignment    = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
 | |
|             /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
 | |
|             /* .get_alloc_size   = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
 | |
|             /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
 | |
|             /* .is_host          = */ ggml_backend_cpu_buffer_type()->iface.is_host,
 | |
|         },
 | |
|         /* .context  = */ nullptr,
 | |
|     };
 | |
| 
 | |
|     return &ggml_backend_cuda_buffer_type_host;
 | |
| }
 | |
| 
 | |
| //static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
 | |
| //    return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
 | |
| //}
 | |
| 
 | |
| /// kernels
 | |
| 
 | |
| typedef void (*ggml_cuda_op_mul_mat_t)(
 | |
|     ggml_backend_cuda_context & ctx,
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
 | |
|     const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
 | |
|     const int64_t src1_padded_row_size, cudaStream_t stream);
 | |
| 
 | |
| #ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
 | |
| #define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
 | |
| #endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
 | |
| 
 | |
| #define MUL_MAT_SRC1_COL_STRIDE 128
 | |
| 
 | |
| static __global__ void mul_mat_p021_f16_f32(
 | |
|     const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
 | |
| 
 | |
|     const half * x = (const half *) vx;
 | |
| 
 | |
|     const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
 | |
|     const int channel = blockDim.z*blockIdx.z + threadIdx.z;
 | |
|     const int channel_x = channel / (nchannels_y / nchannels_x);
 | |
| 
 | |
|     const int nrows_y = ncols_x;
 | |
|     const int nrows_dst = nrows_x;
 | |
|     const int row_dst = row_x;
 | |
| 
 | |
|     float tmp = 0.0f;
 | |
| 
 | |
|     for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
 | |
|         const int col_x = col_x0 + threadIdx.x;
 | |
| 
 | |
|         if (col_x >= ncols_x) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // x is transposed and permuted
 | |
|         const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
 | |
|         const float xi = __half2float(x[ix]);
 | |
| 
 | |
|         const int row_y = col_x;
 | |
| 
 | |
|         // y is not transposed but permuted
 | |
|         const int iy = channel*nrows_y + row_y;
 | |
| 
 | |
|         tmp += xi * y[iy];
 | |
|     }
 | |
| 
 | |
|     // dst is not transposed and not permuted
 | |
|     const int idst = channel*nrows_dst + row_dst;
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
|     tmp = warp_reduce_sum(tmp);
 | |
| 
 | |
|     if (threadIdx.x == 0) {
 | |
|         dst[idst] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
 | |
|     const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
 | |
|     const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
 | |
| 
 | |
|     const half * x = (const half *) vx;
 | |
| 
 | |
|     const int row_x     = blockDim.y*blockIdx.y + threadIdx.y;
 | |
|     const int channel   = blockDim.z*blockIdx.z + threadIdx.z;
 | |
|     const int channel_x = channel / channel_x_divisor;
 | |
| 
 | |
|     const int nrows_y   = ncols_x;
 | |
|     const int nrows_dst = nrows_x;
 | |
|     const int row_dst   = row_x;
 | |
| 
 | |
|     const int idst = channel*nrows_dst + row_dst;
 | |
| 
 | |
|     float tmp = 0.0f;
 | |
| 
 | |
|     for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
 | |
|         const int col_x = col_x0 + threadIdx.x;
 | |
| 
 | |
|         if (col_x >= ncols_x) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         const int row_y = col_x;
 | |
| 
 | |
|         const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
 | |
|         const int iy = channel*nrows_y + row_y;
 | |
| 
 | |
|         const float xi = __half2float(x[ix]);
 | |
| 
 | |
|         tmp += xi * y[iy];
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
|     tmp = warp_reduce_sum(tmp);
 | |
| 
 | |
|     if (threadIdx.x == 0) {
 | |
|         dst[idst] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_p021_f16_f32_cuda(
 | |
|     const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
 | |
|     const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
 | |
| 
 | |
|     const dim3 block_nums(1, nrows_x, nchannels_y);
 | |
|     const dim3 block_dims(WARP_SIZE, 1, 1);
 | |
|     mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_vec_nc_f16_f32_cuda(
 | |
|     const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
 | |
|     const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
 | |
| 
 | |
|     const dim3 block_nums(1, nrows_x, nchannels_y);
 | |
|     const dim3 block_dims(WARP_SIZE, 1, 1);
 | |
|     mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
 | |
|         (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
 | |
| }
 | |
| 
 | |
| static cudaError_t ggml_cuda_cpy_tensor_2d(
 | |
|     void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
 | |
| 
 | |
|     GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
 | |
|     char * src_ptr = (char *) src->data;
 | |
|     char * dst_ptr = (char *) dst;
 | |
| 
 | |
|     const int64_t ne0 = src->ne[0];
 | |
|     const int64_t nb0 = src->nb[0];
 | |
|     const int64_t nb1 = src->nb[1];
 | |
|     const int64_t nb2 = src->nb[2];
 | |
|     const int64_t nb3 = src->nb[3];
 | |
|     const enum ggml_type type = src->type;
 | |
|     const int64_t ts = ggml_type_size(type);
 | |
|     const int64_t bs = ggml_blck_size(type);
 | |
|     int64_t i1_diff = i1_high - i1_low;
 | |
| 
 | |
|     const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
 | |
|     if (nb0 == ts && nb1 == ts*ne0/bs) {
 | |
|         return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream);
 | |
|     } else if (nb0 == ts) {
 | |
|         return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream);
 | |
|     } else {
 | |
|         for (int64_t i1 = 0; i1 < i1_diff; i1++) {
 | |
|             const void * rx = (const void *) ((const char *) x + i1*nb1);
 | |
|             void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
 | |
|             // pretend the row is a matrix with cols=1
 | |
|             cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream);
 | |
|             if (r != cudaSuccess) {
 | |
|                 return r;
 | |
|             }
 | |
|         }
 | |
|         return cudaSuccess;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_op_mul_mat_cublas(
 | |
|     ggml_backend_cuda_context & ctx,
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
 | |
|     const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
 | |
|     const int64_t src1_padded_row_size, cudaStream_t stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0_dd_i  != nullptr);
 | |
|     GGML_ASSERT(src1_ddf_i != nullptr);
 | |
|     GGML_ASSERT(dst_dd_i   != nullptr);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
| 
 | |
|     const int64_t row_diff = row_high - row_low;
 | |
| 
 | |
|     int id = ggml_cuda_get_device();
 | |
| 
 | |
|     // the main device has a larger memory buffer to hold the results from all GPUs
 | |
|     // ldc == nrows of the matrix that cuBLAS writes into
 | |
|     int64_t ldc = id == ctx.device ? ne0 : row_diff;
 | |
| 
 | |
|     const int compute_capability = ggml_cuda_info().devices[id].cc;
 | |
| 
 | |
|     if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
 | |
|         // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
 | |
|         ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
 | |
|         if (src0->type != GGML_TYPE_F16) {
 | |
|             const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
 | |
|             GGML_ASSERT(to_fp16_cuda != nullptr);
 | |
|             size_t ne = row_diff*ne00;
 | |
|             src0_as_f16.alloc(ne);
 | |
|             to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
 | |
|         }
 | |
|         const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
 | |
| 
 | |
|         ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id));
 | |
|         if (src1->type != GGML_TYPE_F16) {
 | |
|             const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
 | |
|             GGML_ASSERT(to_fp16_cuda != nullptr);
 | |
|             size_t ne = src1_ncols*ne10;
 | |
|             src1_as_f16.alloc(ne);
 | |
|             to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
 | |
|         }
 | |
|         const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
 | |
|         ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
 | |
| 
 | |
|         const half alpha_f16 = 1.0f;
 | |
|         const half beta_f16 = 0.0f;
 | |
| 
 | |
|         CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
 | |
|         CUBLAS_CHECK(
 | |
|             cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                     row_diff, src1_ncols, ne10,
 | |
|                     &alpha_f16, src0_ptr,       CUDA_R_16F, ne00,
 | |
|                                 src1_ptr,       CUDA_R_16F, ne10,
 | |
|                     &beta_f16,   dst_f16.get(), CUDA_R_16F, ldc,
 | |
|                     CUBLAS_COMPUTE_16F,
 | |
|                     CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | |
| 
 | |
|         const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
 | |
|         to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
 | |
|     } else {
 | |
|         ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
 | |
|         ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
 | |
| 
 | |
|         if (src0->type != GGML_TYPE_F32) {
 | |
|             const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
 | |
|             GGML_ASSERT(to_fp32_cuda != nullptr);
 | |
|             src0_ddq_as_f32.alloc(row_diff*ne00);
 | |
|             to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
 | |
|         }
 | |
|         if (src1->type != GGML_TYPE_F32) {
 | |
|             const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
 | |
|             GGML_ASSERT(to_fp32_cuda != nullptr);
 | |
|             src1_ddq_as_f32.alloc(src1_ncols*ne10);
 | |
|             to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
 | |
|         }
 | |
| 
 | |
|         const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
 | |
|         const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
 | |
| 
 | |
|         const float alpha = 1.0f;
 | |
|         const float beta = 0.0f;
 | |
| 
 | |
|         CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
 | |
|         CUBLAS_CHECK(
 | |
|             cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                     row_diff, src1_ncols, ne10,
 | |
|                     &alpha, src0_ddf_i,  ne00,
 | |
|                             src1_ddf1_i, ne10,
 | |
|                     &beta,  dst_dd_i,    ldc));
 | |
|     }
 | |
| 
 | |
|     GGML_UNUSED(dst);
 | |
|     GGML_UNUSED(src1_ddq_i);
 | |
|     GGML_UNUSED(src1_padded_row_size);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
 | |
|     static bool peer_access_enabled = false;
 | |
| 
 | |
|     const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
 | |
| 
 | |
|     if (peer_access_enabled == enable_peer_access) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
| #ifdef NDEBUG
 | |
|     for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | |
|         ggml_cuda_set_device(id);
 | |
|         CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     }
 | |
| 
 | |
|     for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | |
|         ggml_cuda_set_device(id);
 | |
| 
 | |
|         for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) {
 | |
|             if (id == id_other) {
 | |
|                 continue;
 | |
|             }
 | |
|             if (id != main_device && id_other != main_device) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             int can_access_peer;
 | |
|             CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
 | |
|             if (can_access_peer) {
 | |
|                 if (enable_peer_access) {
 | |
|                     cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
 | |
|                     if (err != cudaErrorPeerAccessAlreadyEnabled) {
 | |
|                         CUDA_CHECK(err);
 | |
|                     }
 | |
|                 } else {
 | |
|                     cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
 | |
|                     if (err != cudaErrorPeerAccessNotEnabled) {
 | |
|                         CUDA_CHECK(err);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ggml_cuda_set_device(main_device);
 | |
| #endif // NDEBUG
 | |
| 
 | |
|     peer_access_enabled = enable_peer_access;
 | |
| 
 | |
|     GGML_UNUSED(main_device);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_op_mul_mat(
 | |
|     ggml_backend_cuda_context & ctx,
 | |
|     const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
 | |
|     const bool convert_src1_to_q8_1) {
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t ne03 = src0->ne[3];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
|     const int64_t ne12 = src1->ne[2];
 | |
|     const int64_t ne13 = src1->ne[3];
 | |
|     const int64_t nrows1 = ggml_nrows(src1);
 | |
| 
 | |
|     GGML_ASSERT(ne03 == ne13);
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
|     const int64_t ne1 = dst->ne[1];
 | |
| 
 | |
|     const int64_t nb2 = dst->nb[2];
 | |
|     const int64_t nb3 = dst->nb[3];
 | |
| 
 | |
|     GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
 | |
|     GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
 | |
|     ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
 | |
|     ggml_backend_cuda_buffer_context * dst_ctx  = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
 | |
| 
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
 | |
| 
 | |
|     GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
 | |
| 
 | |
|     const int64_t i02_divisor = ne12 / ne02;
 | |
| 
 | |
|     const size_t src0_ts = ggml_type_size(src0->type);
 | |
|     const size_t src0_bs = ggml_blck_size(src0->type);
 | |
|     const size_t q8_1_ts = sizeof(block_q8_1);
 | |
|     const size_t q8_1_bs = QK8_1;
 | |
| 
 | |
|     const bool src0_is_contiguous = ggml_is_contiguous(src0);
 | |
|     const bool src1_is_contiguous = ggml_is_contiguous(src1);
 | |
| 
 | |
|     const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
 | |
| 
 | |
|     const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
 | |
|     GGML_ASSERT(!(split && ne02 > 1));
 | |
|     GGML_ASSERT(!(split && ne03 > 1));
 | |
|     GGML_ASSERT(!(split && ne02 < ne12));
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr;
 | |
| 
 | |
| 
 | |
|     std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
 | |
|     if (split) {
 | |
|         ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
 | |
|         tensor_split = buft_ctx->tensor_split;
 | |
|     }
 | |
| 
 | |
|     struct dev_data {
 | |
|         ggml_cuda_pool_alloc<char>  src0_dd_alloc;
 | |
|         ggml_cuda_pool_alloc<float> src1_ddf_alloc;
 | |
|         ggml_cuda_pool_alloc<char>  src1_ddq_alloc;
 | |
|         ggml_cuda_pool_alloc<float>   dst_dd_alloc;
 | |
| 
 | |
|         char  *  src0_dd = nullptr;
 | |
|         float * src1_ddf = nullptr; // float
 | |
|         char  * src1_ddq = nullptr; // q8_1
 | |
|         float *   dst_dd = nullptr;
 | |
| 
 | |
|         int64_t  row_low;
 | |
|         int64_t row_high;
 | |
|     };
 | |
| 
 | |
|     dev_data dev[GGML_CUDA_MAX_DEVICES];
 | |
| 
 | |
|     int used_devices = 0;
 | |
| 
 | |
|     for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | |
|         // by default, use all rows
 | |
|         dev[id].row_low  = 0;
 | |
|         dev[id].row_high = ne01;
 | |
| 
 | |
|         // for multi GPU, get the row boundaries from tensor split
 | |
|         // and round to mul_mat_q tile sizes
 | |
|         if (split) {
 | |
|             const int64_t rounding = get_row_rounding(src0->type, tensor_split);
 | |
| 
 | |
|             if (id != 0) {
 | |
|                 dev[id].row_low  = ne01*tensor_split[id];
 | |
|                 if (dev[id].row_low < ne01) {
 | |
|                     dev[id].row_low -= dev[id].row_low % rounding;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (id != ggml_backend_cuda_get_device_count() - 1) {
 | |
|                 dev[id].row_high  = ne01*tensor_split[id + 1];
 | |
|                 if (dev[id].row_high < ne01) {
 | |
|                     dev[id].row_high -= dev[id].row_high % rounding;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | |
|         if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         used_devices++;
 | |
| 
 | |
|         const bool src1_on_device = id == src1_ctx->device;
 | |
|         const bool  dst_on_device = id == dst_ctx->device;
 | |
| 
 | |
|         ggml_cuda_set_device(id);
 | |
|         cudaStream_t stream = ctx.stream(id, 0);
 | |
| 
 | |
|         if (src0_is_contiguous) {
 | |
|             dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
 | |
|         } else {
 | |
|             dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), ggml_nbytes(src0));
 | |
|         }
 | |
| 
 | |
|         if (src1_on_device && src1_is_contiguous) {
 | |
|             dev[id].src1_ddf = (float *) src1->data;
 | |
|         } else {
 | |
|             dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1));
 | |
|         }
 | |
| 
 | |
|         if (convert_src1_to_q8_1) {
 | |
|             dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
 | |
| 
 | |
|             if (src1_on_device && src1_is_contiguous) {
 | |
|                 quantize_row_q8_1_cuda(dev[id].src1_ddf, dev[id].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
 | |
|                 CUDA_CHECK(cudaGetLastError());
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (dst_on_device) {
 | |
|             dev[id].dst_dd = (float *) dst->data;
 | |
|         } else {
 | |
|             const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
 | |
|             dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // if multiple devices are used they need to wait for the main device
 | |
|     // here an event is recorded that signals that the main device has finished calculating the input data
 | |
|     if (split && used_devices > 1) {
 | |
|         ggml_cuda_set_device(ctx.device);
 | |
|         CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream()));
 | |
|     }
 | |
| 
 | |
|     const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
 | |
|     for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
 | |
|         const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0;
 | |
|         const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
 | |
| 
 | |
|         for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | |
|             if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             const bool src1_on_device = id == src1_ctx->device;
 | |
|             const bool  dst_on_device = id == dst_ctx->device;
 | |
|             const int64_t row_diff = dev[id].row_high - dev[id].row_low;
 | |
| 
 | |
|             ggml_cuda_set_device(id);
 | |
|             cudaStream_t stream = ctx.stream(id, is);
 | |
| 
 | |
|             // wait for main GPU data if necessary
 | |
|             if (split && (id != ctx.device || is != 0)) {
 | |
|                 CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0));
 | |
|             }
 | |
| 
 | |
|             for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
 | |
|                 const int64_t i03 = i0 / ne12;
 | |
|                 const int64_t i02 = i0 % ne12;
 | |
| 
 | |
|                 const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
 | |
| 
 | |
|                 // for split tensors the data begins at i0 == i0_offset_low
 | |
|                 char  *  src0_dd_i =  dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
 | |
|                 float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
 | |
|                 char  * src1_ddq_i = dev[id].src1_ddq +  src1_ddq_i_offset;
 | |
|                 float *   dst_dd_i =   dev[id].dst_dd + (i0*ne1  + src1_col_0) * (dst_on_device ? ne0 : row_diff);
 | |
| 
 | |
|                 // the main device memory buffer can be on VRAM scratch, with space for all partial results
 | |
|                 // in that case an offset on dst_ddf_i is needed
 | |
|                 if (id == ctx.device) {
 | |
|                     dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
 | |
|                 }
 | |
| 
 | |
|                 // copy src0, src1 to device if necessary
 | |
|                 if (src1_is_contiguous) {
 | |
|                     if (id != ctx.device) {
 | |
|                         if (convert_src1_to_q8_1) {
 | |
|                             char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
 | |
|                             CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddq_i, id, src1_ddq_i_source, ctx.device,
 | |
|                                                             src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
 | |
|                         } else {
 | |
|                             float * src1_ddf_i_source = (float *) src1->data;
 | |
|                             src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
 | |
|                             CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device,
 | |
|                                                             src1_ncols*ne10*sizeof(float), stream));
 | |
|                         }
 | |
|                     }
 | |
|                 } else if (src1_on_device && !src1_is_contiguous) {
 | |
|                     CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
 | |
|                                 src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
 | |
|                 } else {
 | |
|                     GGML_ASSERT(false);
 | |
|                 }
 | |
| 
 | |
|                 if (convert_src1_to_q8_1 && !src1_is_contiguous) {
 | |
|                     quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
 | |
|                     CUDA_CHECK(cudaGetLastError());
 | |
|                 }
 | |
| 
 | |
|                 if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
 | |
|                     CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
 | |
|                 }
 | |
| 
 | |
|                 // do the computation
 | |
|                 op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
 | |
|                     dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
 | |
|                 CUDA_CHECK(cudaGetLastError());
 | |
| 
 | |
|                 // copy dst to host or other device if necessary
 | |
|                 if (!dst_on_device) {
 | |
|                     void * dst_off_device = dst->data;
 | |
|                     if (split) {
 | |
|                         // src0 = weight matrix is saved as a transposed matrix for better memory layout.
 | |
|                         // dst is NOT transposed.
 | |
|                         // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
 | |
|                         // Instead they need to be copied to the correct slice in ne0 = dst row index.
 | |
|                         // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
 | |
|                         float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
 | |
|                         GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
 | |
|                         dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
 | |
| #if !defined(GGML_USE_HIPBLAS)
 | |
|                         // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
 | |
|                         cudaMemcpy3DPeerParms p = {};
 | |
|                         p.dstDevice = ctx.device;
 | |
|                         p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols);
 | |
|                         p.srcDevice = id;
 | |
|                         p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols);
 | |
|                         p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1);
 | |
|                         CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream));
 | |
| #else
 | |
|                         // HIP does not support cudaMemcpy3DPeerAsync or vmm pools
 | |
|                         CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float),
 | |
|                                                         dst_dd_i, row_diff*sizeof(float),
 | |
|                                                         row_diff*sizeof(float), src1_ncols,
 | |
|                                                         cudaMemcpyDeviceToDevice, stream));
 | |
| #endif
 | |
|                     } else {
 | |
|                         float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
 | |
|                         GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
 | |
|                         dhf_dst_i += src1_col_0*ne0;
 | |
|                         CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // add event for the main device to wait on until other device is done
 | |
|                 if (split && (id != ctx.device || is != 0)) {
 | |
|                     CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // main device waits for all other devices to be finished
 | |
|     if (split && ggml_backend_cuda_get_device_count() > 1) {
 | |
|         int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
 | |
|         is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS;
 | |
| 
 | |
|         ggml_cuda_set_device(ctx.device);
 | |
|         for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | |
|             if (dev[id].row_low == dev[id].row_high) {
 | |
|                 continue;
 | |
|             }
 | |
|             for (int64_t is = 0; is < is_max; ++is) {
 | |
|                 CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
 | |
|     GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
 | |
|     GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
 | |
|     GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
| 
 | |
|     const int64_t ne12 = src1->ne[2];
 | |
| 
 | |
|     cudaStream_t main_stream = ctx.stream();
 | |
| 
 | |
|     void  * src0_ddq = src0->data;
 | |
|     float * src1_ddf = (float *) src1->data;
 | |
|     float * dst_ddf  = (float *) dst->data;
 | |
| 
 | |
|     ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_ASSERT(!ggml_is_transposed(src0));
 | |
|     GGML_ASSERT(!ggml_is_transposed(src1));
 | |
|     GGML_ASSERT(!ggml_is_permuted(src0));
 | |
|     GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
| 
 | |
|     const int64_t nb01 = src0->nb[1];
 | |
|     const int64_t nb02 = src0->nb[2];
 | |
| 
 | |
|     const int64_t ne12 = src1->ne[2];
 | |
| 
 | |
|     cudaStream_t main_stream = ctx.stream();
 | |
| 
 | |
|     void  * src0_ddq = src0->data;
 | |
|     float * src1_ddf = (float *) src1->data;
 | |
|     float * dst_ddf  = (float *) dst->data;
 | |
| 
 | |
|     const int64_t row_stride_x = nb01 / sizeof(half);
 | |
|     const int64_t channel_stride_x = nb02 / sizeof(half);
 | |
| 
 | |
|     ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
 | |
| }
 | |
| 
 | |
| static __global__ void k_compute_batched_ptrs(
 | |
|         const half * src0_as_f16, const half * src1_as_f16, char * dst,
 | |
|         const void ** ptrs_src, void ** ptrs_dst,
 | |
|         int64_t ne12, int64_t ne13,
 | |
|         int64_t ne23,
 | |
|         size_t  nb02, size_t  nb03,
 | |
|         size_t  nb12, size_t  nb13,
 | |
|         size_t  nbd2, size_t  nbd3,
 | |
|         int64_t r2,   int64_t r3) {
 | |
|     int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
 | |
|     int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
 | |
| 
 | |
|     if (i13 >= ne13 || i12 >= ne12) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int64_t i03 = i13 / r3;
 | |
|     int64_t i02 = i12 / r2;
 | |
| 
 | |
|     ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
 | |
|     ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
 | |
|     ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)         dst + i12*nbd2 + i13*nbd3;
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_ASSERT(!ggml_is_transposed(src0));
 | |
|     GGML_ASSERT(!ggml_is_transposed(src1));
 | |
| 
 | |
|     GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS
 | |
| 
 | |
|     const int64_t ne_dst = ggml_nelements(dst);
 | |
| 
 | |
|     cudaStream_t main_stream = ctx.stream();
 | |
| 
 | |
|     CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));
 | |
| 
 | |
|     void * src0_ddq = src0->data;
 | |
|     half * src0_f16 = (half *) src0_ddq;
 | |
|     float * src1_ddf = (float *) src1->data;
 | |
|     float * dst_ddf  = (float *) dst->data;
 | |
| 
 | |
|     // convert src1 to fp16
 | |
|     ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
 | |
|     if (src1->type != GGML_TYPE_F16) {
 | |
|         const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
 | |
|         const int64_t ne_src1 = ggml_nelements(src1);
 | |
|         src1_f16_alloc.alloc(ne_src1);
 | |
|         GGML_ASSERT(to_fp16_cuda != nullptr);
 | |
|         to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
 | |
|     }
 | |
|     half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
 | |
| 
 | |
|     ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
 | |
|     char * dst_t;
 | |
| 
 | |
|     cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
 | |
|     cudaDataType_t      cu_data_type    = CUDA_R_16F;
 | |
| 
 | |
|     // dst strides
 | |
|     size_t nbd2 = dst->nb[2];
 | |
|     size_t nbd3 = dst->nb[3];
 | |
| 
 | |
|     const half  alpha_f16 = 1.0f;
 | |
|     const half  beta_f16  = 0.0f;
 | |
| 
 | |
|     const float alpha_f32 = 1.0f;
 | |
|     const float beta_f32  = 0.0f;
 | |
| 
 | |
|     const void * alpha = &alpha_f16;
 | |
|     const void * beta  = &beta_f16;
 | |
| 
 | |
|     if (dst->op_params[0] == GGML_PREC_DEFAULT) {
 | |
|         dst_t = (char *) dst_f16.alloc(ne_dst);
 | |
| 
 | |
|         nbd2 /= sizeof(float) / sizeof(half);
 | |
|         nbd3 /= sizeof(float) / sizeof(half);
 | |
|     } else {
 | |
|         dst_t = (char *) dst_ddf;
 | |
| 
 | |
|         cu_compute_type = CUBLAS_COMPUTE_32F;
 | |
|         cu_data_type    = CUDA_R_32F;
 | |
| 
 | |
|         alpha = &alpha_f32;
 | |
|         beta  = &beta_f32;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(ne12 % ne02 == 0);
 | |
|     GGML_ASSERT(ne13 % ne03 == 0);
 | |
| 
 | |
|     // broadcast factors
 | |
|     const int64_t r2 = ne12/ne02;
 | |
|     const int64_t r3 = ne13/ne03;
 | |
| 
 | |
| #if 0
 | |
|     // use cublasGemmEx
 | |
|     {
 | |
|         for (int i13 = 0; i13 < ne13; ++i13) {
 | |
|             for (int i12 = 0; i12 < ne12; ++i12) {
 | |
|                 int i03 = i13 / r3;
 | |
|                 int i02 = i12 / r2;
 | |
| 
 | |
|                 CUBLAS_CHECK(
 | |
|                         cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                             ne01, ne11, ne10,
 | |
|                             alpha, (const char *) src0_as_f16 + i02*src0->nb[2]   + i03*src0->nb[3]  , CUDA_R_16F,   nb01/sizeof(half),
 | |
|                                    (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F,   nb11/sizeof(float),
 | |
|                             beta,  (      char *)       dst_t + i12*nbd2          + i13*nbd3,          cu_data_type, ne01,
 | |
|                             cu_compute_type,
 | |
|                             CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
 | |
|         // there is no broadcast and src0, src1 are contiguous across dims 2, 3
 | |
|         // use cublasGemmStridedBatchedEx
 | |
|         CUBLAS_CHECK(
 | |
|         cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                 ne01, ne11, ne10,
 | |
|                 alpha, (const char *) src0_f16, CUDA_R_16F,   nb01/nb00, nb02/nb00,  // strideA
 | |
|                        (const char *) src1_f16, CUDA_R_16F,   nb11/nb10, nb12/nb10,  // strideB
 | |
|                 beta,  (      char *)    dst_t, cu_data_type, ne01,       nb2/nb0,   // strideC
 | |
|                 ne12*ne13,
 | |
|                 cu_compute_type,
 | |
|                 CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | |
|     } else {
 | |
|         // use cublasGemmBatchedEx
 | |
|         const int ne23 = ne12*ne13;
 | |
| 
 | |
|         ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
 | |
|         ggml_cuda_pool_alloc<      void *> ptrs_dst(ctx.pool(), 1*ne23);
 | |
| 
 | |
|         dim3 block_dims(ne13, ne12);
 | |
|         k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
 | |
|                 src0_f16, src1_f16, dst_t,
 | |
|                 ptrs_src.get(), ptrs_dst.get(),
 | |
|                 ne12, ne13,
 | |
|                 ne23,
 | |
|                 nb02, nb03,
 | |
|                 src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
 | |
|                 src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
 | |
|                 nbd2, nbd3,
 | |
|                 r2, r3);
 | |
|         CUDA_CHECK(cudaGetLastError());
 | |
| 
 | |
|         CUBLAS_CHECK(
 | |
|         cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                 ne01, ne11, ne10,
 | |
|                 alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F,   nb01/nb00,
 | |
|                        (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F,   nb11/nb10,
 | |
|                 beta,  (      void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
 | |
|                 ne23,
 | |
|                 cu_compute_type,
 | |
|                 CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (dst->op_params[0] == GGML_PREC_DEFAULT) {
 | |
|         const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
 | |
|         to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
 | |
| 
 | |
|     int64_t min_compute_capability = INT_MAX;
 | |
| 
 | |
|     bool any_pascal_with_slow_fp16 = false;
 | |
|     if (split) {
 | |
|         ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
 | |
|         auto & tensor_split = buft_ctx->tensor_split;
 | |
|         for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
 | |
|             // skip devices that are not going to do any work:
 | |
|             if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
 | |
|                 min_compute_capability = ggml_cuda_info().devices[id].cc;
 | |
|             }
 | |
|             if (ggml_cuda_info().devices[id].cc == 610) {
 | |
|                 any_pascal_with_slow_fp16 = true;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         min_compute_capability    = ggml_cuda_info().devices[ctx.device].cc;
 | |
|         any_pascal_with_slow_fp16 = ggml_cuda_info().devices[ctx.device].cc == 610;
 | |
|     }
 | |
| 
 | |
|     // check data types and tensor shapes for custom matrix multiplication kernels:
 | |
|     bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16)
 | |
|         && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
 | |
|         && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1;
 | |
| 
 | |
|     bool          use_mul_mat_vec_q =  ggml_is_quantized(src0->type)
 | |
|         && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
 | |
|         && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
 | |
| 
 | |
|     bool              use_mul_mat_q =  ggml_cuda_supports_mmq(src0->type)
 | |
|         && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
 | |
| 
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| 
 | |
|     const bool fp16_performance_good = min_compute_capability >= CC_RDNA1;
 | |
| 
 | |
| #ifdef CUDA_USE_TENSOR_CORES
 | |
|     use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3;
 | |
| #endif // CUDA_USE_TENSOR_CORES
 | |
| 
 | |
| #else
 | |
| 
 | |
|     // fp16 performance is good on Volta or newer and on P100 (compute capability 6.0)
 | |
|     const bool fp16_performance_good = min_compute_capability >= CC_PASCAL && !any_pascal_with_slow_fp16;
 | |
| 
 | |
|     // mmvq and mmq need the __dp4a instruction which on NVIDIA is only available for CC >= 6.1
 | |
|     use_mul_mat_vec_q = use_mul_mat_vec_q && min_compute_capability >= MIN_CC_DP4A;
 | |
|     use_mul_mat_q     = use_mul_mat_q     && min_compute_capability >= MIN_CC_DP4A;
 | |
| 
 | |
| #ifdef CUDA_USE_TENSOR_CORES
 | |
|     // when tensor cores are available, use them for large batch size
 | |
|     // ref: https://github.com/ggerganov/llama.cpp/pull/3776
 | |
|     use_mul_mat_q     = use_mul_mat_q     && (!fp16_performance_good || src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
 | |
| #endif // CUDA_USE_TENSOR_CORES
 | |
| 
 | |
| #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
| 
 | |
|     // if mmvq is available it's a better choice than dmmv:
 | |
| #ifndef GGML_CUDA_FORCE_DMMV
 | |
|     use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
 | |
| #endif // GGML_CUDA_FORCE_DMMV
 | |
| 
 | |
|     // debug helpers
 | |
|     //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
 | |
|     //printf("      %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
 | |
|     //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
 | |
|     //printf("      %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
 | |
|     //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
 | |
|     //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
 | |
| 
 | |
|     if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
 | |
|         // KQ single-batch
 | |
|         ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
 | |
|     } else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
 | |
|         // KQV single-batch
 | |
|         ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
 | |
|     } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || fp16_performance_good) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
 | |
|         // KQ + KQV multi-batch
 | |
|         ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
 | |
|     } else if (use_dequantize_mul_mat_vec) {
 | |
|         ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
 | |
|     } else if (use_mul_mat_vec_q) {
 | |
|         ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
 | |
|     } else if (use_mul_mat_q) {
 | |
|         ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
 | |
|     } else {
 | |
|         ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct mmid_row_mapping {
 | |
|     int32_t i1;
 | |
|     int32_t i2;
 | |
| };
 | |
| 
 | |
| static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
 | |
|                                                  int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
 | |
|                                                  const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
 | |
|                                                  int64_t ne11, int64_t ne10,
 | |
|                                                  size_t nb11, size_t nb12) {
 | |
|     int32_t iid1 = blockIdx.x;
 | |
|     int32_t id = blockIdx.y;
 | |
| 
 | |
|     const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
 | |
| 
 | |
|     if (row_id_i != i02) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int64_t i11 = id % ne11;
 | |
|     const int64_t i12 = iid1;
 | |
| 
 | |
|     __shared__ int src1_row;
 | |
|     if (threadIdx.x == 0) {
 | |
|         src1_row = atomicAdd(cur_src1_row, 1);
 | |
|         row_mapping[src1_row] = {id, iid1};
 | |
|     }
 | |
|     __syncthreads();
 | |
| 
 | |
|     const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
 | |
|     float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
 | |
| 
 | |
|     for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
 | |
|         src1_row_contiguous[i] = src1_row_original[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
 | |
|                                                   const mmid_row_mapping * __restrict__ row_mapping,
 | |
|                                                   int64_t ne0,
 | |
|                                                   size_t nb1, size_t nb2) {
 | |
|     int32_t i = blockIdx.x;
 | |
| 
 | |
|     const int32_t i1 = row_mapping[i].i1;
 | |
|     const int32_t i2 = row_mapping[i].i2;
 | |
| 
 | |
|     const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
 | |
|     float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
 | |
| 
 | |
|     for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
 | |
|         dst_row_original[j] = dst_row_contiguous[j];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | |
|     const ggml_tensor * src0 = dst->src[0];
 | |
|     const ggml_tensor * src1 = dst->src[1];
 | |
|     const ggml_tensor * ids  = dst->src[2];
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS
 | |
| 
 | |
|     GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers");
 | |
| 
 | |
|     cudaStream_t stream = ctx.stream();
 | |
| 
 | |
|     const int64_t n_as = ne02;
 | |
|     const int64_t n_ids = ids->ne[0];
 | |
| 
 | |
|     std::vector<char> ids_host(ggml_nbytes(ids));
 | |
|     const char * ids_dev = (const char *) ids->data;
 | |
|     CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
 | |
|     CUDA_CHECK(cudaStreamSynchronize(stream));
 | |
| 
 | |
|     ggml_tensor src0_row = *src0;
 | |
|     ggml_tensor src1_row = *src1;
 | |
|     ggml_tensor dst_row  = *dst;
 | |
| 
 | |
|     char * src0_original = (char *) src0->data;
 | |
|     char * src1_original = (char *) src1->data;
 | |
|     char * dst_original  = (char *)  dst->data;
 | |
| 
 | |
|     src0_row.ne[2] = 1;
 | |
|     src0_row.ne[3] = 1;
 | |
|     src0_row.nb[3] = nb02;
 | |
| 
 | |
|     src1_row.ne[1] = 1;
 | |
|     src1_row.ne[2] = 1;
 | |
|     src1_row.ne[3] = 1;
 | |
|     src1_row.nb[2] = nb11;
 | |
|     src1_row.nb[3] = nb11;
 | |
| 
 | |
|     dst_row.ne[1] = 1;
 | |
|     dst_row.ne[2] = 1;
 | |
|     dst_row.ne[3] = 1;
 | |
|     dst_row.nb[2] = nb1;
 | |
|     dst_row.nb[3] = nb1;
 | |
| 
 | |
|     if (ne12 == 1) {
 | |
|         for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
 | |
|             for (int64_t id = 0; id < n_ids; id++) {
 | |
|                 const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
 | |
| 
 | |
|                 GGML_ASSERT(i02 >= 0 && i02 < n_as);
 | |
| 
 | |
|                 const int64_t i11 = id % ne11;
 | |
|                 const int64_t i12 = iid1;
 | |
| 
 | |
|                 const int64_t i1 = id;
 | |
|                 const int64_t i2 = i12;
 | |
| 
 | |
|                 src0_row.data = src0_original + i02*nb02;
 | |
|                 src1_row.data = src1_original + i11*nb11 + i12*nb12;
 | |
|                 dst_row.data  =  dst_original + i1*nb1   + i2*nb2;
 | |
| 
 | |
|                 ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
 | |
|         ggml_cuda_pool_alloc<char>  dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
 | |
| 
 | |
|         src1_row.data = src1_contiguous.get();
 | |
|         dst_row.data  =  dst_contiguous.get();
 | |
| 
 | |
|         for (int64_t i02 = 0; i02 < n_as; i02++) {
 | |
|             int64_t num_src1_rows = 0;
 | |
| 
 | |
|             for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
 | |
|                 for (int64_t id = 0; id < n_ids; id++) {
 | |
|                     const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
 | |
| 
 | |
|                     GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
 | |
| 
 | |
|                     if (row_id_i != i02) {
 | |
|                         continue;
 | |
|                     }
 | |
| 
 | |
|                     num_src1_rows++;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (num_src1_rows == 0) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
 | |
|             ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
 | |
|             CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));
 | |
| 
 | |
|             {
 | |
|                 dim3 block_dims(std::min((unsigned int)ne10, 768u));
 | |
|                 dim3 grid_dims(ids->ne[1], n_ids);
 | |
|                 k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
 | |
|                         src1_original, src1_contiguous.get(),
 | |
|                         dev_cur_src1_row.get(), dev_row_mapping.get(),
 | |
|                         ids_dev, i02, ids->nb[1], ids->nb[0],
 | |
|                         ne11, ne10,
 | |
|                         nb11, nb12);
 | |
|                 CUDA_CHECK(cudaGetLastError());
 | |
|             }
 | |
| 
 | |
|             src0_row.data = src0_original + i02*nb02;
 | |
| 
 | |
|             GGML_ASSERT(nb11 == sizeof(float)*ne10);
 | |
|             GGML_ASSERT(nb1 == sizeof(float)*ne0);
 | |
| 
 | |
|             src1_row.ne[1] = num_src1_rows;
 | |
|             src1_row.nb[1] = nb11;
 | |
|             src1_row.nb[2] = num_src1_rows*nb11;
 | |
|             src1_row.nb[3] = num_src1_rows*nb11;
 | |
| 
 | |
|             dst_row.ne[1] = num_src1_rows;
 | |
|             dst_row.nb[1] = nb1;
 | |
|             dst_row.nb[2] = num_src1_rows*nb1;
 | |
|             dst_row.nb[3] = num_src1_rows*nb1;
 | |
| 
 | |
|             ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
 | |
| 
 | |
|             {
 | |
|                 dim3 block_dims(std::min((unsigned int)ne0, 768u));
 | |
|                 dim3 grid_dims(num_src1_rows);
 | |
|                 k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
 | |
|                         dst_original, dst_contiguous.get(),
 | |
|                         dev_row_mapping.get(),
 | |
|                         ne0,
 | |
|                         nb1, nb2);
 | |
|                 CUDA_CHECK(cudaGetLastError());
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
 | |
|     // why is this here instead of mul_mat?
 | |
|     if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) {
 | |
|         ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
 | |
|     }
 | |
| 
 | |
|     switch (dst->op) {
 | |
|         case GGML_OP_REPEAT:
 | |
|             ggml_cuda_op_repeat(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_GET_ROWS:
 | |
|             ggml_cuda_op_get_rows(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_DUP:
 | |
|             ggml_cuda_dup(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_CPY:
 | |
|             ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]);
 | |
|             break;
 | |
|         case GGML_OP_CONT:
 | |
|             ggml_cuda_dup(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_ADD:
 | |
|             ggml_cuda_op_add(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_ACC:
 | |
|             ggml_cuda_op_acc(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_MUL:
 | |
|             ggml_cuda_op_mul(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_DIV:
 | |
|             ggml_cuda_op_div(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_UNARY:
 | |
|             switch (ggml_get_unary_op(dst)) {
 | |
|                 case GGML_UNARY_OP_GELU:
 | |
|                     ggml_cuda_op_gelu(ctx, dst);
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_SILU:
 | |
|                     ggml_cuda_op_silu(ctx, dst);
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_GELU_QUICK:
 | |
|                     ggml_cuda_op_gelu_quick(ctx, dst);
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_TANH:
 | |
|                     ggml_cuda_op_tanh(ctx, dst);
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_RELU:
 | |
|                     ggml_cuda_op_relu(ctx, dst);
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_SIGMOID:
 | |
|                     ggml_cuda_op_sigmoid(ctx, dst);
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_HARDSIGMOID:
 | |
|                     ggml_cuda_op_hardsigmoid(ctx, dst);
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_HARDSWISH:
 | |
|                     ggml_cuda_op_hardswish(ctx, dst);
 | |
|                     break;
 | |
|                 default:
 | |
|                     return false;
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_NORM:
 | |
|             ggml_cuda_op_norm(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_GROUP_NORM:
 | |
|             ggml_cuda_op_group_norm(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_CONCAT:
 | |
|             ggml_cuda_op_concat(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_UPSCALE:
 | |
|             ggml_cuda_op_upscale(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_PAD:
 | |
|             ggml_cuda_op_pad(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_ARANGE:
 | |
|             ggml_cuda_op_arange(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_TIMESTEP_EMBEDDING:
 | |
|             ggml_cuda_op_timestep_embedding(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_LEAKY_RELU:
 | |
|             ggml_cuda_op_leaky_relu(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_RMS_NORM:
 | |
|             ggml_cuda_op_rms_norm(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_MUL_MAT:
 | |
|             if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
 | |
|                 GGML_CUDA_LOG_ERROR("%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
 | |
|                 return false;
 | |
|             } else {
 | |
|                 ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_MUL_MAT_ID:
 | |
|             ggml_cuda_mul_mat_id(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_SCALE:
 | |
|             ggml_cuda_op_scale(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_SQR:
 | |
|             ggml_cuda_op_sqr(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_CLAMP:
 | |
|             ggml_cuda_op_clamp(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_NONE:
 | |
|         case GGML_OP_RESHAPE:
 | |
|         case GGML_OP_VIEW:
 | |
|         case GGML_OP_PERMUTE:
 | |
|         case GGML_OP_TRANSPOSE:
 | |
|                 break;
 | |
|         case GGML_OP_DIAG_MASK_INF:
 | |
|             ggml_cuda_op_diag_mask_inf(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_SOFT_MAX:
 | |
|             ggml_cuda_op_soft_max(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_ROPE:
 | |
|             ggml_cuda_op_rope(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_IM2COL:
 | |
|             ggml_cuda_op_im2col(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_POOL_2D:
 | |
|             ggml_cuda_op_pool2d(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_SUM_ROWS:
 | |
|             ggml_cuda_op_sum_rows(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_ARGSORT:
 | |
|             ggml_cuda_op_argsort(ctx, dst);
 | |
|             break;
 | |
|         case GGML_OP_FLASH_ATTN_EXT:
 | |
|             ggml_cuda_flash_attn_ext(ctx, dst);
 | |
|             break;
 | |
|         default:
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     cudaError_t err = cudaGetLastError();
 | |
|     if (err != cudaSuccess) {
 | |
|         GGML_CUDA_LOG_ERROR("%s: %s failed\n", __func__, ggml_op_desc(dst));
 | |
|         CUDA_CHECK(err);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| // backend
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
 | |
|     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | |
| 
 | |
|     return cuda_ctx->name.c_str();
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) {
 | |
|     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | |
| 
 | |
|     delete cuda_ctx;
 | |
|     delete backend;
 | |
| }
 | |
| 
 | |
| GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
 | |
|     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | |
| 
 | |
|     return ggml_backend_cuda_buffer_type(cuda_ctx->device);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
 | |
|     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | |
|     ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
 | |
| 
 | |
|     GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
 | |
| 
 | |
|     CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
 | |
|     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | |
|     ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
 | |
| 
 | |
|     GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
 | |
| 
 | |
|     CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_backend_is_cuda(backend_src) || ggml_backend_is_cuda(backend_dst));
 | |
| 
 | |
|     ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
 | |
|     ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
 | |
| 
 | |
|     if (!ggml_backend_buffer_is_cuda(src->buffer)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (!ggml_backend_buffer_is_cuda(dst->buffer)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // device -> device
 | |
|     ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
 | |
|     ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;
 | |
| 
 | |
|     if (backend_src != backend_dst) {
 | |
|         ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
 | |
|         ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;
 | |
| 
 | |
|         GGML_ASSERT(cuda_ctx_src->device == buf_ctx_src->device);
 | |
|         GGML_ASSERT(cuda_ctx_dst->device == buf_ctx_dst->device);
 | |
| 
 | |
|         // copy on src stream
 | |
|         if (cuda_ctx_src->device == cuda_ctx_dst->device) {
 | |
|             CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
 | |
|         } else {
 | |
| #ifdef GGML_CUDA_NO_PEER_COPY
 | |
|             return false;
 | |
| #else
 | |
|             CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream()));
 | |
| #endif
 | |
|         }
 | |
| 
 | |
|         // record event on src stream
 | |
|         if (!cuda_ctx_src->copy_event) {
 | |
|             ggml_cuda_set_device(cuda_ctx_src->device);
 | |
|             CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
 | |
|         }
 | |
| 
 | |
|         CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream()));
 | |
| 
 | |
|         // wait on dst stream for the copy to complete
 | |
|         CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
 | |
|     } else {
 | |
|         // src and dst are on the same backend
 | |
|         CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
 | |
|     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | |
| 
 | |
|     CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));
 | |
| 
 | |
|     GGML_UNUSED(backend);
 | |
| }
 | |
| 
 | |
| static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
 | |
|     graph_node_properties->node_address = node->data;
 | |
|     graph_node_properties->node_op = node->op;
 | |
|     for (int i = 0; i < GGML_MAX_DIMS; i++) {
 | |
|         graph_node_properties->ne[i] = node->ne[i];
 | |
|         graph_node_properties->nb[i] = node->nb[i];
 | |
|     }
 | |
|     for (int i = 0; i < GGML_MAX_SRC; i++) {
 | |
|         graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
 | |
|     if (node->data != graph_node_properties->node_address &&
 | |
|           node->op != GGML_OP_CPY &&
 | |
|           node->op != GGML_OP_VIEW) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (node->op != graph_node_properties->node_op) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < GGML_MAX_DIMS; i++) {
 | |
|         if (node->ne[i] != graph_node_properties->ne[i]) {
 | |
|             return false;
 | |
|         }
 | |
|         if (node->nb[i] != graph_node_properties->nb[i]) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < GGML_MAX_SRC; i++) {
 | |
|         if (node->src[i] &&
 | |
|             node->src[i]->data != graph_node_properties->src_address[i] &&
 | |
|             node->op != GGML_OP_CPY &&
 | |
|             node->op != GGML_OP_VIEW
 | |
|         ) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
 | |
|     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | |
| 
 | |
|     ggml_cuda_set_device(cuda_ctx->device);
 | |
| 
 | |
| #ifdef USE_CUDA_GRAPH
 | |
|     static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
 | |
| 
 | |
|     // Objects required for CUDA Graph
 | |
|     if (cuda_ctx->cuda_graph == nullptr) {
 | |
|         cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
 | |
|     }
 | |
| 
 | |
|     bool use_cuda_graph = true;
 | |
|     bool cuda_graph_update_required = false;
 | |
|     // vector of pointers to CUDA cpy kernels, which are required to identify
 | |
|     // kernel parameters which need updated in the graph for each token
 | |
|     std::vector<void *> ggml_cuda_cpy_fn_ptrs;
 | |
| 
 | |
|     if (cuda_ctx->cuda_graph->graph == nullptr) {
 | |
|         if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
 | |
|             cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
 | |
| #ifndef NDEBUG
 | |
|             GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
 | |
|     // or previous graph capture failure.
 | |
|     // Also disable for multi-gpu for now. TO DO investigate
 | |
|     if (disable_cuda_graphs_due_to_env
 | |
|         || cuda_ctx->cuda_graph->disable_due_to_gpu_arch
 | |
|         || cuda_ctx->cuda_graph->disable_due_to_too_many_updates
 | |
|         || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
 | |
|         use_cuda_graph = false;
 | |
|     }
 | |
| 
 | |
|     if (use_cuda_graph) {
 | |
|         if (cuda_ctx->cuda_graph->instance == nullptr) {
 | |
|             cuda_graph_update_required = true;
 | |
|         }
 | |
| 
 | |
|         // Check if the graph size has changed
 | |
|         if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
 | |
|             cuda_graph_update_required = true;
 | |
|             cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
 | |
|         }
 | |
| 
 | |
|         // Loop over nodes in GGML graph to determine if CUDA graph update is required
 | |
|         // and store properties to allow this comparison for the next token
 | |
|         for (int i = 0; i < cgraph->n_nodes; i++) {
 | |
|             bool has_matching_properties = true;
 | |
|             if (!cuda_graph_update_required) {
 | |
|                 has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
 | |
|             }
 | |
|             if (!has_matching_properties) {
 | |
|                 cuda_graph_update_required = true;
 | |
|             }
 | |
|             set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
 | |
|         }
 | |
| 
 | |
|         // Loop over nodes in GGML graph to obtain info needed for CUDA graph
 | |
|         cuda_ctx->cuda_graph->updated_kernel_arg.clear();
 | |
|         for (int i = 0; i < cgraph->n_nodes; i++) {
 | |
|             ggml_tensor * node = cgraph->nodes[i];
 | |
| 
 | |
|             if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
 | |
|                 use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
 | |
| #ifndef NDEBUG
 | |
|                 GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to split buffer\n", __func__);
 | |
| #endif
 | |
|             }
 | |
| 
 | |
|             if (node->op == GGML_OP_MUL_MAT_ID) {
 | |
|                 use_cuda_graph = false; // This node type is not supported by CUDA graph capture
 | |
| #ifndef NDEBUG
 | |
|                 GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
 | |
| #endif
 | |
|             }
 | |
| 
 | |
|             if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
 | |
|                 // disable CUDA graphs for batch size > 1 for now.
 | |
|                 // Changes in batch size or context size can cause changes to the grid size of some kernels.
 | |
|                 use_cuda_graph = false;
 | |
| #ifndef NDEBUG
 | |
|                 GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
 | |
| #endif
 | |
|             }
 | |
| 
 | |
|             if (node->op == GGML_OP_CPY) {
 | |
|                 // store the copy op parameter which changes with each token.
 | |
|                 cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
 | |
|                 // store a pointer to each copy op CUDA kernel to identify it later
 | |
|                 void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
 | |
|                 if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
 | |
|                     ggml_cuda_cpy_fn_ptrs.push_back(ptr);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (!use_cuda_graph) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
 | |
|         if (use_cuda_graph && cuda_graph_update_required) {
 | |
|             cuda_ctx->cuda_graph->number_consecutive_updates++;
 | |
|         } else {
 | |
|             cuda_ctx->cuda_graph->number_consecutive_updates = 0;
 | |
|         }
 | |
| 
 | |
|         if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
 | |
|             cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
 | |
| #ifndef NDEBUG
 | |
|             GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
 | |
|         CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
 | |
|     }
 | |
| 
 | |
| #else
 | |
|     bool use_cuda_graph = false;
 | |
|     bool cuda_graph_update_required = false;
 | |
| #endif // USE_CUDA_GRAPH
 | |
| 
 | |
|     bool graph_evaluated_or_captured = false;
 | |
| 
 | |
|     while (!graph_evaluated_or_captured) {
 | |
|         // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
 | |
|         // With the use of CUDA graphs, the execution will be performed by the graph launch.
 | |
|         if (!use_cuda_graph || cuda_graph_update_required) {
 | |
|             for (int i = 0; i < cgraph->n_nodes; i++) {
 | |
|                 ggml_tensor * node = cgraph->nodes[i];
 | |
| 
 | |
|                 if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|                 assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
 | |
|                 for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|                     if (node->src[j] != nullptr) {
 | |
|                         assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
 | |
|                     }
 | |
|                 }
 | |
| #endif
 | |
| 
 | |
|                 bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
 | |
|                 if (!ok) {
 | |
|                     GGML_CUDA_LOG_ERROR("%s: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
 | |
|                 }
 | |
|                 GGML_ASSERT(ok);
 | |
|             }
 | |
|         }
 | |
| 
 | |
| #ifdef USE_CUDA_GRAPH
 | |
|         if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture
 | |
|             if (cuda_ctx->cuda_graph->graph != nullptr) {
 | |
|                 CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
 | |
|                 cuda_ctx->cuda_graph->graph = nullptr;
 | |
|             }
 | |
|             CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
 | |
| 
 | |
| #if 0
 | |
|             if (disable_cuda_graphs_due_to_failed_capture) {
 | |
|                 use_cuda_graph = false;
 | |
|                 cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
 | |
| #ifndef NDEBUG
 | |
|                 GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to failed graph capture\n", __func__);
 | |
| #endif
 | |
|             } else {
 | |
|                 graph_evaluated_or_captured = true; // CUDA graph has been captured
 | |
|             }
 | |
| #endif
 | |
|             graph_evaluated_or_captured = true; // CUDA graph has been captured
 | |
|         } else {
 | |
|             graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (use_cuda_graph) {
 | |
|         if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
 | |
|             CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
 | |
|         }
 | |
| 
 | |
|         // Perform update to graph (if required for this token), and change copy parameter (required for every token)
 | |
| 
 | |
|         if (cuda_graph_update_required) {
 | |
|             // Extract nodes from graph
 | |
|             if (cuda_ctx->cuda_graph->num_nodes == 0) {
 | |
|                 // First call with null argument gets number of nodes in graph
 | |
|                 CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
 | |
|             }
 | |
|             // Subsequent call with non-null argument gets nodes
 | |
|             cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
 | |
|             cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
 | |
|             if (cuda_ctx->cuda_graph->num_nodes > 0) {
 | |
|                 CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
 | |
| 
 | |
|                 // Loop over nodes, and extract kernel parameters from each node
 | |
|                 for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
 | |
|                     cudaGraphNodeType node_type;
 | |
|                     CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
 | |
|                     if (node_type == cudaGraphNodeTypeKernel) {
 | |
|                         cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
 | |
|                         if (stat == cudaErrorInvalidDeviceFunction) {
 | |
|                             // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
 | |
|                             // We don't need to update blas nodes, so clear error and move on.
 | |
|                             cudaGetLastError();
 | |
|                         } else {
 | |
|                             GGML_ASSERT(stat == cudaSuccess);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // One of the arguments to the copy kernel is updated for each token, hence we need to
 | |
|         // replace that argument with the updated value in the CUDA graph
 | |
|         if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
 | |
|             int k = 0;
 | |
|             for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
 | |
|                 if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
 | |
|                     char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
 | |
|                     cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
 | |
|                     CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Update graph executable
 | |
|         cudaGraphExecUpdateResultInfo result_info;
 | |
|         cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
 | |
|         if (stat == cudaErrorGraphExecUpdateFailure) {
 | |
| #ifndef NDEBUG
 | |
|             GGML_CUDA_LOG_ERROR("%s: CUDA graph update failed\n", __func__);
 | |
| #endif
 | |
|             // The pre-existing graph exec cannot be updated due to violated constraints
 | |
|             // so instead clear error and re-instantiate
 | |
|             cudaGetLastError();
 | |
|             CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
 | |
|             cuda_ctx->cuda_graph->instance = nullptr;
 | |
|             CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
 | |
|         } else {
 | |
|             GGML_ASSERT(stat == cudaSuccess);
 | |
|         }
 | |
|         // Launch graph
 | |
|         CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
 | |
| #else
 | |
|         graph_evaluated_or_captured = true;
 | |
| #endif // USE_CUDA_GRAPH
 | |
|     }
 | |
| 
 | |
|     return GGML_STATUS_SUCCESS;
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
 | |
|     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
 | |
|     switch (op->op) {
 | |
|         case GGML_OP_UNARY:
 | |
|             switch (ggml_get_unary_op(op)) {
 | |
|                 case GGML_UNARY_OP_GELU:
 | |
|                 case GGML_UNARY_OP_SILU:
 | |
|                 case GGML_UNARY_OP_RELU:
 | |
|                 case GGML_UNARY_OP_SIGMOID:
 | |
|                 case GGML_UNARY_OP_HARDSIGMOID:
 | |
|                 case GGML_UNARY_OP_HARDSWISH:
 | |
|                 case GGML_UNARY_OP_GELU_QUICK:
 | |
|                 case GGML_UNARY_OP_TANH:
 | |
|                     return true;
 | |
|                 default:
 | |
|                     return false;
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_MUL_MAT:
 | |
|         case GGML_OP_MUL_MAT_ID:
 | |
|             {
 | |
|                 struct ggml_tensor * a;
 | |
|                 struct ggml_tensor * b;
 | |
|                 if (op->op == GGML_OP_MUL_MAT) {
 | |
|                     a = op->src[0];
 | |
|                     b = op->src[1];
 | |
|                 } else {
 | |
|                     a = op->src[2];
 | |
|                     b = op->src[1];
 | |
|                 }
 | |
|                 if (a->ne[3] != b->ne[3]) {
 | |
|                     return false;
 | |
|                 }
 | |
|                 ggml_type a_type = a->type;
 | |
|                 if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS ||
 | |
|                     a_type == GGML_TYPE_IQ1_S   || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S   ||
 | |
|                     a_type == GGML_TYPE_IQ1_M   || a_type == GGML_TYPE_IQ2_S  || a_type == GGML_TYPE_IQ4_XS) {
 | |
|                     if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
 | |
|                         return false;
 | |
|                     }
 | |
|                 }
 | |
|                 return true;
 | |
|             } break;
 | |
|         case GGML_OP_GET_ROWS:
 | |
|             {
 | |
|                 switch (op->src[0]->type) {
 | |
|                     case GGML_TYPE_F16:
 | |
|                     case GGML_TYPE_F32:
 | |
|                     case GGML_TYPE_Q4_0:
 | |
|                     case GGML_TYPE_Q4_1:
 | |
|                     case GGML_TYPE_Q5_0:
 | |
|                     case GGML_TYPE_Q5_1:
 | |
|                     case GGML_TYPE_Q8_0:
 | |
|                         return true;
 | |
|                     default:
 | |
|                         return false;
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_CPY:
 | |
|             {
 | |
|                 ggml_type src0_type = op->src[0]->type;
 | |
|                 ggml_type src1_type = op->src[1]->type;
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 return false;
 | |
|             } break;
 | |
|         case GGML_OP_DUP:
 | |
|         case GGML_OP_REPEAT:
 | |
|         case GGML_OP_CONCAT:
 | |
|             {
 | |
|                 ggml_type src0_type = op->src[0]->type;
 | |
|                 return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
 | |
|             } break;
 | |
|         case GGML_OP_NONE:
 | |
|         case GGML_OP_RESHAPE:
 | |
|         case GGML_OP_VIEW:
 | |
|         case GGML_OP_PERMUTE:
 | |
|         case GGML_OP_TRANSPOSE:
 | |
|         case GGML_OP_NORM:
 | |
|         case GGML_OP_ADD:
 | |
|         case GGML_OP_MUL:
 | |
|         case GGML_OP_DIV:
 | |
|         case GGML_OP_RMS_NORM:
 | |
|         case GGML_OP_SCALE:
 | |
|         case GGML_OP_SQR:
 | |
|         case GGML_OP_CLAMP:
 | |
|         case GGML_OP_CONT:
 | |
|         case GGML_OP_DIAG_MASK_INF:
 | |
|         case GGML_OP_SOFT_MAX:
 | |
|         case GGML_OP_ROPE:
 | |
|         case GGML_OP_IM2COL:
 | |
|         case GGML_OP_POOL_2D:
 | |
|         case GGML_OP_SUM_ROWS:
 | |
|         case GGML_OP_ARGSORT:
 | |
|         case GGML_OP_ACC:
 | |
|         case GGML_OP_GROUP_NORM:
 | |
|         case GGML_OP_UPSCALE:
 | |
|         case GGML_OP_PAD:
 | |
|         case GGML_OP_ARANGE:
 | |
|         case GGML_OP_TIMESTEP_EMBEDDING:
 | |
|         case GGML_OP_LEAKY_RELU:
 | |
|             return true;
 | |
|         case GGML_OP_FLASH_ATTN_EXT:
 | |
| #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
|             return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128;
 | |
| #else
 | |
|             if (op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128) {
 | |
|                 return true;
 | |
|             }
 | |
|             return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA;
 | |
| #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | |
|         default:
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     GGML_UNUSED(backend);
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
 | |
|     const int min_batch_size = 32;
 | |
| 
 | |
|     return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
 | |
|            (op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
 | |
| 
 | |
|     GGML_UNUSED(backend);
 | |
| }
 | |
| 
 | |
| static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
 | |
| #ifdef GGML_CUDA_NO_PEER_COPY
 | |
|     return nullptr;
 | |
| #else
 | |
|     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | |
| 
 | |
|     ggml_cuda_set_device(cuda_ctx->device);
 | |
| 
 | |
|     cudaEvent_t event;
 | |
|     CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
 | |
| 
 | |
|     return new ggml_backend_event {
 | |
|         /* .backend = */ backend,
 | |
|         /* .context = */ event,
 | |
|     };
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_event_free(ggml_backend_event_t event) {
 | |
|     CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
 | |
| 
 | |
|     delete event;
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_event_record(ggml_backend_event_t event) {
 | |
|     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context;
 | |
| 
 | |
|     CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
 | |
|     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 | |
| 
 | |
|     if (ggml_backend_is_cuda(event->backend)) {
 | |
|         CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
 | |
|     } else {
 | |
| #if 0
 | |
|         // untested
 | |
|         auto wait_fn = [](void * user_data) {
 | |
|             ggml_backend_event_t event = (ggml_backend_event_t)user_data;
 | |
|             ggml_backend_event_synchronize(event);
 | |
|         };
 | |
| 
 | |
|         CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
 | |
| #endif
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) {
 | |
|     CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
 | |
| }
 | |
| 
 | |
| static ggml_backend_i ggml_backend_cuda_interface = {
 | |
|     /* .get_name                = */ ggml_backend_cuda_name,
 | |
|     /* .free                    = */ ggml_backend_cuda_free,
 | |
|     /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
 | |
|     /* .set_tensor_async        = */ ggml_backend_cuda_set_tensor_async,
 | |
|     /* .get_tensor_async        = */ ggml_backend_cuda_get_tensor_async,
 | |
|     /* .cpy_tensor_async        = */ ggml_backend_cuda_cpy_tensor_async,
 | |
|     /* .synchronize             = */ ggml_backend_cuda_synchronize,
 | |
|     /* .graph_plan_create       = */ NULL,
 | |
|     /* .graph_plan_free         = */ NULL,
 | |
|     /* .graph_plan_compute      = */ NULL,
 | |
|     /* .graph_compute           = */ ggml_backend_cuda_graph_compute,
 | |
|     /* .supports_op             = */ ggml_backend_cuda_supports_op,
 | |
|     /* .offload_op              = */ ggml_backend_cuda_offload_op,
 | |
|     /* .event_new               = */ ggml_backend_cuda_event_new,
 | |
|     /* .event_free              = */ ggml_backend_cuda_event_free,
 | |
|     /* .event_record            = */ ggml_backend_cuda_event_record,
 | |
|     /* .event_wait              = */ ggml_backend_cuda_event_wait,
 | |
|     /* .event_synchronize       = */ ggml_backend_cuda_event_synchronize,
 | |
| };
 | |
| 
 | |
| static ggml_guid_t ggml_backend_cuda_guid() {
 | |
|     static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
 | |
|     return &guid;
 | |
| }
 | |
| 
 | |
| GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
 | |
|     if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
 | |
|         GGML_CUDA_LOG_ERROR("%s: invalid device %d\n", __func__, device);
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
 | |
|     if (ctx == nullptr) {
 | |
|         GGML_CUDA_LOG_ERROR("%s: failed to allocate context\n", __func__);
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     ggml_backend_t cuda_backend = new ggml_backend {
 | |
|         /* .guid      = */ ggml_backend_cuda_guid(),
 | |
|         /* .interface = */ ggml_backend_cuda_interface,
 | |
|         /* .context   = */ ctx
 | |
|     };
 | |
| 
 | |
|     return cuda_backend;
 | |
| }
 | |
| 
 | |
| GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) {
 | |
|     return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
 | |
| }
 | |
| 
 | |
| GGML_CALL int ggml_backend_cuda_get_device_count() {
 | |
|     return ggml_cuda_info().device_count;
 | |
| }
 | |
| 
 | |
| GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
 | |
|     cudaDeviceProp prop;
 | |
|     CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
 | |
|     snprintf(description, description_size, "%s", prop.name);
 | |
| }
 | |
| 
 | |
| GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
 | |
|     ggml_cuda_set_device(device);
 | |
| 
 | |
|     CUDA_CHECK(cudaMemGetInfo(free, total));
 | |
| }
 | |
| 
 | |
| GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
 | |
|     if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
| #if CUDART_VERSION >= 11100
 | |
|     cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
 | |
|     if (err != cudaSuccess) {
 | |
|         // clear the error
 | |
|         cudaGetLastError();
 | |
| 
 | |
|         GGML_CUDA_LOG_WARN("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
 | |
|                            size / 1024.0 / 1024.0, cudaGetErrorString(err));
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| #else
 | |
|     return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
 | |
|     if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     cudaError_t err = cudaHostUnregister(buffer);
 | |
|     if (err != cudaSuccess) {
 | |
|         // clear the error
 | |
|         cudaGetLastError();
 | |
|     }
 | |
| }
 | |
| 
 | |
| // backend registry
 | |
| GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
 | |
|     ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
 | |
|     return cuda_backend;
 | |
| 
 | |
|     GGML_UNUSED(params);
 | |
| }
 | |
| 
 | |
| extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();
 | |
| 
 | |
| GGML_CALL int ggml_backend_cuda_reg_devices() {
 | |
|     int device_count = ggml_backend_cuda_get_device_count();
 | |
|     //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
 | |
|     for (int i = 0; i < device_count; i++) {
 | |
|         char name[128];
 | |
|         snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i);
 | |
|         ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i);
 | |
|     }
 | |
|     return device_count;
 | |
| }
 |