mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* cmdline option for custom amount of model parts (--n_parts N) * Update main.cpp --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			108 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			108 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Various helper functions and utilities
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <string>
 | 
						|
#include <map>
 | 
						|
#include <vector>
 | 
						|
#include <random>
 | 
						|
#include <thread>
 | 
						|
 | 
						|
//
 | 
						|
// CLI argument parsing
 | 
						|
//
 | 
						|
 | 
						|
struct gpt_params {
 | 
						|
    int32_t seed          = -1;  // RNG seed
 | 
						|
    int32_t n_threads     = std::min(4, (int32_t) std::thread::hardware_concurrency());
 | 
						|
    int32_t n_predict     = 128; // new tokens to predict
 | 
						|
    int32_t repeat_last_n = 64;  // last n tokens to penalize
 | 
						|
    int32_t n_parts       = -1;  // amount of model parts (-1 = determine from model dimensions)
 | 
						|
    int32_t n_ctx         = 512; //context size
 | 
						|
 | 
						|
    // sampling parameters
 | 
						|
    int32_t top_k = 40;
 | 
						|
    float   top_p = 0.95f;
 | 
						|
    float   temp  = 0.80f;
 | 
						|
    float   repeat_penalty  = 1.10f;
 | 
						|
 | 
						|
    int32_t n_batch = 8; // batch size for prompt processing
 | 
						|
 | 
						|
    std::string model  = "models/lamma-7B/ggml-model.bin"; // model path
 | 
						|
    std::string prompt = "";
 | 
						|
 | 
						|
    std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
 | 
						|
 | 
						|
    bool memory_f16        = false; // use f16 instead of f32 for memory kv
 | 
						|
    bool random_prompt     = false; // do not randomize prompt if none provided
 | 
						|
    bool use_color         = false; // use color to distinguish generations and inputs
 | 
						|
    bool interactive       = false; // interactive mode
 | 
						|
    bool interactive_start = false; // reverse prompt immediately
 | 
						|
    bool instruct          = false; // instruction mode (used for Alpaca models)
 | 
						|
    bool ignore_eos        = false; // do not stop generating after eos
 | 
						|
};
 | 
						|
 | 
						|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
 | 
						|
 | 
						|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
 | 
						|
 | 
						|
std::string gpt_random_prompt(std::mt19937 & rng);
 | 
						|
 | 
						|
//
 | 
						|
// Model file parsing
 | 
						|
//
 | 
						|
 | 
						|
#define FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
 | 
						|
#define FILE_MAGIC 0x67676d66 // 'ggmf' in hex
 | 
						|
#define FILE_VERSION 1
 | 
						|
 | 
						|
//
 | 
						|
// Vocab utils
 | 
						|
//
 | 
						|
 | 
						|
struct llama_vocab {
 | 
						|
    using id    = int32_t;
 | 
						|
    using token = std::string;
 | 
						|
 | 
						|
    std::map<token, id> token_to_id;
 | 
						|
    std::map<id, token> id_to_token;
 | 
						|
    std::map<id, float> score;
 | 
						|
};
 | 
						|
 | 
						|
void replace(std::string & str, const std::string & needle, const std::string & replacement);
 | 
						|
 | 
						|
// poor-man's JSON parsing
 | 
						|
std::map<std::string, int32_t> json_parse(const std::string & fname);
 | 
						|
 | 
						|
// TODO: temporary until #77 is merged, need this now for some tokenizer tests
 | 
						|
bool llama_vocab_load(const std::string & fname, llama_vocab & vocab);
 | 
						|
 | 
						|
// TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
 | 
						|
// ref: https://github.com/google/sentencepiece
 | 
						|
std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos);
 | 
						|
 | 
						|
// sample next token given probabilities for each embedding
 | 
						|
//
 | 
						|
//   - consider only the top K tokens
 | 
						|
//   - from them, consider only the top tokens with cumulative probability > P
 | 
						|
//
 | 
						|
llama_vocab::id llama_sample_top_p_top_k(
 | 
						|
        const llama_vocab & vocab,
 | 
						|
        const float * logits,
 | 
						|
        std::vector<llama_vocab::id> & last_n_tokens,
 | 
						|
        double repeat_penalty,
 | 
						|
        int top_k,
 | 
						|
        double top_p,
 | 
						|
        double temp,
 | 
						|
        std::mt19937 & rng);
 | 
						|
 | 
						|
// filer to top K tokens from list of logits
 | 
						|
void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k);
 | 
						|
 | 
						|
//
 | 
						|
// Quantization
 | 
						|
//
 | 
						|
 | 
						|
size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
 | 
						|
size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);
 |