mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 3071c0a5f2
			
		
	
	3071c0a5f2
	
	
	
		
			
			* init * rename * add run android for termux in readme * add android readme * add instructions in readme * change name in readme * Update README.md * fixed line * add result in readme * random pos_embed * add positions index * change for ollama * change for ollama * better pos_embed in clip * support ollama * updata cmakelist * updata cmakelist * rename wrapper * clear code * replace and organize code * add link * sync master * fix warnings * fix warnings * fix bug in bicubic resize when need resize iamge smaller * receive review comments and modify * receive review comments and modify * put all code into llava dir * fix quality problem in pr code * change n_layer * add space in "-1" * imitate reshape bug of python code * fix bug in clip * fix issues for merging * fix llama-minicpmv-cli in cmake file * change pr readme * fix code review * remove in line 33 directory in the /cmakelists.txt (not in example, in the main dir * fix cmakefile * add warn * fix KEY_HAS_MINICPMV_PROJ * remove load_image_size into clip_ctx * remove the extern "C", MINICPMV_API * fix uhd code for review comment * delete minicpmv-wrapper in pr * remove uhd_image_embed * Modify 2 notes * clip : style changes * del common.h in clip * fix Type-Check error * fix Type-Check error * fix Type-Check error * fix Type-Check error * fix makefile error * fix ubuntu-make error * try fix clip * try fix 1 --------- Co-authored-by: Hongji Zhu <fireyoucan@gmail.com> Co-authored-by: harvestingmoon <leewenyeong@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			383 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			383 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import os
 | |
| import json
 | |
| import re
 | |
| 
 | |
| import torch
 | |
| import numpy as np
 | |
| from gguf import *
 | |
| from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig
 | |
| 
 | |
| TEXT = "clip.text"
 | |
| VISION = "clip.vision"
 | |
| 
 | |
| 
 | |
| def add_key_str(raw_key: str, arch: str) -> str:
 | |
|     return raw_key.format(arch=arch)
 | |
| 
 | |
| 
 | |
| def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool:
 | |
|     if name in (
 | |
|         "logit_scale",
 | |
|         "text_model.embeddings.position_ids",
 | |
|         "vision_model.embeddings.position_ids",
 | |
|     ):
 | |
|         return True
 | |
| 
 | |
|     if has_minicpmv and name in ["visual_projection.weight"]:
 | |
|         return True
 | |
| 
 | |
|     if name.startswith("v") and not has_vision:
 | |
|         return True
 | |
| 
 | |
|     if name.startswith("t") and not has_text:
 | |
|         return True
 | |
| 
 | |
|     return False
 | |
| 
 | |
| 
 | |
| def get_tensor_name(name: str) -> str:
 | |
|     if "projection" in name:
 | |
|         return name
 | |
|     if "mm_projector" in name:
 | |
|         name = name.replace("model.mm_projector", "mm")
 | |
|         name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
 | |
|         name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
 | |
|         return name
 | |
| 
 | |
|     return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
 | |
| 
 | |
| 
 | |
| def bytes_to_unicode():
 | |
|     """
 | |
|     Returns list of utf-8 byte and a corresponding list of unicode strings.
 | |
|     The reversible bpe codes work on unicode strings.
 | |
|     This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
 | |
|     When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
 | |
|     This is a significant percentage of your normal, say, 32K bpe vocab.
 | |
|     To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
 | |
|     And avoids mapping to whitespace/control characters the bpe code barfs on.
 | |
|     """
 | |
|     bs = (
 | |
|         list(range(ord("!"), ord("~") + 1))
 | |
|         + list(range(ord("¡"), ord("¬") + 1))
 | |
|         + list(range(ord("®"), ord("ÿ") + 1))
 | |
|     )
 | |
|     cs = bs[:]
 | |
|     n = 0
 | |
|     for b in range(2**8):
 | |
|         if b not in bs:
 | |
|             bs.append(b)
 | |
|             cs.append(2**8 + n)
 | |
|             n += 1
 | |
|     cs = [chr(n) for n in cs]
 | |
|     return dict(zip(bs, cs))
 | |
| 
 | |
| 
 | |
| ap = argparse.ArgumentParser()
 | |
| ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
 | |
| ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
 | |
| ap.add_argument("--text-only", action="store_true", required=False,
 | |
|                 help="Save a text-only model. It can't be used to encode images")
 | |
| ap.add_argument("--vision-only", action="store_true", required=False,
 | |
|                 help="Save a vision-only model. It can't be used to encode texts")
 | |
| ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
 | |
|                 help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
 | |
| ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
 | |
|                 help="The clip model is from openclip (for ViT-SO400M type))")
 | |
| ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.")
 | |
| ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
 | |
| ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
 | |
| # Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
 | |
| # Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
 | |
| default_image_mean = [0.48145466, 0.4578275, 0.40821073]
 | |
| default_image_std = [0.26862954, 0.26130258, 0.27577711]
 | |
| ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
 | |
| ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
 | |
| 
 | |
| # with proper
 | |
| args = ap.parse_args()
 | |
| 
 | |
| 
 | |
| if args.text_only and args.vision_only:
 | |
|     print("--text-only and --image-only arguments cannot be specified at the same time.")
 | |
|     exit(1)
 | |
| 
 | |
| if args.use_f32:
 | |
|     print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
 | |
| 
 | |
| # output in the same directory as the model if output_dir is None
 | |
| dir_model = args.model_dir
 | |
| 
 | |
| if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
 | |
|     vocab = None
 | |
|     tokens = None
 | |
| else:
 | |
|     with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
 | |
|         vocab = json.load(f)
 | |
|         tokens = [key for key in vocab]
 | |
| 
 | |
| # possible data types
 | |
| #   ftype == 0 -> float32
 | |
| #   ftype == 1 -> float16
 | |
| #
 | |
| # map from ftype to string
 | |
| ftype_str = ["f32", "f16"]
 | |
| 
 | |
| ftype = 1
 | |
| if args.use_f32:
 | |
|     ftype = 0
 | |
| 
 | |
| # if args.clip_model_is_vision or args.clip_model_is_openclip:
 | |
| #     model = CLIPVisionModel.from_pretrained(dir_model)
 | |
| #     processor = None
 | |
| # else:
 | |
| #     model = CLIPModel.from_pretrained(dir_model)
 | |
| #     processor = CLIPProcessor.from_pretrained(dir_model)
 | |
| 
 | |
| default_vision_config = {
 | |
|         "hidden_size": 1152,
 | |
|         "image_size": 980,
 | |
|         "intermediate_size": 4304,
 | |
|         "model_type": "idefics2",
 | |
|         "num_attention_heads": 16,
 | |
|         "num_hidden_layers": 27,
 | |
|         "patch_size": 14,
 | |
|     }
 | |
| vision_config = Idefics2VisionConfig(**default_vision_config)
 | |
| model = Idefics2VisionTransformer(vision_config)
 | |
| 
 | |
| processor = None
 | |
| # if model.attn_pool is not None:
 | |
| #     model.attn_pool = torch.nn.Identity()
 | |
| 
 | |
| # model.blocks = model.blocks[:-1]
 | |
| model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip")))
 | |
| 
 | |
| fname_middle = None
 | |
| has_text_encoder = True
 | |
| has_vision_encoder = True
 | |
| has_minicpmv_projector = False
 | |
| if args.text_only:
 | |
|     fname_middle = "text-"
 | |
|     has_vision_encoder = False
 | |
| elif args.minicpmv_projector is not None:
 | |
|     fname_middle = "mmproj-"
 | |
|     has_text_encoder = False
 | |
|     has_minicpmv_projector = True
 | |
| elif args.vision_only:
 | |
|     fname_middle = "vision-"
 | |
|     has_text_encoder = False
 | |
| else:
 | |
|     fname_middle = ""
 | |
| 
 | |
| output_dir = args.output_dir if args.output_dir is not None else dir_model
 | |
| os.makedirs(output_dir, exist_ok=True)
 | |
| output_prefix = os.path.basename(output_dir).replace("ggml_", "")
 | |
| fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
 | |
| fout = GGUFWriter(path=fname_out, arch="clip")
 | |
| 
 | |
| fout.add_bool("clip.has_text_encoder", has_text_encoder)
 | |
| fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
 | |
| fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector)
 | |
| fout.add_file_type(ftype)
 | |
| if args.text_only:
 | |
|     fout.add_description("text-only CLIP model")
 | |
| elif args.vision_only and not has_minicpmv_projector:
 | |
|     fout.add_description("vision-only CLIP model")
 | |
| elif has_minicpmv_projector:
 | |
|     fout.add_description("image encoder for MiniCPM-V")
 | |
|     # add projector type
 | |
|     fout.add_string("clip.projector_type", "resampler")
 | |
| else:
 | |
|     fout.add_description("two-tower CLIP model")
 | |
| 
 | |
| if has_vision_encoder:
 | |
|     # vision_model hparams
 | |
|     fout.add_uint32("clip.vision.image_size", 448)
 | |
|     fout.add_uint32("clip.vision.patch_size", 14)
 | |
|     fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), 1152)
 | |
|     fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), 4304)
 | |
|     fout.add_uint32("clip.vision.projection_dim", 0)
 | |
|     fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16)
 | |
|     fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
 | |
|     block_count = 26
 | |
|     fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count)
 | |
| 
 | |
|     if processor is not None:
 | |
|         image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
 | |
|         image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
 | |
|     else:
 | |
|         image_mean = args.image_mean if args.image_mean is not None else default_image_mean
 | |
|         image_std = args.image_std if args.image_std is not None else default_image_std
 | |
|     fout.add_array("clip.vision.image_mean", image_mean)
 | |
|     fout.add_array("clip.vision.image_std", image_std)
 | |
| 
 | |
| use_gelu = True
 | |
| fout.add_bool("clip.use_gelu", use_gelu)
 | |
| 
 | |
| def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
 | |
|     """
 | |
|     embed_dim: output dimension for each position
 | |
|     pos: a list of positions to be encoded: size (M,)
 | |
|     out: (M, D)
 | |
|     """
 | |
|     assert embed_dim % 2 == 0
 | |
|     omega = np.arange(embed_dim // 2, dtype=np.float32)
 | |
|     omega /= embed_dim / 2.
 | |
|     omega = 1. / 10000 ** omega  # (D/2,)
 | |
| 
 | |
|     pos = pos.reshape(-1)  # (M,)
 | |
|     out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product
 | |
| 
 | |
|     emb_sin = np.sin(out)  # (M, D/2)
 | |
|     emb_cos = np.cos(out)  # (M, D/2)
 | |
| 
 | |
|     emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
 | |
|     return emb
 | |
| 
 | |
| def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
 | |
|     assert embed_dim % 2 == 0
 | |
| 
 | |
|     # use half of dimensions to encode grid_h
 | |
|     emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
 | |
|     emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)
 | |
| 
 | |
|     emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
 | |
|     return emb
 | |
| 
 | |
| 
 | |
| # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
 | |
| def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
 | |
|     """
 | |
|     grid_size: int of the grid height and width
 | |
|     return:
 | |
|     pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
 | |
|     """
 | |
|     if isinstance(grid_size, int):
 | |
|         grid_h_size, grid_w_size = grid_size, grid_size
 | |
|     else:
 | |
|         grid_h_size, grid_w_size = grid_size[0], grid_size[1]
 | |
| 
 | |
|     grid_h = np.arange(grid_h_size, dtype=np.float32)
 | |
|     grid_w = np.arange(grid_w_size, dtype=np.float32)
 | |
|     grid = np.meshgrid(grid_w, grid_h)  # here w goes first
 | |
|     grid = np.stack(grid, axis=0)
 | |
| 
 | |
|     grid = grid.reshape([2, 1, grid_h_size, grid_w_size])
 | |
|     pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
 | |
|     if cls_token:
 | |
|         pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
 | |
|     return pos_embed
 | |
| 
 | |
| def _replace_name_resampler(s, v):
 | |
|     if re.match("resampler.pos_embed", s):
 | |
|         return {
 | |
|             s: v,
 | |
|             re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
 | |
|         }
 | |
|     if re.match("resampler.proj", s):
 | |
|         return {
 | |
|             re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
 | |
|             re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(),
 | |
|         }
 | |
|     if re.match("resampler.attn.in_proj_.*", s):
 | |
|         return {
 | |
|             re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0],
 | |
|             re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1],
 | |
|             re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2],
 | |
|         }
 | |
|     return {s: v}
 | |
| 
 | |
| if has_minicpmv_projector:
 | |
|     projector = torch.load(args.minicpmv_projector)
 | |
|     new_state_dict = {}
 | |
|     for k, v in projector.items():
 | |
|         kvs = _replace_name_resampler(k, v)
 | |
|         for nk, nv in kvs.items():
 | |
|             new_state_dict[nk] = nv
 | |
|     projector = new_state_dict
 | |
|     ftype_cur = 0
 | |
|     for name, data in projector.items():
 | |
|         name = get_tensor_name(name)
 | |
|         data = data.squeeze().numpy()
 | |
| 
 | |
|         n_dims = len(data.shape)
 | |
|         if ftype == 1:
 | |
|             if name[-7:] == ".weight" and n_dims == 2:
 | |
|                 print("  Converting to float16")
 | |
|                 data = data.astype(np.float16)
 | |
|                 ftype_cur = 1
 | |
|             else:
 | |
|                 print("  Converting to float32")
 | |
|                 data = data.astype(np.float32)
 | |
|                 ftype_cur = 0
 | |
|         else:
 | |
|             if data.dtype != np.float32:
 | |
|                 print("  Converting to float32")
 | |
|                 data = data.astype(np.float32)
 | |
|                 ftype_cur = 0
 | |
| 
 | |
|         fout.add_tensor(name, data)
 | |
|         print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
 | |
| 
 | |
|     print("Projector tensors added\n")
 | |
| 
 | |
| def _replace_name(s, v):
 | |
|     s = "vision_model." + s
 | |
|     if re.match("vision_model.embeddings.position_embedding", s):
 | |
|         v = v.unsqueeze(0)
 | |
|         return {s: v}
 | |
| 
 | |
|     return {s: v}
 | |
| 
 | |
| state_dict = model.state_dict()
 | |
| new_state_dict = {}
 | |
| for k, v in state_dict.items():
 | |
|     kvs = _replace_name(k, v)
 | |
|     for nk, nv in kvs.items():
 | |
|         new_state_dict[nk] = nv
 | |
| state_dict = new_state_dict
 | |
| for name, data in state_dict.items():
 | |
|     if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector):
 | |
|         # we don't need this
 | |
|         print(f"skipping parameter: {name}")
 | |
|         continue
 | |
| 
 | |
|     name = get_tensor_name(name)
 | |
|     data = data.squeeze().numpy()
 | |
| 
 | |
|     n_dims = len(data.shape)
 | |
| 
 | |
|     # ftype == 0 -> float32, ftype == 1 -> float16
 | |
|     ftype_cur = 0
 | |
|     if n_dims == 4:
 | |
|         print(f"tensor {name} is always saved in f16")
 | |
|         data = data.astype(np.float16)
 | |
|         ftype_cur = 1
 | |
|     elif ftype == 1:
 | |
|         if name[-7:] == ".weight" and n_dims == 2:
 | |
|             print("  Converting to float16")
 | |
|             data = data.astype(np.float16)
 | |
|             ftype_cur = 1
 | |
|         else:
 | |
|             print("  Converting to float32")
 | |
|             data = data.astype(np.float32)
 | |
|             ftype_cur = 0
 | |
|     else:
 | |
|         if data.dtype != np.float32:
 | |
|             print("  Converting to float32")
 | |
|             data = data.astype(np.float32)
 | |
|             ftype_cur = 0
 | |
| 
 | |
|     print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
 | |
|     fout.add_tensor(name, data)
 | |
| 
 | |
| 
 | |
| fout.write_header_to_file()
 | |
| fout.write_kv_data_to_file()
 | |
| fout.write_tensors_to_file()
 | |
| fout.close()
 | |
| 
 | |
| print("Done. Output file: " + fname_out)
 |