mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
570 lines
23 KiB
C++
570 lines
23 KiB
C++
// SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliates <open-source-office@arm.com>
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
#include <arm_neon.h>
|
|
#include <assert.h>
|
|
#include <atomic>
|
|
#include <cfloat>
|
|
#include <stdexcept>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#if defined(__linux__)
|
|
#include <asm/hwcap.h>
|
|
#include <sys/auxv.h>
|
|
#elif defined(__APPLE__)
|
|
#include <string_view>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/types.h>
|
|
#elif defined(_WIN32)
|
|
#include <windows.h>
|
|
#include <excpt.h>
|
|
#endif
|
|
|
|
#include "kleidiai.h"
|
|
|
|
#include "ggml-cpu.h"
|
|
#include "ggml-impl.h"
|
|
#include "ggml-backend-impl.h"
|
|
#include "ggml-threading.h"
|
|
#include "traits.h"
|
|
|
|
#include "kernels.h"
|
|
|
|
#include "kai_common.h"
|
|
|
|
#define GGML_COMMON_DECL_CPP
|
|
#include "ggml-common.h"
|
|
|
|
struct ggml_kleidiai_context {
|
|
cpu_feature features;
|
|
ggml_kleidiai_kernels * kernels;
|
|
} static ctx = { CPU_FEATURE_NONE, NULL };
|
|
|
|
static const char* cpu_feature_to_string(cpu_feature f) {
|
|
switch (f) {
|
|
case CPU_FEATURE_NONE: return "NONE";
|
|
case CPU_FEATURE_DOTPROD: return "DOTPROD";
|
|
case CPU_FEATURE_I8MM: return "I8MM";
|
|
case CPU_FEATURE_SVE: return "SVE";
|
|
case CPU_FEATURE_SME: return "SME";
|
|
default: return "UNKNOWN";
|
|
}
|
|
}
|
|
|
|
static void init_kleidiai_context(void) {
|
|
|
|
ggml_critical_section_start();
|
|
static bool initialized = false;
|
|
|
|
if (!initialized) {
|
|
initialized = true;
|
|
const char *env_var = getenv("GGML_KLEIDIAI_SME");
|
|
int sme_enabled = 0;
|
|
|
|
ctx.features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) |
|
|
(ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) |
|
|
(ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE);
|
|
|
|
if (env_var) {
|
|
sme_enabled = atoi(env_var);
|
|
}
|
|
|
|
if (sme_enabled != 0) {
|
|
ctx.features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE;
|
|
}
|
|
ctx.kernels = ggml_kleidiai_select_kernels_q4_0(ctx.features);
|
|
#ifndef NDEBUG
|
|
if (ctx.kernels) {
|
|
GGML_LOG_DEBUG("kleidiai: using kernel with CPU feature %s\n", cpu_feature_to_string(ctx.kernels->required_cpu));
|
|
}
|
|
#endif
|
|
}
|
|
ggml_critical_section_end();
|
|
}
|
|
|
|
static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) {
|
|
GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
|
|
return tensor->ne[dim];
|
|
}
|
|
|
|
template<typename Ret, typename Variant, typename... Args>
|
|
static Ret variant_call(const Variant & var, Args&&... args) {
|
|
return std::visit([&](auto&& func) -> Ret {
|
|
if constexpr (std::is_invocable_r_v<Ret, decltype(func), Args...>) {
|
|
return func(std::forward<Args>(args)...);
|
|
} else {
|
|
throw std::runtime_error("Invalid function type in variant_call");
|
|
}
|
|
}, var);
|
|
}
|
|
|
|
namespace ggml::cpu::kleidiai {
|
|
|
|
static size_t round_down(size_t x, size_t y) {
|
|
return y == 0 ? x : x - (x % y);
|
|
}
|
|
|
|
static void transpose_f32kxn_f16nxk(size_t n, size_t k, float * dst, const uint16_t * src, size_t rhs_stride) {
|
|
size_t src_stride = rhs_stride / sizeof(uint16_t);
|
|
size_t dst_stride = n;
|
|
|
|
for (size_t k_idx = 0; k_idx < k; ++k_idx) {
|
|
for (size_t n_idx = 0; n_idx < n; ++n_idx) {
|
|
uint16_t v = *(src + k_idx + n_idx * src_stride);
|
|
*(dst + n_idx + k_idx * dst_stride) = kai_cast_f32_f16(v);
|
|
}
|
|
}
|
|
}
|
|
|
|
class tensor_traits : public ggml::cpu::tensor_traits {
|
|
bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
|
|
if (op->op != GGML_OP_MUL_MAT) {
|
|
return false;
|
|
}
|
|
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op);
|
|
GGML_ASSERT(kernels);
|
|
bool is_gemv = op->src[1]->ne[1] == 1;
|
|
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
|
|
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
|
|
|
|
size_t k = op->src[0]->ne[0];
|
|
size_t n = op->src[0]->ne[1];
|
|
size_t m = op->src[1]->ne[1];
|
|
|
|
size_t mr = kernel->get_mr();
|
|
size_t kr = kernel->get_kr();
|
|
size_t sr = kernel->get_sr();
|
|
|
|
if (kernels->rhs_type == GGML_TYPE_Q4_0) {
|
|
size = variant_call<size_t>(lhs_info->packed_size, m, k, QK4_0, mr, kr, sr);
|
|
} else if (kernels->rhs_type == GGML_TYPE_F16) {
|
|
size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr) +
|
|
variant_call<size_t>(kernels->rhs_info.packed_size, n, k) +
|
|
k * n * sizeof(float) + n * sizeof(float);
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override {
|
|
if (dst->op == GGML_OP_MUL_MAT) {
|
|
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
|
|
return compute_forward_q4_0(params, dst);
|
|
} else if (dst->src[0]->type == GGML_TYPE_F16) {
|
|
return compute_forward_fp16(params, dst);
|
|
}
|
|
} else if (dst->op == GGML_OP_GET_ROWS) {
|
|
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
|
|
return compute_forward_get_rows(params, dst);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool compute_forward_fp16(ggml_compute_params * params, struct ggml_tensor * dst) {
|
|
static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT;
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
|
|
GGML_ASSERT(kernels);
|
|
|
|
bool is_gemv = src1->ne[1] == 1;
|
|
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
|
|
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
|
|
GGML_ASSERT(kernel);
|
|
|
|
const int nth = params->nth;
|
|
const int ith = params->ith;
|
|
|
|
const int64_t lhs_batch_size0 = ne12;
|
|
const int64_t rhs_batch_size0 = ne02;
|
|
const int64_t batch_size = rhs_batch_size0;
|
|
|
|
const int64_t r = lhs_batch_size0 / rhs_batch_size0;
|
|
|
|
const int64_t m = ne11 * r;
|
|
const int64_t n = ne01;
|
|
const int64_t k = ne00;
|
|
|
|
const size_t lhs_stride = src1->nb[1];
|
|
const size_t rhs_stride = src0->nb[1];
|
|
const size_t dst_stride = dst->nb[1];
|
|
|
|
const int64_t mr = static_cast<int64_t>(kernel->get_mr());
|
|
const int64_t nr = static_cast<int64_t>(kernel->get_nr());
|
|
const int64_t kr = static_cast<int64_t>(kernel->get_kr());
|
|
const int64_t sr = static_cast<int64_t>(kernel->get_sr());
|
|
|
|
const size_t lhs_packed_size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr);
|
|
const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, n, k);
|
|
const size_t kxn_size = k * n * sizeof(float);
|
|
const size_t bias_size = n * sizeof(float);
|
|
|
|
const size_t wsize_required = lhs_packed_size + rhs_packed_size + kxn_size + bias_size;
|
|
GGML_ASSERT(wsize_required <= params->wsize);
|
|
|
|
uint8_t * lhs_packed = static_cast<uint8_t *>(params->wdata);
|
|
uint8_t * rhs_packed = lhs_packed + lhs_packed_size;
|
|
uint8_t * rhs_kxn = rhs_packed + rhs_packed_size;
|
|
uint8_t * bias = rhs_kxn + kxn_size;
|
|
|
|
for (int64_t batch_idx = 0; batch_idx < batch_size; ++batch_idx) {
|
|
const uint8_t * lhs_batch = static_cast<const uint8_t *>(src1->data) + batch_idx * m * lhs_stride;
|
|
const uint8_t * rhs_batch = static_cast<const uint8_t *>(src0->data) + batch_idx * n * rhs_stride;
|
|
uint8_t * dst_batch = static_cast<uint8_t *>(dst->data) + batch_idx * m * dst_stride;
|
|
|
|
// LHS packing
|
|
{
|
|
const int64_t m_roundup_mr = kai_roundup(m, mr);
|
|
const int64_t num_threads = KAI_MIN(m_roundup_mr / mr, nth);
|
|
|
|
if (ith < num_threads) {
|
|
const int64_t num_m_per_thread0 = round_down(m_roundup_mr / num_threads, mr);
|
|
const int64_t num_m_per_threadN_1 = m - (num_threads - 1) * num_m_per_thread0;
|
|
|
|
const int64_t m_start = ith * num_m_per_thread0;
|
|
const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
|
|
|
|
const size_t lhs_offset = variant_call<size_t>(kernels->gemm.get_lhs_offset, m_start, lhs_stride);
|
|
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, mr, kr, sr);
|
|
|
|
const void * src_ptr = static_cast<const uint8_t *>(lhs_batch) + lhs_offset;
|
|
void * dst_ptr = static_cast<uint8_t *>(lhs_packed) + lhs_packed_offset;
|
|
|
|
variant_call<void>(lhs_info->pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
|
|
}
|
|
}
|
|
|
|
// RHS packing
|
|
if (first_to_arrive.test_and_set(std::memory_order_acquire) == false) {
|
|
// First thread to reach this point handles RHS packing
|
|
memset(bias, 0, n * sizeof(float));
|
|
transpose_f32kxn_f16nxk(n, k, reinterpret_cast<float *>(rhs_kxn),
|
|
reinterpret_cast<const uint16_t *>(rhs_batch), rhs_stride);
|
|
|
|
variant_call<void>(kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, n * sizeof(float),
|
|
rhs_kxn, bias, nullptr, rhs_packed, 0, nullptr);
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
first_to_arrive.clear(std::memory_order_release);
|
|
|
|
// Perform the matmul
|
|
{
|
|
const int64_t m_to_process = m;
|
|
const int64_t m_start = 0;
|
|
|
|
const int64_t n_step = static_cast<int64_t>(kernel->get_n_step());
|
|
int64_t num_threads = KAI_MIN(n / n_step, nth);
|
|
if (num_threads <= 0) {
|
|
num_threads = 1;
|
|
}
|
|
|
|
if (ith < num_threads) {
|
|
const int64_t num_n_per_thread0 = round_down(n / num_threads, n_step);
|
|
const int64_t num_n_per_threadN_1 = n - (num_threads - 1) * num_n_per_thread0;
|
|
|
|
const int64_t n_start = ith * num_n_per_thread0;
|
|
const int64_t n_to_process = (ith == num_threads - 1) ? num_n_per_threadN_1 : num_n_per_thread0;
|
|
|
|
const size_t lhs_packed_offset = variant_call<size_t>(kernel->get_lhs_offset, m_start, k);
|
|
const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k);
|
|
const size_t dst_offset = kernel->get_dst_offset(m_start, n_start, dst_stride);
|
|
|
|
const void * lhs_ptr = lhs_packed + lhs_packed_offset;
|
|
const void * rhs_ptr = rhs_packed + rhs_packed_offset;
|
|
float * dst_ptr = reinterpret_cast<float *>(dst_batch + dst_offset);
|
|
|
|
variant_call<void>(kernel->run_kernel, m_to_process, n_to_process, k, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
|
|
}
|
|
}
|
|
|
|
if (batch_idx != batch_size - 1) {
|
|
// This barrier is necessary when the batch size is larger than 1. While processing a batch,
|
|
// the work data buffer (params->wdata) is used as temporary storage which means that only
|
|
// a single batch can be processed at any given time. No barrier is needed for the last
|
|
// batch since GGML inserts a barrier between the execution of every operator.
|
|
ggml_barrier(params->threadpool);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool compute_forward_q4_0(struct ggml_compute_params * params, struct ggml_tensor * dst) {
|
|
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_Q4_0);
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
|
|
GGML_ASSERT(kernels);
|
|
|
|
bool is_gemv = src1->ne[1] == 1;
|
|
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
|
|
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
|
|
|
|
GGML_ASSERT(kernel);
|
|
|
|
const int ith = params->ith;
|
|
const int nth_raw = params->nth;
|
|
const int nth = nth_raw > 0 ? nth_raw : 1;
|
|
|
|
const size_t k = ne00;
|
|
const size_t m = ne11;
|
|
const size_t n = ne01;
|
|
|
|
size_t mr = kernel->get_mr();
|
|
size_t kr = kernel->get_kr();
|
|
size_t sr = kernel->get_sr();
|
|
|
|
const uint8_t * lhs = static_cast<const uint8_t *>(src1->data);
|
|
uint8_t * lhs_packed = (uint8_t*)params->wdata;
|
|
const uint8_t * rhs_packed = static_cast<const uint8_t *>(src0->data);
|
|
|
|
const size_t n_step = kernel->get_n_step();
|
|
const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step);
|
|
const size_t n_start = ith * num_n_per_thread;
|
|
|
|
size_t n_to_process = 0;
|
|
if (n_start < n) {
|
|
n_to_process = num_n_per_thread;
|
|
if ((n_start + n_to_process) > n) {
|
|
n_to_process = n - n_start;
|
|
}
|
|
}
|
|
|
|
// Calculate number of columns to be processed per thread
|
|
const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth;
|
|
const size_t m_start = ith * num_m_per_thread;
|
|
size_t m_to_process = num_m_per_thread;
|
|
if ((m_start + m_to_process) > m) {
|
|
m_to_process = m - m_start;
|
|
}
|
|
|
|
if (m_start < m) {
|
|
// Transform LHS
|
|
const size_t src_stride = src1->nb[1];
|
|
const float * src_ptr = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1]));
|
|
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, QK4_0, mr, kr, sr);
|
|
void * lhs_packed_ptr = static_cast<void *>(lhs_packed + lhs_packed_offset);
|
|
|
|
variant_call<void>(lhs_info->pack_func, m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr);
|
|
}
|
|
|
|
ggml_barrier(params->threadpool);
|
|
|
|
// Perform the operation
|
|
const size_t dst_stride = dst->nb[1];
|
|
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, 0, k, QK4_0, mr, kr, sr);
|
|
const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k, QK4_0);
|
|
const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride);
|
|
const void * rhs_ptr = static_cast<const void *>(rhs_packed + rhs_packed_offset);
|
|
const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset);
|
|
float *dst_ptr = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset);
|
|
|
|
if (n_to_process > 0) {
|
|
variant_call<void>(kernel->run_kernel, m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride,
|
|
sizeof(float), -FLT_MAX, FLT_MAX);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool compute_forward_get_rows(struct ggml_compute_params * params, struct ggml_tensor * dst) {
|
|
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_Q4_0);
|
|
GGML_ASSERT(ctx.kernels);
|
|
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
rhs_packing_info * rhs_info = &ctx.kernels->rhs_info;
|
|
kernel_info * kernel = &ctx.kernels->gemm;
|
|
|
|
const int64_t nc = ne00;
|
|
const int64_t nr = ggml_nelements(src1);
|
|
|
|
const size_t block_rows = kernel->get_nr();
|
|
const size_t kr = kernel->get_kr();
|
|
|
|
const size_t num_bytes_multiplier = sizeof(uint16_t);
|
|
const size_t packed_stride = rhs_info->packed_stride(nc, block_rows, kr, QK4_0);
|
|
|
|
const int ith = params->ith;
|
|
const int nth = params->nth;
|
|
|
|
const int dr = (nr + nth - 1) / nth;
|
|
const int ir0 = dr * ith;
|
|
const int ir1 = MIN(ir0 + dr, nr);
|
|
|
|
for (int64_t i = ir0; i < ir1; ++i) {
|
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
|
int64_t row_idx = ((const int32_t *)src1->data)[i];
|
|
GGML_ASSERT(row_idx >= 0 && row_idx < src0->ne[1]);
|
|
|
|
float *out = (float *)((char *)dst->data + i * nb1);
|
|
rhs_info->to_float(src0->data, row_idx, nc, out, block_rows, packed_stride, kr, QK4_0, num_bytes_multiplier);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
public:
|
|
int repack(struct ggml_tensor * tensor, const void * data, size_t data_size) {
|
|
GGML_ASSERT(tensor->type == GGML_TYPE_Q4_0);
|
|
GGML_ASSERT(ctx.kernels);
|
|
const size_t n = tensor->ne[1];
|
|
const size_t k = tensor->ne[0];
|
|
size_t nr = ctx.kernels->gemm.get_nr();
|
|
size_t kr = ctx.kernels->gemm.get_kr();
|
|
size_t sr = ctx.kernels->gemm.get_sr();
|
|
|
|
struct kai_rhs_pack_qs4cxs1s0_param params;
|
|
params.lhs_zero_point = 1;
|
|
params.rhs_zero_point = 8;
|
|
variant_call<void>(ctx.kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, QK4_0, (const uint8_t*)data, nullptr, tensor->data, 0, ¶ms);
|
|
|
|
return 0;
|
|
GGML_UNUSED(data_size);
|
|
}
|
|
};
|
|
|
|
static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struct ggml_tensor *) {
|
|
static tensor_traits traits;
|
|
return &traits;
|
|
}
|
|
} // namespace ggml::cpu::kleidiai
|
|
|
|
static enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
|
tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor);
|
|
|
|
return GGML_STATUS_SUCCESS;
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_cpu_kleidiai_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
|
|
const void * data, size_t offset, size_t size) {
|
|
GGML_ASSERT(offset == 0);
|
|
GGML_ASSERT(size == ggml_nbytes(tensor));
|
|
|
|
auto tensor_traits = (ggml::cpu::kleidiai::tensor_traits *) tensor->extra;
|
|
auto OK = tensor_traits->repack(tensor, data, size);
|
|
|
|
GGML_ASSERT(OK == 0);
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static const char * ggml_backend_cpu_kleidiai_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
|
return "CPU_KLEIDIAI";
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
|
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
|
|
|
|
if (buffer == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
buffer->buft = buft;
|
|
buffer->iface.init_tensor = ggml_backend_cpu_kleidiai_buffer_init_tensor;
|
|
buffer->iface.set_tensor = ggml_backend_cpu_kleidiai_buffer_set_tensor;
|
|
buffer->iface.get_tensor = nullptr;
|
|
buffer->iface.cpy_tensor = nullptr;
|
|
return buffer;
|
|
}
|
|
|
|
static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
|
return TENSOR_ALIGNMENT;
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
|
|
GGML_ASSERT(tensor->type == GGML_TYPE_Q4_0);
|
|
GGML_ASSERT(ctx.kernels);
|
|
|
|
const size_t n = tensor->ne[1];
|
|
const size_t k = tensor->ne[0];
|
|
const size_t nr = ctx.kernels->gemm.get_nr();
|
|
const size_t kr = ctx.kernels->gemm.get_kr();
|
|
|
|
return variant_call<size_t>(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0);
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
namespace ggml::cpu::kleidiai {
|
|
class extra_buffer_type : ggml::cpu::extra_buffer_type {
|
|
bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
|
|
if ((op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_GET_ROWS) &&
|
|
op->src[0]->type == GGML_TYPE_Q4_0 &&
|
|
op->src[0]->buffer &&
|
|
(ggml_n_dims(op->src[0]) == 2) &&
|
|
op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels) {
|
|
if (op->op == GGML_OP_GET_ROWS && op->src[1]->ne[0] != 8) {
|
|
return false;
|
|
}
|
|
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
|
|
return false;
|
|
}
|
|
if ((op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_I32) &&
|
|
ggml_ne(op->src[1], 2) == 1 && ggml_ne(op->src[1], 3) == 1) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override {
|
|
if (op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_GET_ROWS) {
|
|
if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) {
|
|
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
|
|
}
|
|
else if (ggml_kleidiai_select_kernels(ctx.features, op) && op->src[1]->ne[1] > 1) {
|
|
if ((op->src[0]->nb[1] * op->src[0]->ne[1] != op->src[0]->nb[2]) ||
|
|
(op->src[1]->nb[1] * op->src[1]->ne[1] != op->src[1]->nb[2])) {
|
|
return nullptr;
|
|
}
|
|
|
|
return ggml::cpu::kleidiai::get_tensor_traits(NULL, NULL);
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
};
|
|
} // namespace ggml::cpu::kleidiai
|
|
|
|
ggml_backend_buffer_type_t ggml_backend_cpu_kleidiai_buffer_type(void) {
|
|
static ggml::cpu::kleidiai::extra_buffer_type ctx;
|
|
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_kleidiai = {
|
|
/* .iface = */ {
|
|
/* .get_name = */ ggml_backend_cpu_kleidiai_buffer_type_get_name,
|
|
/* .alloc_buffer = */ ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_cpu_kleidiai_buffer_type_get_alignment,
|
|
/* .get_max_size = */ nullptr, // defaults to SIZE_MAX
|
|
/* .get_alloc_size = */ ggml_backend_cpu_kleidiai_buffer_type_get_alloc_size,
|
|
/* .is_host = */ nullptr,
|
|
},
|
|
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
|
|
/* .context = */ &ctx,
|
|
};
|
|
|
|
init_kleidiai_context();
|
|
|
|
return &ggml_backend_cpu_buffer_type_kleidiai;
|
|
}
|