mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* cuda : fix rope pos data ggml-ci * ggml : drop mode & 1 == 1 support for ggml_rope ggml-ci * ggml : support freq_factors for f16 rope (CPU) ggml-ci * tests : add rope tests using frequency factors ggml-ci
		
			
				
	
	
		
			333 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
#include "rope.cuh"
 | 
						|
 | 
						|
struct rope_corr_dims {
 | 
						|
    float v[4];
 | 
						|
};
 | 
						|
 | 
						|
static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
 | 
						|
    const float y = (i0 / 2 - low) / max(0.001f, high - low);
 | 
						|
    return 1.0f - min(1.0f, max(0.0f, y));
 | 
						|
}
 | 
						|
 | 
						|
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
 | 
						|
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
 | 
						|
static __device__ void rope_yarn(
 | 
						|
    float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
 | 
						|
    float * cos_theta, float * sin_theta
 | 
						|
) {
 | 
						|
    // Get n-d rotational scaling corrected for extrapolation
 | 
						|
    float theta_interp = freq_scale * theta_extrap;
 | 
						|
    float theta = theta_interp;
 | 
						|
    if (ext_factor != 0.0f) {
 | 
						|
        float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
 | 
						|
        theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
 | 
						|
 | 
						|
        // Get n-d magnitude scaling corrected for interpolation
 | 
						|
        mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
 | 
						|
    }
 | 
						|
    *cos_theta = cosf(theta) * mscale;
 | 
						|
    *sin_theta = sinf(theta) * mscale;
 | 
						|
}
 | 
						|
 | 
						|
// rope == RoPE == rotary positional embedding
 | 
						|
template<typename T, bool has_pos>
 | 
						|
static __global__ void rope(
 | 
						|
    const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
 | 
						|
    float ext_factor, float attn_factor, rope_corr_dims corr_dims
 | 
						|
) {
 | 
						|
    const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
 | 
						|
 | 
						|
    if (col >= ncols) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    const int row = blockDim.x*blockIdx.x + threadIdx.x;
 | 
						|
    const int i = row*ncols + col;
 | 
						|
    const int i2 = row/p_delta_rows;
 | 
						|
 | 
						|
    const int p = has_pos ? pos[i2] : 0;
 | 
						|
    const float theta_base = p*powf(freq_base, -float(col)/ncols);
 | 
						|
 | 
						|
    float cos_theta, sin_theta;
 | 
						|
    rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
 | 
						|
 | 
						|
    const float x0 = x[i + 0];
 | 
						|
    const float x1 = x[i + 1];
 | 
						|
 | 
						|
    dst[i + 0] = x0*cos_theta - x1*sin_theta;
 | 
						|
    dst[i + 1] = x0*sin_theta + x1*cos_theta;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T, bool has_pos, bool has_freq_facs>
 | 
						|
static __global__ void rope_neox(
 | 
						|
    const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
 | 
						|
    float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims, const float * freq_factors
 | 
						|
) {
 | 
						|
    const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
 | 
						|
 | 
						|
    if (col >= ncols) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    const int row = blockDim.x*blockIdx.x + threadIdx.x;
 | 
						|
    const int ib = col / n_dims;
 | 
						|
    const int ic = col % n_dims;
 | 
						|
 | 
						|
    if (ib > 0) {
 | 
						|
        const int i = row*ncols + ib*n_dims + ic;
 | 
						|
 | 
						|
        dst[i + 0] = x[i + 0];
 | 
						|
        dst[i + 1] = x[i + 1];
 | 
						|
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    const int i  = row*ncols + ib*n_dims + ic/2;
 | 
						|
    const int i2 = row/p_delta_rows;
 | 
						|
 | 
						|
    float cur_rot = inv_ndims * ic - ib;
 | 
						|
 | 
						|
    const int p = has_pos ? pos[i2] : 0;
 | 
						|
    const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
 | 
						|
 | 
						|
    const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f)/freq_factor;
 | 
						|
 | 
						|
    float cos_theta, sin_theta;
 | 
						|
    rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
 | 
						|
 | 
						|
    const float x0 = x[i + 0];
 | 
						|
    const float x1 = x[i + n_dims/2];
 | 
						|
 | 
						|
    dst[i + 0]        = x0*cos_theta - x1*sin_theta;
 | 
						|
    dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
 | 
						|
}
 | 
						|
 | 
						|
static __global__ void rope_glm_f32(
 | 
						|
    const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
 | 
						|
    int n_ctx
 | 
						|
) {
 | 
						|
    const int col = blockDim.x*blockIdx.x + threadIdx.x;
 | 
						|
    const int half_n_dims = ncols/4;
 | 
						|
 | 
						|
    if (col >= half_n_dims) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    const int row = blockDim.y*blockIdx.y + threadIdx.y;
 | 
						|
    const int i = row*ncols + col;
 | 
						|
    const int i2 = row/p_delta_rows;
 | 
						|
 | 
						|
    const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
 | 
						|
     // FIXME: this is likely wrong
 | 
						|
    const int p = pos != nullptr ? pos[i2] : 0;
 | 
						|
 | 
						|
    const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale;
 | 
						|
    const float sin_theta = sinf(theta);
 | 
						|
    const float cos_theta = cosf(theta);
 | 
						|
 | 
						|
    const float x0 = x[i + 0];
 | 
						|
    const float x1 = x[i + half_n_dims];
 | 
						|
 | 
						|
    dst[i + 0]           = x0*cos_theta - x1*sin_theta;
 | 
						|
    dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
 | 
						|
 | 
						|
    const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale;
 | 
						|
    const float sin_block_theta = sinf(block_theta);
 | 
						|
    const float cos_block_theta = cosf(block_theta);
 | 
						|
 | 
						|
    const float x2 = x[i + half_n_dims * 2];
 | 
						|
    const float x3 = x[i + half_n_dims * 3];
 | 
						|
 | 
						|
    dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
 | 
						|
    dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static void rope_cuda(
 | 
						|
    const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
 | 
						|
    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
 | 
						|
) {
 | 
						|
    GGML_ASSERT(ncols % 2 == 0);
 | 
						|
    const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
 | 
						|
    const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
 | 
						|
    const dim3 block_nums(nrows, num_blocks_x, 1);
 | 
						|
    if (pos == nullptr) {
 | 
						|
        rope<T, false><<<block_nums, block_dims, 0, stream>>>(
 | 
						|
            x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
 | 
						|
        );
 | 
						|
    } else {
 | 
						|
        rope<T, true><<<block_nums, block_dims, 0, stream>>>(
 | 
						|
            x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
 | 
						|
        );
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static void rope_neox_cuda(
 | 
						|
    const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
 | 
						|
    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream
 | 
						|
) {
 | 
						|
    GGML_ASSERT(ncols % 2 == 0);
 | 
						|
    const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
 | 
						|
    const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
 | 
						|
    const dim3 block_nums(nrows, num_blocks_x, 1);
 | 
						|
 | 
						|
    const float theta_scale = powf(freq_base, -2.0f/n_dims);
 | 
						|
    const float inv_ndims = -1.0f / n_dims;
 | 
						|
 | 
						|
    if (pos == nullptr) {
 | 
						|
        if (freq_factors == nullptr) {
 | 
						|
            rope_neox<T, false, false><<<block_nums, block_dims, 0, stream>>>(
 | 
						|
                x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
 | 
						|
                theta_scale, inv_ndims, freq_factors
 | 
						|
                );
 | 
						|
        } else {
 | 
						|
            rope_neox<T, false, true><<<block_nums, block_dims, 0, stream>>>(
 | 
						|
                x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
 | 
						|
                theta_scale, inv_ndims, freq_factors
 | 
						|
                );
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        if (freq_factors == nullptr) {
 | 
						|
            rope_neox<T, true, false><<<block_nums, block_dims, 0, stream>>>(
 | 
						|
                x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
 | 
						|
                theta_scale, inv_ndims, freq_factors
 | 
						|
                );
 | 
						|
        } else {
 | 
						|
            rope_neox<T, true, true><<<block_nums, block_dims, 0, stream>>>(
 | 
						|
                x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
 | 
						|
                theta_scale, inv_ndims, freq_factors
 | 
						|
                );
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void rope_glm_f32_cuda(
 | 
						|
    const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
 | 
						|
    float freq_base, int n_ctx, cudaStream_t stream
 | 
						|
) {
 | 
						|
    GGML_ASSERT(ncols % 4 == 0);
 | 
						|
    const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
 | 
						|
    const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
 | 
						|
    const dim3 block_nums(num_blocks_x, nrows, 1);
 | 
						|
    rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
 | 
						|
}
 | 
						|
 | 
						|
static void rope_cuda_f16(
 | 
						|
    const half * x, half * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
 | 
						|
    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
 | 
						|
 | 
						|
    rope_cuda<half>(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
 | 
						|
}
 | 
						|
 | 
						|
static void rope_cuda_f32(
 | 
						|
    const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
 | 
						|
    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
 | 
						|
 | 
						|
    rope_cuda<float>(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
 | 
						|
}
 | 
						|
 | 
						|
static void rope_neox_cuda_f16(
 | 
						|
    const half * x, half * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
 | 
						|
    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
 | 
						|
 | 
						|
    rope_neox_cuda<half>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
 | 
						|
}
 | 
						|
 | 
						|
static void rope_neox_cuda_f32(
 | 
						|
    const float * x, float * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
 | 
						|
    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream
 | 
						|
) {
 | 
						|
 | 
						|
    rope_neox_cuda<float>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
 | 
						|
}
 | 
						|
 | 
						|
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const ggml_tensor * src1 = dst->src[1];
 | 
						|
    const ggml_tensor * src2 = dst->src[2];
 | 
						|
 | 
						|
    const float * src0_d = (const float *)src0->data;
 | 
						|
    const float * src1_d = (const float *)src1->data;
 | 
						|
 | 
						|
    float * dst_d = (float *)dst->data;
 | 
						|
    cudaStream_t stream = ctx.stream();
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | 
						|
    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | 
						|
    GGML_ASSERT(src0->type == dst->type);
 | 
						|
 | 
						|
    const int64_t ne00 = src0->ne[0];
 | 
						|
    const int64_t ne01 = src0->ne[1];
 | 
						|
    const int64_t nrows = ggml_nrows(src0);
 | 
						|
 | 
						|
    //const int n_past      = ((int32_t *) dst->op_params)[0];
 | 
						|
    const int n_dims      = ((int32_t *) dst->op_params)[1];
 | 
						|
    const int mode        = ((int32_t *) dst->op_params)[2];
 | 
						|
    const int n_ctx       = ((int32_t *) dst->op_params)[3];
 | 
						|
    const int n_orig_ctx  = ((int32_t *) dst->op_params)[4];
 | 
						|
 | 
						|
    // RoPE alteration for extended context
 | 
						|
    float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
 | 
						|
    memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
 | 
						|
    memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
 | 
						|
    memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
 | 
						|
    memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
 | 
						|
    memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
 | 
						|
    memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
 | 
						|
 | 
						|
    const float * freq_factors = nullptr;
 | 
						|
    const int32_t * pos = nullptr;
 | 
						|
 | 
						|
    const bool is_neox = mode & 2;
 | 
						|
    const bool is_glm  = mode & 4;
 | 
						|
 | 
						|
    pos = (const int32_t *) src1_d;
 | 
						|
 | 
						|
    if (is_neox) {
 | 
						|
        if (src2 != nullptr) {
 | 
						|
            freq_factors = (const float *) src2->data;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        GGML_ASSERT(src2 == nullptr && "TODO: freq_factors not implemented for !is_neox");
 | 
						|
    }
 | 
						|
 | 
						|
    rope_corr_dims corr_dims;
 | 
						|
    ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
 | 
						|
 | 
						|
    // compute
 | 
						|
    if (is_glm) {
 | 
						|
        GGML_ASSERT(false);
 | 
						|
        rope_glm_f32_cuda(src0_d, dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, stream);
 | 
						|
    } else if (is_neox) {
 | 
						|
        if (src0->type == GGML_TYPE_F32) {
 | 
						|
            rope_neox_cuda_f32(
 | 
						|
                (const float *)src0_d, (float *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
 | 
						|
                attn_factor, corr_dims, freq_factors, stream
 | 
						|
            );
 | 
						|
        } else if (src0->type == GGML_TYPE_F16) {
 | 
						|
            rope_neox_cuda_f16(
 | 
						|
                (const half *)src0_d, (half *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
 | 
						|
                attn_factor, corr_dims, freq_factors, stream
 | 
						|
            );
 | 
						|
        } else {
 | 
						|
            GGML_ASSERT(false);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        if (src0->type == GGML_TYPE_F32) {
 | 
						|
            rope_cuda_f32(
 | 
						|
                (const float *)src0_d, (float *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
 | 
						|
                attn_factor, corr_dims, stream
 | 
						|
            );
 | 
						|
        } else if (src0->type == GGML_TYPE_F16) {
 | 
						|
            rope_cuda_f16(
 | 
						|
                (const half *)src0_d, (half *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
 | 
						|
                attn_factor, corr_dims, stream
 | 
						|
            );
 | 
						|
        } else {
 | 
						|
            GGML_ASSERT(false);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 |