mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 4ddd199f6f
			
		
	
	4ddd199f6f
	
	
	
		
			
			* Allow locally downloaded models for QwenVL * Define model_path * rm trailing space --------- Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
		
			
				
	
	
		
			166 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			166 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| from typing import Dict
 | |
| 
 | |
| import torch
 | |
| import numpy as np
 | |
| from gguf import *
 | |
| from transformers import (
 | |
|     Qwen2VLForConditionalGeneration,
 | |
|     Qwen2VLProcessor,
 | |
|     AutoProcessor,
 | |
|     Qwen2VLConfig
 | |
| )
 | |
| 
 | |
| 
 | |
| VISION = "clip.vision"
 | |
| 
 | |
| 
 | |
| def k(raw_key: str, arch: str) -> str:
 | |
|     return raw_key.format(arch=arch)
 | |
| 
 | |
| 
 | |
| def to_gguf_name(name: str) -> str:
 | |
|     og = name
 | |
|     name = name.replace("text_model", "t").replace("vision_model", "v")
 | |
|     name = name.replace("blocks", "blk").replace("embeddings.", "")
 | |
|     name = name.replace("attn.", "attn_")
 | |
|     name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.")
 | |
|     # name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln")
 | |
|     name = name.replace("norm1", "ln1").replace("norm2", "ln2")
 | |
|     name = name.replace("merger.mlp", 'mm')
 | |
|     print(f"[to_gguf_name] {og} --> {name}")
 | |
|     return name
 | |
| 
 | |
| 
 | |
| def find_vision_tensors(qwen2vl, dtype) -> Dict[str, np.ndarray]:
 | |
|     vision_model = qwen2vl.visual
 | |
|     tensor_map = {}
 | |
|     for name, ten in vision_model.state_dict().items():
 | |
|         ten = ten.numpy()
 | |
|         if 'qkv' in name:
 | |
|             if ten.ndim == 2: # weight
 | |
|                 c3, _ = ten.shape
 | |
|             else:             # bias
 | |
|                 c3 = ten.shape[0]
 | |
|             assert c3 % 3 == 0
 | |
|             c = c3 // 3
 | |
|             wq = ten[:c]
 | |
|             wk = ten[c: c * 2]
 | |
|             wv = ten[c * 2:]
 | |
|             tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq
 | |
|             tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk
 | |
|             tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv
 | |
|         elif 'merger' in name:
 | |
|             if name.endswith("ln_q.weight"):
 | |
|                 tensor_map['v.post_ln.weight'] = ten
 | |
|             elif name.endswith("ln_q.bias"):
 | |
|                 tensor_map['v.post_ln.bias'] = ten
 | |
|             else:
 | |
|                 # "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias"
 | |
|                 tensor_map[to_gguf_name(name)] = ten
 | |
|         elif 'patch_embed.proj.weight' in name:
 | |
|             # NOTE: split Conv3D into Conv2Ds
 | |
|             c1, c2, kt, kh, kw = ten.shape
 | |
|             assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
 | |
|             tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...]
 | |
|             tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...]
 | |
|         else:
 | |
|             tensor_map[to_gguf_name(f"vision_model.{name}")] = ten
 | |
| 
 | |
|     for new_name, ten in tensor_map.items():
 | |
|         if ten.ndim <= 1 or new_name.endswith("_norm.weight"):
 | |
|             tensor_map[new_name] = ten.astype(np.float32)
 | |
|         else:
 | |
|             tensor_map[new_name] = ten.astype(dtype)
 | |
|     tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32)  # dummy tensor, just here as a placeholder
 | |
|     return tensor_map
 | |
| 
 | |
| 
 | |
| def main(args):
 | |
|     if args.data_type == 'fp32':
 | |
|         dtype = torch.float32
 | |
|         np_dtype = np.float32
 | |
|         ftype = 0
 | |
|     elif args.data_type == 'fp16':
 | |
|         dtype = torch.float32
 | |
|         np_dtype = np.float16
 | |
|         ftype = 1
 | |
|     else:
 | |
|         raise ValueError()
 | |
| 
 | |
|     local_model = False
 | |
|     model_path = ""
 | |
|     model_name = args.model_name
 | |
|     print("model_name: ", model_name)
 | |
|     qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained(
 | |
|         model_name, torch_dtype=dtype, device_map="cpu"
 | |
|     )
 | |
|     cfg: Qwen2VLConfig = qwen2vl.config  # type: ignore[reportAssignmentType]
 | |
|     vcfg = cfg.vision_config
 | |
| 
 | |
|     if os.path.isdir(model_name):
 | |
|         local_model = True
 | |
|         if model_name.endswith(os.sep):
 | |
|             model_name = model_name[:-1]
 | |
|         model_path = model_name
 | |
|         model_name = os.path.basename(model_name)
 | |
|     fname_out = f"{model_name.replace('/', '-').lower()}-vision.gguf"
 | |
| 
 | |
|     fout = GGUFWriter(path=fname_out, arch="clip")
 | |
|     fout.add_description("image encoder for Qwen2VL")
 | |
| 
 | |
|     fout.add_file_type(ftype)
 | |
|     fout.add_bool("clip.has_text_encoder", False)
 | |
|     fout.add_bool("clip.has_vision_encoder", True)
 | |
|     fout.add_bool("clip.has_qwen2vl_merger", True)
 | |
|     fout.add_string("clip.projector_type", "qwen2vl_merger")
 | |
| 
 | |
|     print(cfg.vision_config)
 | |
|     if 'silu' in cfg.vision_config.hidden_act.lower():
 | |
|         fout.add_bool("clip.use_silu", True)
 | |
|         fout.add_bool("clip.use_gelu", False)
 | |
|     elif 'gelu' in cfg.vision_config.hidden_act.lower():
 | |
|         fout.add_bool("clip.use_silu", False)
 | |
|         fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower())
 | |
|     else:
 | |
|         raise ValueError()
 | |
| 
 | |
|     tensor_map = find_vision_tensors(qwen2vl, np_dtype)
 | |
|     for name, data in tensor_map.items():
 | |
|         fout.add_tensor(name, data)
 | |
| 
 | |
|     fout.add_uint32("clip.vision.patch_size", vcfg.patch_size)
 | |
|     fout.add_uint32("clip.vision.image_size", 14 * 40)  # some reasonable size that is divable by (14*2)
 | |
|     fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim)
 | |
|     fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size)
 | |
|     fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), vcfg.num_heads)
 | |
|     fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
 | |
|     fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), vcfg.depth)
 | |
|     fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 0)  # not sure what this does, put 0 here as a placeholder
 | |
|     fout.add_name(model_name)
 | |
|     """
 | |
|     HACK: Since vision rope related parameter aren't stored in the `Qwen2VLConfig,
 | |
|             it will be hardcoded in the `clip_image_build_graph` from `clip.cpp`.
 | |
|     """
 | |
| 
 | |
|     if local_model:
 | |
|         processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path)
 | |
|     else:
 | |
|         processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_name)
 | |
|     fout.add_array("clip.vision.image_mean", processor.image_processor.image_mean) # type: ignore[reportAttributeAccessIssue]
 | |
|     fout.add_array("clip.vision.image_std", processor.image_processor.image_std) # type: ignore[reportAttributeAccessIssue]
 | |
| 
 | |
|     fout.write_header_to_file()
 | |
|     fout.write_kv_data_to_file()
 | |
|     fout.write_tensors_to_file()
 | |
|     fout.close()
 | |
|     print("save model as: ", fname_out)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("model_name", nargs='?', default="Qwen/Qwen2-VL-2B-Instruct")
 | |
|     parser.add_argument("--data_type", nargs='?', choices=['fp32', 'fp16'], default="fp32")
 | |
|     args = parser.parse_args()
 | |
|     main(args)
 |