mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			212 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			212 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "ggml.h"
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| #define MAX_NARGS 2
 | |
| 
 | |
| #if defined(__GNUC__)
 | |
| #pragma GCC diagnostic ignored "-Wdouble-promotion"
 | |
| #endif
 | |
| 
 | |
| //
 | |
| // logging
 | |
| //
 | |
| #define GGML_DEBUG 0
 | |
| #if (GGML_DEBUG >= 1)
 | |
| #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG(...)
 | |
| #endif
 | |
| 
 | |
| #if (GGML_DEBUG >= 5)
 | |
| #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG_5(...)
 | |
| #endif
 | |
| 
 | |
| #if (GGML_DEBUG >= 10)
 | |
| #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG_10(...)
 | |
| #endif
 | |
| 
 | |
| #define GGML_PRINT(...) printf(__VA_ARGS__)
 | |
| 
 | |
| 
 | |
| float frand(void) {
 | |
|     return (float)rand()/(float)RAND_MAX;
 | |
| }
 | |
| 
 | |
| int irand(int n) {
 | |
|     return rand()%n;
 | |
| }
 | |
| 
 | |
| void get_random_dims(int64_t * dims, int ndims) {
 | |
|     dims[0] = dims[1] = dims[2] = dims[3] = 1;
 | |
| 
 | |
|     for (int i = 0; i < ndims; i++) {
 | |
|         dims[i] = 1 + irand(4);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void get_random_dims_minmax(int64_t * dims, int ndims, int min, int max) {
 | |
|     dims[0] = dims[1] = dims[2] = dims[3] = 1;
 | |
| 
 | |
|     for (int i = 0; i < ndims; i++) {
 | |
|         dims[i] = min + irand(max-min);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| struct ggml_tensor * get_random_tensor(
 | |
|         struct ggml_context * ctx0,
 | |
|         int ndims,
 | |
|         int64_t ne[],
 | |
|         float fmin,
 | |
|         float fmax) {
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
 | |
| 
 | |
|     switch (ndims) {
 | |
|         case 1:
 | |
|             for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                 ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                 for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                     ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 3:
 | |
|             for (int i2 = 0; i2 < ne[2]; i2++) {
 | |
|                 for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                     for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                         ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 4:
 | |
|             for (int i3 = 0; i3 < ne[3]; i3++) {
 | |
|                 for (int i2 = 0; i2 < ne[2]; i2++) {
 | |
|                     for (int i1 = 0; i1 < ne[1]; i1++) {
 | |
|                         for (int i0 = 0; i0 < ne[0]; i0++) {
 | |
|                             ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             assert(false);
 | |
|     };
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| float get_element(const struct ggml_tensor * t, int idx) {
 | |
|     return ((float *)t->data)[idx];
 | |
| }
 | |
| 
 | |
| void set_element(struct ggml_tensor * t, int idx, float value) {
 | |
|     ((float *)t->data)[idx] = value;
 | |
| }
 | |
| 
 | |
| int main(void) {
 | |
|     struct ggml_init_params params = {
 | |
|         .mem_size   = 1024*1024*1024,
 | |
|         .mem_buffer = NULL,
 | |
|         .no_alloc   = false,
 | |
|     };
 | |
|     struct ggml_context * ctx = ggml_init(params);
 | |
| 
 | |
|     int64_t ne1[4] = {4, 128, 1, 1};
 | |
|     int64_t ne2[4] = {4, 256, 1, 1};;
 | |
|     int64_t ne3[4] = {128, 256, 1, 1};
 | |
| 
 | |
|     struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1);
 | |
|     struct ggml_tensor * b = get_random_tensor(ctx, 2, ne2, -1, +1);
 | |
|     ggml_set_param(ctx, a);
 | |
|     ggml_set_param(ctx, b);
 | |
| 
 | |
|     struct ggml_tensor * c = get_random_tensor(ctx, 2, ne3, -1, +1);
 | |
| 
 | |
|     struct ggml_tensor * ab = ggml_mul_mat(ctx, a, b);
 | |
|     struct ggml_tensor * d  = ggml_sub(ctx, c, ab);
 | |
|     struct ggml_tensor * e  = ggml_sum(ctx, ggml_sqr(ctx, d));
 | |
| 
 | |
|     struct ggml_cgraph ge = ggml_build_forward(e);
 | |
|     ggml_graph_reset(&ge);
 | |
| 
 | |
|     ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1);
 | |
| 
 | |
|     const float fe = ggml_get_f32_1d(e, 0);
 | |
|     printf("%s: e = %.4f\n", __func__, fe);
 | |
| 
 | |
|     struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
 | |
| 
 | |
|     ggml_opt(ctx, opt_params, e);
 | |
| 
 | |
|     ggml_graph_reset(&ge);
 | |
| 
 | |
|     ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1);
 | |
| 
 | |
|     const float fe_opt = ggml_get_f32_1d(e, 0);
 | |
|     printf("%s: original  e = %.4f\n", __func__, fe);
 | |
|     printf("%s: optimized e = %.4f\n", __func__, fe_opt);
 | |
| 
 | |
|     const bool success = (fe_opt <= fe);
 | |
|     assert(success);
 | |
| 
 | |
|     ggml_free(ctx);
 | |
|     return success ? 0 : -1;
 | |
| }
 | |
| // int64_t ne1[4] = {4, 128, 1, 1};
 | |
| // int64_t ne2[4] = {4, 256, 1, 1};;
 | |
| // int64_t ne3[4] = {128, 256, 1, 1};
 | |
| // main: original  e = 25890.9375
 | |
| // main: optimized e = 10094.7031
 | |
| 
 | |
| // int64_t ne1[4] = {8, 128, 1, 1};
 | |
| // int64_t ne2[4] = {8, 256, 1, 1};;
 | |
| // int64_t ne3[4] = {128, 256, 1, 1};
 | |
| // main: original  e = 39429.5078
 | |
| // main: optimized e = 9275.8936
 | |
| 
 | |
| // int64_t ne1[4] = {16, 128, 1, 1};
 | |
| // int64_t ne2[4] = {16, 256, 1, 1};;
 | |
| // int64_t ne3[4] = {128, 256, 1, 1};
 | |
| // main: original  e = 68371.1328
 | |
| // main: optimized e = 7854.4502
 | |
| 
 | |
| 
 | |
| // int64_t ne1[4] = {32, 128, 1, 1};
 | |
| // int64_t ne2[4] = {32, 256, 1, 1};;
 | |
| // int64_t ne3[4] = {128, 256, 1, 1};
 | |
| // main: original  e = 126061.1953
 | |
| // main: optimized e = 5451.0166
 | |
| 
 | |
| // int64_t ne1[4] = {4, 1024, 1, 1};
 | |
| // int64_t ne2[4] = {4, 2048, 1, 1};;
 | |
| // int64_t ne3[4] = {1024, 2048, 1, 1};
 | |
| // main: original  e = 1620817.8750
 | |
| // main: optimized e = 698387.6875
 | |
| 
 | |
| // another run on M1
 | |
| // int64_t ne1[4] = {4, 1024, 1, 1};
 | |
| // int64_t ne2[4] = {4, 2048, 1, 1};;
 | |
| // int64_t ne3[4] = {1024, 2048, 1, 1};
 | |
| // main: original  e = 1629595.6250
 | |
| // main: optimized e = 698169.1250
 | |
| 
 | |
| // int64_t ne1[4] = {32, 1024, 1, 1};
 | |
| // int64_t ne2[4] = {32, 2048, 1, 1};;
 | |
| // int64_t ne3[4] = {1024, 2048, 1, 1};
 | |
| // main: original  e = 8146770.5000
 | |
| // main: optimized e = 651119.1250
 | 
