mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 5656d10599
			
		
	
	5656d10599
	
	
	
		
			
			* MPI support, first cut * fix warnings, update README * fixes * wrap includes * PR comments * Update CMakeLists.txt * Add GH workflow, fix test * Add info to README * mpi : trying to move more MPI stuff into ggml-mpi (WIP) (#2099) * mpi : add names for layer inputs + prep ggml_mpi_graph_compute() * mpi : move all MPI logic into ggml-mpi Not tested yet * mpi : various fixes - communication now works but results are wrong * mpi : fix output tensor after MPI compute (still not working) * mpi : fix inference * mpi : minor * Add OpenMPI to GH action * [mpi] continue-on-error: true * mpi : fix after master merge * [mpi] Link MPI C++ libraries to fix OpenMPI * tests : fix new llama_backend API * [mpi] use MPI_INT32_T * mpi : factor out recv / send in functions and reuse * mpi : extend API to allow usage with outer backends (e.g. Metal) --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			182 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			182 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef _GNU_SOURCE
 | |
| #define _GNU_SOURCE
 | |
| #endif
 | |
| 
 | |
| #include "common.h"
 | |
| #include "llama.h"
 | |
| #include "build-info.h"
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cinttypes>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <ctime>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
| #include <signal.h>
 | |
| #include <unistd.h>
 | |
| #elif defined (_WIN32)
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #define NOMINMAX
 | |
| #include <windows.h>
 | |
| #include <signal.h>
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| int main(int argc, char ** argv)
 | |
| {
 | |
|     gpt_params params;
 | |
| 
 | |
|     //---------------------------------
 | |
|     // Print help :
 | |
|     //---------------------------------
 | |
| 
 | |
|     if ( argc == 1 || argv[1][0] == '-' )
 | |
|     {
 | |
|         printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] );
 | |
|         return 1 ;
 | |
|     }
 | |
| 
 | |
|     //---------------------------------
 | |
|     // Load parameters :
 | |
|     //---------------------------------
 | |
| 
 | |
|     if ( argc >= 2 )
 | |
|     {
 | |
|         params.model = argv[1];
 | |
|     }
 | |
| 
 | |
|     if ( argc >= 3 )
 | |
|     {
 | |
|         params.prompt = argv[2];
 | |
|     }
 | |
| 
 | |
|     if ( params.prompt.empty() )
 | |
|     {
 | |
|         params.prompt = "Hello my name is";
 | |
|     }
 | |
| 
 | |
|     //---------------------------------
 | |
|     // Init LLM :
 | |
|     //---------------------------------
 | |
| 
 | |
|     llama_backend_init(params.numa);
 | |
| 
 | |
|     llama_model * model;
 | |
|     llama_context * ctx;
 | |
| 
 | |
|     std::tie(model, ctx) = llama_init_from_gpt_params( params );
 | |
| 
 | |
|     if ( model == NULL )
 | |
|     {
 | |
|         fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     //---------------------------------
 | |
|     // Tokenize the prompt :
 | |
|     //---------------------------------
 | |
| 
 | |
|     std::vector<llama_token> tokens_list;
 | |
|     tokens_list = ::llama_tokenize( ctx , params.prompt , true );
 | |
| 
 | |
|     const int max_context_size     = llama_n_ctx( ctx );
 | |
|     const int max_tokens_list_size = max_context_size - 4 ;
 | |
| 
 | |
|     if ( (int)tokens_list.size() > max_tokens_list_size )
 | |
|     {
 | |
|         fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
 | |
|              __func__ , (int)tokens_list.size() , max_tokens_list_size );
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     fprintf( stderr, "\n\n" );
 | |
| 
 | |
|     // Print the tokens from the prompt :
 | |
| 
 | |
|     for( auto id : tokens_list )
 | |
|     {
 | |
|         printf( "%s" , llama_token_to_str( ctx , id ) );
 | |
|     }
 | |
| 
 | |
|     fflush(stdout);
 | |
| 
 | |
| 
 | |
|     //---------------------------------
 | |
|     // Main prediction loop :
 | |
|     //---------------------------------
 | |
| 
 | |
|     // The LLM keeps a contextual cache memory of previous token evaluation.
 | |
|     // Usually, once this cache is full, it is required to recompute a compressed context based on previous
 | |
|     // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
 | |
|     // example, we will just stop the loop once this cache is full or once an end of stream is detected.
 | |
| 
 | |
|     while ( llama_get_kv_cache_token_count( ctx ) < max_context_size )
 | |
|     {
 | |
|         //---------------------------------
 | |
|         // Evaluate the tokens :
 | |
|         //---------------------------------
 | |
| 
 | |
|         if ( llama_eval( ctx , tokens_list.data() , tokens_list.size() , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
 | |
|         {
 | |
|             fprintf( stderr,  "%s : failed to eval\n" , __func__ );
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         tokens_list.clear();
 | |
| 
 | |
|         //---------------------------------
 | |
|         // Select the best prediction :
 | |
|         //---------------------------------
 | |
| 
 | |
|         llama_token new_token_id = 0;
 | |
| 
 | |
|         auto logits  = llama_get_logits( ctx );
 | |
|         auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens)
 | |
| 
 | |
|         std::vector<llama_token_data> candidates;
 | |
|         candidates.reserve( n_vocab );
 | |
| 
 | |
|         for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ )
 | |
|         {
 | |
|             candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } );
 | |
|         }
 | |
| 
 | |
|         llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
| 
 | |
|         // Select it using the "Greedy sampling" method :
 | |
|         new_token_id = llama_sample_token_greedy( ctx , &candidates_p );
 | |
| 
 | |
| 
 | |
|         // is it an end of stream ?
 | |
|         if ( new_token_id == llama_token_eos() )
 | |
|         {
 | |
|             fprintf(stderr, " [end of text]\n");
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // Print the new token :
 | |
|         printf( "%s" , llama_token_to_str( ctx , new_token_id ) );
 | |
|         fflush( stdout );
 | |
| 
 | |
|         // Push this new token for next evaluation :
 | |
|         tokens_list.push_back( new_token_id );
 | |
| 
 | |
|     } // wend of main loop
 | |
| 
 | |
|     llama_free( ctx );
 | |
|     llama_free_model( model );
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| // EOF
 |