mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* sampling : avoid expensive softmax during greedy sampling ggml-ci * speculative : fix default RNG seed + set sparams.n_probs * Update tests/test-sampling.cpp Co-authored-by: slaren <slarengh@gmail.com> * sampling : add clarifying comment [no ci] --------- Co-authored-by: slaren <slarengh@gmail.com>
		
			
				
	
	
		
			361 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			361 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "ggml.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#ifdef NDEBUG
 | 
						|
#undef NDEBUG
 | 
						|
#endif
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
static void dump(const llama_token_data_array * cur_p) {
 | 
						|
    for (size_t i = 0; i < cur_p->size; i++) {
 | 
						|
        printf("%d: %f (%f)\n", cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define DUMP(__cur_p) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__cur_p)); printf("-\n"); } while(0)
 | 
						|
 | 
						|
#define APPLY(__cnstr, __cur_p) do { \
 | 
						|
    auto * cnstr = (__cnstr); \
 | 
						|
    llama_sampler_apply(cnstr, (__cur_p)); \
 | 
						|
    llama_sampler_free(cnstr); \
 | 
						|
} while(0)
 | 
						|
 | 
						|
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
 | 
						|
    const size_t n_vocab = probs.size();
 | 
						|
 | 
						|
    std::vector<llama_token_data> cur;
 | 
						|
    cur.reserve(n_vocab);
 | 
						|
    for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
 | 
						|
        const float logit = logf(probs[token_id]);
 | 
						|
        cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
 | 
						|
    }
 | 
						|
 | 
						|
    llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
 | 
						|
    APPLY(llama_sampler_init_softmax(), &cur_p);
 | 
						|
    DUMP(&cur_p);
 | 
						|
    APPLY(llama_sampler_init_top_k(k), &cur_p);
 | 
						|
    DUMP(&cur_p);
 | 
						|
 | 
						|
    GGML_ASSERT(cur_p.size == expected_probs.size());
 | 
						|
    for (size_t i = 0; i < cur_p.size; i++) {
 | 
						|
        GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-5);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
 | 
						|
    const size_t n_vocab = probs.size();
 | 
						|
 | 
						|
    std::vector<llama_token_data> cur;
 | 
						|
    cur.reserve(n_vocab);
 | 
						|
    for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
 | 
						|
        const float logit = logf(probs[token_id]);
 | 
						|
        cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
 | 
						|
    }
 | 
						|
 | 
						|
    llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
 | 
						|
    APPLY(llama_sampler_init_softmax(), &cur_p);
 | 
						|
    DUMP(&cur_p);
 | 
						|
    APPLY(llama_sampler_init_top_p(p, 1), &cur_p);
 | 
						|
    DUMP(&cur_p);
 | 
						|
 | 
						|
    GGML_ASSERT(cur_p.size == expected_probs.size());
 | 
						|
    for (size_t i = 0; i < cur_p.size; i++) {
 | 
						|
        GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
 | 
						|
    const size_t n_vocab = probs.size();
 | 
						|
 | 
						|
    std::vector<llama_token_data> cur;
 | 
						|
    cur.reserve(n_vocab);
 | 
						|
    for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
 | 
						|
        const float logit = logf(probs[token_id]);
 | 
						|
        cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
 | 
						|
    }
 | 
						|
 | 
						|
    llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
 | 
						|
    DUMP(&cur_p);
 | 
						|
    APPLY(llama_sampler_init_tail_free(z, 1), &cur_p);
 | 
						|
    DUMP(&cur_p);
 | 
						|
 | 
						|
    GGML_ASSERT(cur_p.size == expected_probs.size());
 | 
						|
    for (size_t i = 0; i < cur_p.size; i++) {
 | 
						|
        GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void test_min_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
 | 
						|
    const size_t n_vocab = probs.size();
 | 
						|
 | 
						|
    std::vector<llama_token_data> cur;
 | 
						|
    cur.reserve(n_vocab);
 | 
						|
    for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
 | 
						|
        const float logit = logf(probs[token_id]);
 | 
						|
        cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
 | 
						|
    }
 | 
						|
 | 
						|
    llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
 | 
						|
    DUMP(&cur_p);
 | 
						|
    APPLY(llama_sampler_init_min_p(p, 1), &cur_p);
 | 
						|
    DUMP(&cur_p);
 | 
						|
    APPLY(llama_sampler_init_softmax(), &cur_p);
 | 
						|
 | 
						|
    GGML_ASSERT(cur_p.size == expected_probs.size());
 | 
						|
    for (size_t i = 0; i < cur_p.size; i++) {
 | 
						|
        GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
 | 
						|
    const size_t n_vocab = probs.size();
 | 
						|
 | 
						|
    std::vector<llama_token_data> cur;
 | 
						|
    cur.reserve(n_vocab);
 | 
						|
    for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
 | 
						|
        const float logit = logf(probs[token_id]);
 | 
						|
        cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
 | 
						|
    }
 | 
						|
 | 
						|
    llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
 | 
						|
    DUMP(&cur_p);
 | 
						|
    APPLY(llama_sampler_init_typical(p, 1), &cur_p);
 | 
						|
    DUMP(&cur_p);
 | 
						|
 | 
						|
    GGML_ASSERT(cur_p.size == expected_probs.size());
 | 
						|
    for (size_t i = 0; i < cur_p.size; i++) {
 | 
						|
        GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void test_penalties(
 | 
						|
    const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
 | 
						|
    const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence
 | 
						|
) {
 | 
						|
    GGML_ASSERT(probs.size() == expected_probs.size());
 | 
						|
 | 
						|
    const size_t n_vocab = probs.size();
 | 
						|
 | 
						|
    std::vector<llama_token_data> cur;
 | 
						|
    cur.reserve(n_vocab);
 | 
						|
    for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
 | 
						|
        const float logit = logf(probs[token_id]);
 | 
						|
        cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
 | 
						|
    }
 | 
						|
 | 
						|
    llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
 | 
						|
 | 
						|
    auto * sampler = llama_sampler_init_penalties(n_vocab, LLAMA_TOKEN_NULL, LLAMA_TOKEN_NULL, last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence, false, false);
 | 
						|
 | 
						|
    for (size_t i = 0; i < last_tokens.size(); i++) {
 | 
						|
        llama_sampler_accept(sampler, last_tokens[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    APPLY(llama_sampler_init_softmax(), &cur_p);
 | 
						|
    DUMP(&cur_p);
 | 
						|
    APPLY(sampler, &cur_p);
 | 
						|
    APPLY(llama_sampler_init_softmax(), &cur_p);
 | 
						|
    DUMP(&cur_p);
 | 
						|
 | 
						|
    GGML_ASSERT(cur_p.size == expected_probs.size());
 | 
						|
    for (size_t i = 0; i < cur_p.size; i++) {
 | 
						|
        GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-3);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void test_sampler_queue(const size_t n_vocab, const std::string & samplers_sequence, const int top_k, const float top_p, const float min_p
 | 
						|
) {
 | 
						|
    std::vector<llama_token_data> cur;
 | 
						|
    cur.reserve(n_vocab);
 | 
						|
    for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
 | 
						|
        const float logit = logf(token_id);
 | 
						|
        cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
 | 
						|
    }
 | 
						|
 | 
						|
    llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
 | 
						|
 | 
						|
          llama_token min_token_id = 0;
 | 
						|
    const llama_token max_token_id = n_vocab-1;
 | 
						|
 | 
						|
    for (auto s : samplers_sequence) {
 | 
						|
        switch (s){
 | 
						|
            case 'k': APPLY(llama_sampler_init_top_k(top_k), &cur_p); break;
 | 
						|
            case 'f': GGML_ABORT("tail_free test not implemented");
 | 
						|
            case 'y': GGML_ABORT("typical test not implemented");
 | 
						|
            case 'p': APPLY(llama_sampler_init_top_p(top_p, 1), &cur_p); break;
 | 
						|
            case 'm': APPLY(llama_sampler_init_min_p(min_p, 1), &cur_p); break;
 | 
						|
            case 't': GGML_ABORT("temperature test not implemented");
 | 
						|
            default : GGML_ABORT("Unknown sampler");
 | 
						|
        }
 | 
						|
 | 
						|
        APPLY(llama_sampler_init_softmax(), &cur_p); // make sure tokens are sorted for tests
 | 
						|
 | 
						|
        const int size = cur_p.size;
 | 
						|
 | 
						|
        if (s == 'k') {
 | 
						|
            const int expected_size = std::min(size, top_k);
 | 
						|
            min_token_id = std::max(min_token_id, (llama_token)(n_vocab - top_k));
 | 
						|
 | 
						|
            GGML_ASSERT(size == expected_size);
 | 
						|
            GGML_ASSERT(cur_p.data[0].id == max_token_id);
 | 
						|
            GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
 | 
						|
        } else if (s == 'p') {
 | 
						|
            const int softmax_divisor = n_vocab * (n_vocab-1) / 2 - min_token_id * (min_token_id-1) / 2;
 | 
						|
            const int softmax_numerator_target = ceilf(top_p * softmax_divisor);
 | 
						|
 | 
						|
                min_token_id  = n_vocab;
 | 
						|
            int expected_size = 0;
 | 
						|
            int cumsum        = 0;
 | 
						|
            do { // do-while because always at least one token is sampled
 | 
						|
                min_token_id--;
 | 
						|
                expected_size++;
 | 
						|
 | 
						|
                cumsum += min_token_id;
 | 
						|
            } while (cumsum < softmax_numerator_target);
 | 
						|
 | 
						|
            // token 0 has p == 0, need special consideration for cumsum because top_p immediately returns
 | 
						|
            if (min_token_id == 1) {
 | 
						|
                min_token_id--;
 | 
						|
                expected_size += 1;
 | 
						|
            }
 | 
						|
 | 
						|
            GGML_ASSERT(size == expected_size);
 | 
						|
            GGML_ASSERT(cur_p.data[0].id == max_token_id);
 | 
						|
            GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
 | 
						|
        } else if (s == 'm') {
 | 
						|
            int expected_size = ceilf((1.0f-min_p) * n_vocab);
 | 
						|
            expected_size = std::max(expected_size, 1);
 | 
						|
            expected_size = std::min(expected_size, size);
 | 
						|
 | 
						|
            min_token_id = floorf(min_p * n_vocab);
 | 
						|
            min_token_id = std::max(min_token_id, 1);
 | 
						|
            min_token_id = std::max(min_token_id, (llama_token)(n_vocab - size));
 | 
						|
            min_token_id = std::min(min_token_id, (llama_token)(n_vocab - 1));
 | 
						|
 | 
						|
            GGML_ASSERT(size == expected_size);
 | 
						|
            GGML_ASSERT(cur_p.data[0].id == max_token_id);
 | 
						|
            GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
 | 
						|
        } else {
 | 
						|
            GGML_ABORT("fatal error");
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    printf("Sampler queue %3s OK with n_vocab=%05zu top_k=%05d top_p=%f min_p=%f\n",
 | 
						|
           samplers_sequence.c_str(), n_vocab, top_k, top_p, min_p);
 | 
						|
}
 | 
						|
 | 
						|
static void bench(llama_sampler * cnstr, const char * cnstr_name, const std::vector<llama_token_data> & data, int n_iter) {
 | 
						|
    std::vector<llama_token_data> cur(data.size());
 | 
						|
    std::copy(data.begin(), data.end(), cur.begin());
 | 
						|
    llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
 | 
						|
    llama_sampler_apply(cnstr, &cur_p);
 | 
						|
    llama_sampler_reset(cnstr);
 | 
						|
    const int64_t t_start = ggml_time_us();
 | 
						|
    for (int i = 0; i < n_iter; i++) {
 | 
						|
        std::copy(data.begin(), data.end(), cur.begin());
 | 
						|
        llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
 | 
						|
        llama_sampler_apply(cnstr, &cur_p);
 | 
						|
        llama_sampler_reset(cnstr);
 | 
						|
    }
 | 
						|
    const int64_t t_end = ggml_time_us();
 | 
						|
    llama_sampler_free(cnstr);
 | 
						|
    printf("%-42s: %8.3f us/iter\n", cnstr_name, (t_end - t_start) / (float)n_iter);
 | 
						|
}
 | 
						|
 | 
						|
#define BENCH(__cnstr, __data, __n_iter) bench((__cnstr), #__cnstr, (__data), (__n_iter))
 | 
						|
 | 
						|
static void test_perf() {
 | 
						|
    const int n_vocab = 1 << 17;
 | 
						|
 | 
						|
    std::vector<llama_token_data> data;
 | 
						|
 | 
						|
    data.reserve(n_vocab);
 | 
						|
    for (int i = 0; i < n_vocab; i++) {
 | 
						|
        const float logit = 2.0f*((float)(rand())/RAND_MAX - 0.5f);
 | 
						|
        data.emplace_back(llama_token_data{i, logit, 0.0f});
 | 
						|
    }
 | 
						|
 | 
						|
    BENCH(llama_sampler_init_top_k    (40),      data, 32);
 | 
						|
    BENCH(llama_sampler_init_top_p    (0.8f, 1), data, 32);
 | 
						|
    BENCH(llama_sampler_init_min_p    (0.2f, 1), data, 32);
 | 
						|
    BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32);
 | 
						|
    BENCH(llama_sampler_init_typical  (0.5f, 1), data, 32);
 | 
						|
    BENCH(llama_sampler_init_softmax  (),        data, 32);
 | 
						|
}
 | 
						|
 | 
						|
int main(void) {
 | 
						|
    ggml_time_init();
 | 
						|
 | 
						|
    test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
 | 
						|
    test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
 | 
						|
    test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4);
 | 
						|
    test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0);
 | 
						|
 | 
						|
    test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
 | 
						|
    test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
 | 
						|
    test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f);
 | 
						|
    test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1);
 | 
						|
 | 
						|
    test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f);
 | 
						|
    test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f);
 | 
						|
    test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f},            0.26f);
 | 
						|
    test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f},            0.49f);
 | 
						|
    test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f},                       0.51f);
 | 
						|
    test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f},                       0.74f);
 | 
						|
    test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f},                                  0.76f);
 | 
						|
    test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f},                                  1.00f);
 | 
						|
 | 
						|
    test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);
 | 
						|
    test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f);
 | 
						|
    test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f);
 | 
						|
 | 
						|
    test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
 | 
						|
    test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
 | 
						|
 | 
						|
    test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0},   50.0f, 0.0f, 0.0f);
 | 
						|
    test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0},       50.0f, 0.0f, 0.0f);
 | 
						|
    test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
 | 
						|
 | 
						|
    test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0},             {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f);
 | 
						|
    test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2},       {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f);
 | 
						|
    test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f);
 | 
						|
 | 
						|
    test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f);
 | 
						|
    test_sampler_queue(10000, "k",     1, 1.0f, 1.0f);
 | 
						|
    test_sampler_queue(10000, "p", 10000, 1.0f, 1.0f);
 | 
						|
    test_sampler_queue(10000, "p", 10000, 0.0f, 1.0f);
 | 
						|
    test_sampler_queue(10000, "m", 10000, 1.0f, 1.0f);
 | 
						|
    test_sampler_queue(10000, "m", 10000, 1.0f, 1e-12);
 | 
						|
 | 
						|
    test_sampler_queue(10000, "k",   100, 1.0000f, 1.0f);
 | 
						|
    test_sampler_queue(10000, "p", 10000, 0.0002f, 1.0f);
 | 
						|
    test_sampler_queue(10000, "p", 10000, 0.8000f, 1.0f);
 | 
						|
    test_sampler_queue(10000, "m", 10000, 1.0000f, 9997.9f/9999.0f);
 | 
						|
    test_sampler_queue(10000, "m", 10000, 1.0000f, 0.1f);
 | 
						|
 | 
						|
    test_sampler_queue(10000, "kp", 100, 0.8f, 0.1f);
 | 
						|
    test_sampler_queue(10000, "km", 100, 0.8f, 0.1f);
 | 
						|
    test_sampler_queue(10000, "pk", 100, 0.8f, 0.1f);
 | 
						|
    test_sampler_queue(10000, "pm", 100, 0.8f, 0.1f);
 | 
						|
    test_sampler_queue(10000, "mk", 100, 0.8f, 0.1f);
 | 
						|
    test_sampler_queue(10000, "mp", 100, 0.8f, 9997.9f/9999.0f);
 | 
						|
    test_sampler_queue(10000, "mp", 100, 0.8f, 0.1f);
 | 
						|
 | 
						|
    test_sampler_queue(10000, "kpm", 100, 0.8f, 0.1f);
 | 
						|
    test_sampler_queue(10000, "kmp", 100, 0.8f, 0.1f);
 | 
						|
    test_sampler_queue(10000, "pkm", 100, 0.8f, 0.1f);
 | 
						|
    test_sampler_queue(10000, "pmk", 100, 0.8f, 0.1f);
 | 
						|
    test_sampler_queue(10000, "mkp", 100, 0.8f, 0.1f);
 | 
						|
    test_sampler_queue(10000, "mpk", 100, 0.8f, 0.1f);
 | 
						|
 | 
						|
    printf("OK\n");
 | 
						|
 | 
						|
    test_perf();
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |