mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 7eee341bee
			
		
	
	7eee341bee
	
	
	
		
			
			* common : use common_ prefix for common library functions --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			559 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			559 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Various helper functions and utilities
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <string>
 | |
| #include <vector>
 | |
| #include <sstream>
 | |
| 
 | |
| #ifdef _WIN32
 | |
| #define DIRECTORY_SEPARATOR '\\'
 | |
| #else
 | |
| #define DIRECTORY_SEPARATOR '/'
 | |
| #endif // _WIN32
 | |
| 
 | |
| #define die(msg)          do { fputs("error: " msg "\n", stderr);                exit(1); } while (0)
 | |
| #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
 | |
| 
 | |
| #define print_build_info() do {                                                                     \
 | |
|     fprintf(stderr, "%s: build = %d (%s)\n",      __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);      \
 | |
|     fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);    \
 | |
| } while(0)
 | |
| 
 | |
| #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
 | |
| 
 | |
| struct common_lora_adapter_info {
 | |
|     std::string path;
 | |
|     float scale;
 | |
| };
 | |
| 
 | |
| struct common_lora_adapter_container : common_lora_adapter_info {
 | |
|     struct llama_lora_adapter * adapter;
 | |
| };
 | |
| 
 | |
| // build info
 | |
| extern int LLAMA_BUILD_NUMBER;
 | |
| extern char const * LLAMA_COMMIT;
 | |
| extern char const * LLAMA_COMPILER;
 | |
| extern char const * LLAMA_BUILD_TARGET;
 | |
| 
 | |
| struct common_control_vector_load_info;
 | |
| 
 | |
| //
 | |
| // CPU utils
 | |
| //
 | |
| 
 | |
| struct cpu_params {
 | |
|     int      n_threads                   = -1;
 | |
|     bool     cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
 | |
|     bool     mask_valid                  = false;   // Default: any CPU
 | |
|     enum ggml_sched_priority  priority   = GGML_SCHED_PRIO_NORMAL;  // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
 | |
|     bool     strict_cpu                  = false;   // Use strict CPU placement
 | |
|     uint32_t poll                        = 50;      // Polling (busywait) level (0 - no polling, 100 - mostly polling)
 | |
| };
 | |
| 
 | |
| int32_t cpu_get_num_physical_cores();
 | |
| int32_t cpu_get_num_math();
 | |
| 
 | |
| //
 | |
| // Common params
 | |
| //
 | |
| 
 | |
| enum llama_example {
 | |
|     LLAMA_EXAMPLE_COMMON,
 | |
|     LLAMA_EXAMPLE_SPECULATIVE,
 | |
|     LLAMA_EXAMPLE_MAIN,
 | |
|     LLAMA_EXAMPLE_INFILL,
 | |
|     LLAMA_EXAMPLE_EMBEDDING,
 | |
|     LLAMA_EXAMPLE_PERPLEXITY,
 | |
|     LLAMA_EXAMPLE_RETRIEVAL,
 | |
|     LLAMA_EXAMPLE_PASSKEY,
 | |
|     LLAMA_EXAMPLE_IMATRIX,
 | |
|     LLAMA_EXAMPLE_BENCH,
 | |
|     LLAMA_EXAMPLE_SERVER,
 | |
|     LLAMA_EXAMPLE_CVECTOR_GENERATOR,
 | |
|     LLAMA_EXAMPLE_EXPORT_LORA,
 | |
|     LLAMA_EXAMPLE_LLAVA,
 | |
|     LLAMA_EXAMPLE_LOOKUP,
 | |
|     LLAMA_EXAMPLE_PARALLEL,
 | |
| 
 | |
|     LLAMA_EXAMPLE_COUNT,
 | |
| };
 | |
| 
 | |
| enum common_sampler_type {
 | |
|     COMMON_SAMPLER_TYPE_NONE        = 0,
 | |
|     COMMON_SAMPLER_TYPE_TOP_K       = 1,
 | |
|     COMMON_SAMPLER_TYPE_TOP_P       = 2,
 | |
|     COMMON_SAMPLER_TYPE_MIN_P       = 3,
 | |
|     COMMON_SAMPLER_TYPE_TFS_Z       = 4,
 | |
|     COMMON_SAMPLER_TYPE_TYPICAL_P   = 5,
 | |
|     COMMON_SAMPLER_TYPE_TEMPERATURE = 6,
 | |
| };
 | |
| 
 | |
| // dimensionality reduction methods, used by cvector-generator
 | |
| enum dimre_method {
 | |
|     DIMRE_METHOD_PCA,
 | |
|     DIMRE_METHOD_MEAN,
 | |
| };
 | |
| 
 | |
| // sampler parameters
 | |
| struct common_sampler_params {
 | |
|     uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
 | |
| 
 | |
|     int32_t n_prev            = 64;    // number of previous tokens to remember
 | |
|     int32_t n_probs           = 0;     // if greater than 0, output the probabilities of top n_probs tokens.
 | |
|     int32_t min_keep          = 0;     // 0 = disabled, otherwise samplers should return at least min_keep tokens
 | |
|     int32_t top_k             = 40;    // <= 0 to use vocab size
 | |
|     float   top_p             = 0.95f; // 1.0 = disabled
 | |
|     float   min_p             = 0.05f; // 0.0 = disabled
 | |
|     float   tfs_z             = 1.00f; // 1.0 = disabled
 | |
|     float   typ_p             = 1.00f; // typical_p, 1.0 = disabled
 | |
|     float   temp              = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
 | |
|     float   dynatemp_range    = 0.00f; // 0.0 = disabled
 | |
|     float   dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
 | |
|     int32_t penalty_last_n    = 64;    // last n tokens to penalize (0 = disable penalty, -1 = context size)
 | |
|     float   penalty_repeat    = 1.00f; // 1.0 = disabled
 | |
|     float   penalty_freq      = 0.00f; // 0.0 = disabled
 | |
|     float   penalty_present   = 0.00f; // 0.0 = disabled
 | |
|     int32_t mirostat          = 0;     // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
 | |
|     float   mirostat_tau      = 5.00f; // target entropy
 | |
|     float   mirostat_eta      = 0.10f; // learning rate
 | |
|     bool    penalize_nl       = false; // consider newlines as a repeatable token
 | |
|     bool    ignore_eos        = false;
 | |
|     bool    no_perf           = false; // disable performance metrics
 | |
| 
 | |
|     std::vector<enum common_sampler_type> samplers = {
 | |
|         COMMON_SAMPLER_TYPE_TOP_K,
 | |
|         COMMON_SAMPLER_TYPE_TFS_Z,
 | |
|         COMMON_SAMPLER_TYPE_TYPICAL_P,
 | |
|         COMMON_SAMPLER_TYPE_TOP_P,
 | |
|         COMMON_SAMPLER_TYPE_MIN_P,
 | |
|         COMMON_SAMPLER_TYPE_TEMPERATURE
 | |
|     };
 | |
| 
 | |
|     std::string grammar; // optional BNF-like grammar to constrain sampling
 | |
| 
 | |
|     std::vector<llama_logit_bias> logit_bias; // logit biases to apply
 | |
| 
 | |
|     // print the parameters into a string
 | |
|     std::string print() const;
 | |
| };
 | |
| 
 | |
| struct common_params {
 | |
|     int32_t n_predict             =    -1; // new tokens to predict
 | |
|     int32_t n_ctx                 =     0; // context size
 | |
|     int32_t n_batch               =  2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
 | |
|     int32_t n_ubatch              =   512; // physical batch size for prompt processing (must be >=32 to use BLAS)
 | |
|     int32_t n_keep                =     0; // number of tokens to keep from initial prompt
 | |
|     int32_t n_draft               =     5; // number of tokens to draft during speculative decoding
 | |
|     int32_t n_chunks              =    -1; // max number of chunks to process (-1 = unlimited)
 | |
|     int32_t n_parallel            =     1; // number of parallel sequences to decode
 | |
|     int32_t n_sequences           =     1; // number of sequences to decode
 | |
|     float   p_split               =  0.1f; // speculative decoding split probability
 | |
|     int32_t n_gpu_layers          =    -1; // number of layers to store in VRAM (-1 - use default)
 | |
|     int32_t n_gpu_layers_draft    =    -1; // number of layers to store in VRAM for the draft model (-1 - use default)
 | |
|     int32_t main_gpu              =     0; // the GPU that is used for scratch and small tensors
 | |
|     float   tensor_split[128]     =   {0}; // how split tensors should be distributed across GPUs
 | |
|     int32_t grp_attn_n            =     1; // group-attention factor
 | |
|     int32_t grp_attn_w            =   512; // group-attention width
 | |
|     int32_t n_print               =    -1; // print token count every n tokens (-1 = disabled)
 | |
|     float   rope_freq_base        =  0.0f; // RoPE base frequency
 | |
|     float   rope_freq_scale       =  0.0f; // RoPE frequency scaling factor
 | |
|     float   yarn_ext_factor       = -1.0f; // YaRN extrapolation mix factor
 | |
|     float   yarn_attn_factor      =  1.0f; // YaRN magnitude scaling factor
 | |
|     float   yarn_beta_fast        = 32.0f; // YaRN low correction dim
 | |
|     float   yarn_beta_slow        =  1.0f; // YaRN high correction dim
 | |
|     int32_t yarn_orig_ctx         =     0; // YaRN original context length
 | |
|     float   defrag_thold          = -1.0f; // KV cache defragmentation threshold
 | |
| 
 | |
|     struct cpu_params cpuparams;
 | |
|     struct cpu_params cpuparams_batch;
 | |
|     struct cpu_params draft_cpuparams;
 | |
|     struct cpu_params draft_cpuparams_batch;
 | |
| 
 | |
|     ggml_backend_sched_eval_callback cb_eval = nullptr;
 | |
|     void * cb_eval_user_data                 = nullptr;
 | |
| 
 | |
|     ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
 | |
| 
 | |
|     enum llama_split_mode        split_mode        = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
 | |
|     enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
 | |
|     enum llama_pooling_type      pooling_type      = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
 | |
|     enum llama_attention_type    attention_type    = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
 | |
| 
 | |
|     struct common_sampler_params sparams;
 | |
| 
 | |
|     std::string model                = ""; // model path                                                    // NOLINT
 | |
|     std::string model_draft          = ""; // draft model for speculative decoding                          // NOLINT
 | |
|     std::string model_alias          = "unknown"; // model alias                                            // NOLINT
 | |
|     std::string model_url            = ""; // model url to download                                         // NOLINT
 | |
|     std::string hf_token             = ""; // HF token                                                      // NOLINT
 | |
|     std::string hf_repo              = ""; // HF repo                                                       // NOLINT
 | |
|     std::string hf_file              = ""; // HF file                                                       // NOLINT
 | |
|     std::string prompt               = "";                                                                  // NOLINT
 | |
|     std::string prompt_file          = ""; // store the external prompt file name                           // NOLINT
 | |
|     std::string path_prompt_cache    = ""; // path to file for saving/loading prompt eval state             // NOLINT
 | |
|     std::string input_prefix         = ""; // string to prefix user inputs with                             // NOLINT
 | |
|     std::string input_suffix         = ""; // string to suffix user inputs with                             // NOLINT
 | |
|     std::string logdir               = ""; // directory in which to save YAML log files                     // NOLINT
 | |
|     std::string lookup_cache_static  = ""; // path of static ngram cache file for lookup decoding           // NOLINT
 | |
|     std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding          // NOLINT
 | |
|     std::string logits_file          = ""; // file for saving *all* logits                                  // NOLINT
 | |
|     std::string rpc_servers          = ""; // comma separated list of RPC servers                           // NOLINT
 | |
| 
 | |
|     std::vector<std::string> in_files;   // all input files
 | |
|     std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
 | |
|     std::vector<llama_model_kv_override> kv_overrides;
 | |
| 
 | |
|     bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
 | |
|     std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
 | |
| 
 | |
|     std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
 | |
| 
 | |
|     int32_t verbosity                  = 0;
 | |
|     int32_t control_vector_layer_start = -1; // layer range for control vector
 | |
|     int32_t control_vector_layer_end   = -1; // layer range for control vector
 | |
| 
 | |
|     int32_t ppl_stride      = 0;     // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
 | |
|     int32_t ppl_output_type = 0;     // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
 | |
|                                      //                                       (which is more convenient to use for plotting)
 | |
|                                      //
 | |
|     bool   hellaswag        = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
 | |
|     size_t hellaswag_tasks  = 400;   // number of tasks to use when computing the HellaSwag score
 | |
| 
 | |
|     bool   winogrande       = false; // compute Winogrande score over random tasks from datafile supplied in prompt
 | |
|     size_t winogrande_tasks = 0;     // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
 | |
| 
 | |
|     bool   multiple_choice  = false;  // compute TruthfulQA score over random tasks from datafile supplied in prompt
 | |
|     size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
 | |
| 
 | |
|     bool   kl_divergence    = false; // compute KL divergence
 | |
| 
 | |
|     bool usage             = false; // print usage
 | |
|     bool use_color         = false; // use color to distinguish generations and inputs
 | |
|     bool special           = false; // enable special token output
 | |
|     bool interactive       = false; // interactive mode
 | |
|     bool interactive_first = false; // wait for user input immediately
 | |
|     bool conversation      = false; // conversation mode (does not print special tokens and suffix/prefix)
 | |
|     bool prompt_cache_all  = false; // save user input and generations to prompt cache
 | |
|     bool prompt_cache_ro   = false; // open the prompt cache read-only and do not update it
 | |
| 
 | |
|     bool escape            = true;  // escape "\n", "\r", "\t", "\'", "\"", and "\\"
 | |
|     bool multiline_input   = false; // reverse the usage of `\`
 | |
|     bool simple_io         = false; // improves compatibility with subprocesses and limited consoles
 | |
|     bool cont_batching     = true;  // insert new sequences for decoding on-the-fly
 | |
|     bool flash_attn        = false; // flash attention
 | |
|     bool no_perf           = false; // disable performance metrics
 | |
|     bool ctx_shift         = true;  // context shift on inifinite text generation
 | |
| 
 | |
|     bool input_prefix_bos  = false; // prefix BOS to user inputs, preceding input_prefix
 | |
|     bool logits_all        = false; // return logits for all tokens in the batch
 | |
|     bool use_mmap          = true;  // use mmap for faster loads
 | |
|     bool use_mlock         = false; // use mlock to keep model in memory
 | |
|     bool verbose_prompt    = false; // print prompt tokens before generation
 | |
|     bool display_prompt    = true;  // print prompt before generation
 | |
|     bool dump_kv_cache     = false; // dump the KV cache contents for debugging purposes
 | |
|     bool no_kv_offload     = false; // disable KV offloading
 | |
|     bool warmup            = true;  // warmup run
 | |
|     bool check_tensors     = false; // validate tensor data
 | |
| 
 | |
|     std::string cache_type_k = "f16"; // KV cache data type for the K
 | |
|     std::string cache_type_v = "f16"; // KV cache data type for the V
 | |
| 
 | |
|     // multimodal models (see examples/llava)
 | |
|     std::string mmproj = "";        // path to multimodal projector                                         // NOLINT
 | |
|     std::vector<std::string> image; // path to image file(s)
 | |
| 
 | |
|     // embedding
 | |
|     bool embedding         = false; // get only sentence embedding
 | |
|     int32_t embd_normalize = 2;     // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
 | |
|     std::string embd_out   = "";    // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
 | |
|     std::string embd_sep   = "\n";  // separator of embendings
 | |
|     bool reranking         = false; // enable reranking support on server
 | |
| 
 | |
|     // server params
 | |
|     int32_t port           = 8080;         // server listens on this network port
 | |
|     int32_t timeout_read   = 600;          // http read timeout in seconds
 | |
|     int32_t timeout_write  = timeout_read; // http write timeout in seconds
 | |
|     int     n_threads_http = -1;           // number of threads to process HTTP requests (TODO: support threadpool)
 | |
| 
 | |
|     std::string hostname      = "127.0.0.1";
 | |
|     std::string public_path   = "";                                                                         // NOLINT
 | |
|     std::string chat_template = "";                                                                         // NOLINT
 | |
|     std::string system_prompt = "";                                                                         // NOLINT
 | |
|     bool enable_chat_template = true;
 | |
| 
 | |
|     std::vector<std::string> api_keys;
 | |
| 
 | |
|     std::string ssl_file_key  = "";                                                                         // NOLINT
 | |
|     std::string ssl_file_cert = "";                                                                         // NOLINT
 | |
| 
 | |
|     // "advanced" endpoints are disabled by default for better security
 | |
|     bool webui            = true;
 | |
|     bool endpoint_slots   = false;
 | |
|     bool endpoint_props   = false; // only control POST requests, not GET
 | |
|     bool endpoint_metrics = false;
 | |
| 
 | |
|     bool log_json = false;
 | |
| 
 | |
|     std::string slot_save_path;
 | |
| 
 | |
|     float slot_prompt_similarity = 0.5f;
 | |
| 
 | |
|     // batched-bench params
 | |
|     bool is_pp_shared = false;
 | |
| 
 | |
|     std::vector<int32_t> n_pp;
 | |
|     std::vector<int32_t> n_tg;
 | |
|     std::vector<int32_t> n_pl;
 | |
| 
 | |
|     // retrieval params
 | |
|     std::vector<std::string> context_files; // context files to embed
 | |
| 
 | |
|     int32_t chunk_size = 64; // chunk size for context embedding
 | |
| 
 | |
|     std::string chunk_separator = "\n"; // chunk separator for context embedding
 | |
| 
 | |
|     // passkey params
 | |
|     int32_t n_junk = 250; // number of times to repeat the junk text
 | |
|     int32_t i_pos  = -1;  // position of the passkey in the junk text
 | |
| 
 | |
|     // imatrix params
 | |
|     std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
 | |
| 
 | |
|     int32_t n_out_freq  = 10; // output the imatrix every n_out_freq iterations
 | |
|     int32_t n_save_freq =  0; // save the imatrix every n_save_freq iterations
 | |
|     int32_t i_chunk     =  0; // start processing from this chunk
 | |
| 
 | |
|     bool process_output = false; // collect data for the output tensor
 | |
|     bool compute_ppl    = true;  // whether to compute perplexity
 | |
| 
 | |
|     // cvector-generator params
 | |
|     int n_pca_batch = 100;
 | |
|     int n_pca_iterations = 1000;
 | |
|     dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
 | |
|     std::string cvector_outfile       = "control_vector.gguf";
 | |
|     std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
 | |
|     std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
 | |
| 
 | |
|     bool spm_infill = false; // suffix/prefix/middle pattern for infill
 | |
| 
 | |
|     std::string lora_outfile = "ggml-lora-merged-f16.gguf";
 | |
| 
 | |
|     // batched-bench params
 | |
|     bool batched_bench_output_jsonl = false;
 | |
| };
 | |
| 
 | |
| // call once at the start of a program if it uses libcommon
 | |
| // initializes the logging system and prints info about the build
 | |
| void common_init();
 | |
| 
 | |
| std::string common_params_get_system_info(const common_params & params);
 | |
| 
 | |
| bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
 | |
| bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
 | |
| void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
 | |
| bool set_process_priority(enum ggml_sched_priority prio);
 | |
| 
 | |
| //
 | |
| // String utils
 | |
| //
 | |
| 
 | |
| std::vector<std::string> string_split(std::string input, char separator);
 | |
| 
 | |
| std::string string_strip(const std::string & str);
 | |
| std::string string_get_sortable_timestamp();
 | |
| 
 | |
| void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
 | |
| 
 | |
| template<class T>
 | |
| static std::vector<T> string_split(const std::string & str, char delim) {
 | |
|     std::vector<T> values;
 | |
|     std::istringstream str_stream(str);
 | |
|     std::string token;
 | |
|     while (std::getline(str_stream, token, delim)) {
 | |
|         T value;
 | |
|         std::istringstream token_stream(token);
 | |
|         token_stream >> value;
 | |
|         values.push_back(value);
 | |
|     }
 | |
|     return values;
 | |
| }
 | |
| 
 | |
| bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
 | |
| void string_process_escapes(std::string & input);
 | |
| 
 | |
| std::string string_from(bool value);
 | |
| std::string string_from(const std::vector<int> & values);
 | |
| std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
 | |
| std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
 | |
| 
 | |
| //
 | |
| // Filesystem utils
 | |
| //
 | |
| 
 | |
| bool fs_validate_filename(const std::string & filename);
 | |
| bool fs_create_directory_with_parents(const std::string & path);
 | |
| 
 | |
| std::string fs_get_cache_directory();
 | |
| std::string fs_get_cache_file(const std::string & filename);
 | |
| 
 | |
| //
 | |
| // Model utils
 | |
| //
 | |
| 
 | |
| struct common_init_result {
 | |
|     struct llama_model   * model   = nullptr;
 | |
|     struct llama_context * context = nullptr;
 | |
|     std::vector<common_lora_adapter_container> lora_adapters;
 | |
| };
 | |
| 
 | |
| struct common_init_result     common_init_from_params(common_params & params);
 | |
| 
 | |
| struct llama_model_params     common_model_params_to_llama  (const common_params & params);
 | |
| struct llama_context_params   common_context_params_to_llama(const common_params & params);
 | |
| struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
 | |
| 
 | |
| struct llama_model * common_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
 | |
| struct llama_model * common_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
 | |
| 
 | |
| // clear LoRA adapters from context, then apply new list of adapters
 | |
| void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);
 | |
| 
 | |
| // Batch utils
 | |
| 
 | |
| void common_batch_clear(struct llama_batch & batch);
 | |
| 
 | |
| void common_batch_add(
 | |
|                  struct llama_batch & batch,
 | |
|                         llama_token   id,
 | |
|                           llama_pos   pos,
 | |
|     const std::vector<llama_seq_id> & seq_ids,
 | |
|                                bool   logits);
 | |
| 
 | |
| //
 | |
| // Vocab utils
 | |
| //
 | |
| 
 | |
| // tokenizes a string into a vector of tokens
 | |
| // should work similar to Python's `tokenizer.encode`
 | |
| std::vector<llama_token> common_tokenize(
 | |
|   const struct llama_context * ctx,
 | |
|            const std::string & text,
 | |
|                         bool   add_special,
 | |
|                         bool   parse_special = false);
 | |
| 
 | |
| std::vector<llama_token> common_tokenize(
 | |
|     const struct llama_model * model,
 | |
|            const std::string & text,
 | |
|                         bool   add_special,
 | |
|                         bool   parse_special = false);
 | |
| 
 | |
| // tokenizes a token into a piece, optionally renders special/control tokens
 | |
| // should work similar to Python's `tokenizer.id_to_piece`
 | |
| std::string common_token_to_piece(
 | |
|         const struct llama_context * ctx,
 | |
|                        llama_token   token,
 | |
|                        bool          special = true);
 | |
| 
 | |
| // detokenizes a vector of tokens into a string
 | |
| // should work similar to Python's `tokenizer.decode`
 | |
| // optionally renders special/control tokens
 | |
| std::string common_detokenize(
 | |
|                          llama_context * ctx,
 | |
|         const std::vector<llama_token> & tokens,
 | |
|                                   bool   special = true);
 | |
| 
 | |
| //
 | |
| // Chat template utils
 | |
| //
 | |
| 
 | |
| // same with llama_chat_message, but uses std::string
 | |
| struct common_chat_msg {
 | |
|     std::string role;
 | |
|     std::string content;
 | |
| };
 | |
| 
 | |
| // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
 | |
| bool common_chat_verify_template(const std::string & tmpl);
 | |
| 
 | |
| // CPP wrapper for llama_chat_apply_template
 | |
| // If the built-in template is not supported, we default to chatml
 | |
| // If the custom "tmpl" is not supported, we throw an error
 | |
| std::string common_chat_apply_template(const struct llama_model * model,
 | |
|         const std::string & tmpl,
 | |
|         const std::vector<common_chat_msg> & chat,
 | |
|         bool add_ass);
 | |
| 
 | |
| // Format single message, while taking into account the position of that message in chat history
 | |
| std::string common_chat_format_single(const struct llama_model * model,
 | |
|         const std::string & tmpl,
 | |
|         const std::vector<common_chat_msg> & past_msg,
 | |
|         const common_chat_msg & new_msg,
 | |
|         bool add_ass);
 | |
| 
 | |
| // Returns an example of formatted chat
 | |
| std::string common_chat_format_example(const struct llama_model * model,
 | |
|         const std::string & tmpl);
 | |
| 
 | |
| //
 | |
| // KV cache utils
 | |
| //
 | |
| 
 | |
| // Dump the KV cache view with the number of sequences per cell.
 | |
| void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
 | |
| 
 | |
| // Dump the KV cache view showing individual sequences in each cell (long output).
 | |
| void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
 | |
| 
 | |
| //
 | |
| // Embedding utils
 | |
| //
 | |
| 
 | |
| void common_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
 | |
| 
 | |
| float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
 | |
| 
 | |
| //
 | |
| // Control vector utils
 | |
| //
 | |
| 
 | |
| struct common_control_vector_data {
 | |
|     int n_embd;
 | |
| 
 | |
|     // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
 | |
|     std::vector<float> data;
 | |
| };
 | |
| 
 | |
| struct common_control_vector_load_info {
 | |
|     float strength;
 | |
| 
 | |
|     std::string fname;
 | |
| };
 | |
| 
 | |
| // Load control vectors, scale each by strength, and add them together.
 | |
| // On error, returns {-1, empty}
 | |
| common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
 | |
| 
 | |
| //
 | |
| // Split utils
 | |
| //
 | |
| 
 | |
| static const char * const LLM_KV_SPLIT_NO            = "split.no";
 | |
| static const char * const LLM_KV_SPLIT_COUNT         = "split.count";
 | |
| static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
 | |
| 
 | |
| //
 | |
| // YAML utils
 | |
| //
 | |
| 
 | |
| void yaml_dump_vector_float    (FILE * stream, const char * prop_name, const std::vector<float> & data);
 | |
| void yaml_dump_vector_int      (FILE * stream, const char * prop_name, const std::vector<int> & data);
 | |
| void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
 | |
| 
 | |
| void yaml_dump_non_result_info(
 | |
|     FILE * stream, const common_params & params, const llama_context * lctx,
 | |
|     const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
 |