mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 08a0c02060
			
		
	
	08a0c02060
	
	
	
		
			
			* ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			104 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			104 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| #include "argsort.cuh"
 | |
| 
 | |
| template<typename T>
 | |
| static inline __device__ void ggml_cuda_swap(T & a, T & b) {
 | |
|     T tmp = a;
 | |
|     a = b;
 | |
|     b = tmp;
 | |
| }
 | |
| 
 | |
| template<ggml_sort_order order>
 | |
| static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols, int ncols_pad) {
 | |
|     // bitonic sort
 | |
|     int col = threadIdx.x;
 | |
|     int row = blockIdx.y;
 | |
| 
 | |
|     if (col >= ncols_pad) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const float * x_row = x + row * ncols;
 | |
|     extern __shared__ int dst_row[];
 | |
| 
 | |
|     // initialize indices
 | |
|     dst_row[col] = col;
 | |
| 
 | |
|     __syncthreads();
 | |
| 
 | |
|     for (int k = 2; k <= ncols_pad; k *= 2) {
 | |
|         for (int j = k / 2; j > 0; j /= 2) {
 | |
|             int ixj = col ^ j;
 | |
|             if (ixj > col) {
 | |
|                 if ((col & k) == 0) {
 | |
|                     if (dst_row[col] >= ncols ||
 | |
|                         (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
 | |
|                             x_row[dst_row[col]] > x_row[dst_row[ixj]] :
 | |
|                             x_row[dst_row[col]] < x_row[dst_row[ixj]]))
 | |
|                     ) {
 | |
|                         ggml_cuda_swap(dst_row[col], dst_row[ixj]);
 | |
|                     }
 | |
|                 } else {
 | |
|                     if (dst_row[ixj] >= ncols ||
 | |
|                         (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
 | |
|                             x_row[dst_row[col]] < x_row[dst_row[ixj]] :
 | |
|                             x_row[dst_row[col]] > x_row[dst_row[ixj]]))
 | |
|                     ) {
 | |
|                         ggml_cuda_swap(dst_row[col], dst_row[ixj]);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             __syncthreads();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // copy the result to dst without the padding
 | |
|     if (col < ncols) {
 | |
|         dst[row * ncols + col] = dst_row[col];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int next_power_of_2(int x) {
 | |
|     int n = 1;
 | |
|     while (n < x) {
 | |
|         n *= 2;
 | |
|     }
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
 | |
|     // bitonic sort requires ncols to be power of 2
 | |
|     const int ncols_pad = next_power_of_2(ncols);
 | |
| 
 | |
|     const dim3 block_dims(ncols_pad, 1, 1);
 | |
|     const dim3 block_nums(1, nrows, 1);
 | |
|     const size_t shared_mem = ncols_pad * sizeof(int);
 | |
| 
 | |
|     GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);
 | |
| 
 | |
|     if (order == GGML_SORT_ORDER_ASC) {
 | |
|         k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
 | |
|     } else if (order == GGML_SORT_ORDER_DESC) {
 | |
|         k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | |
|     const ggml_tensor * src0 = dst->src[0];
 | |
|     const float * src0_d = (const float *)src0->data;
 | |
|     float * dst_d = (float *)dst->data;
 | |
|     cudaStream_t stream = ctx.stream();
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_I32);
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | |
| 
 | |
|     const int64_t ncols = src0->ne[0];
 | |
|     const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|     enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
 | |
| 
 | |
|     argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
 | |
| }
 |