mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 9c67c2773d
			
		
	
	9c67c2773d
	
	
	
		
			
			* ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (#6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (#6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
		
			
				
	
	
		
			268 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			268 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| // mutates the input string
 | |
| static std::vector<int> parse_list(char * p) {
 | |
|     std::vector<int> ret;
 | |
| 
 | |
|     char * q = p;
 | |
| 
 | |
|     while (*p) {
 | |
|         if (*p == ',') {
 | |
|             *p = '\0';
 | |
|             ret.push_back(std::atoi(q));
 | |
|             q = p + 1;
 | |
|         }
 | |
| 
 | |
|         ++p;
 | |
|     }
 | |
| 
 | |
|     ret.push_back(std::atoi(q));
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (argc == 1 || argv[1][0] == '-') {
 | |
|         printf("usage: %s MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [FATTN] [IS_PP_SHARED] [NGL] <PP> <TG> <PL>\n" , argv[0]);
 | |
|         printf("  <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
 | |
|         printf("  example: %s ggml-model-f16.gguf 2048 2048 512 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
 | |
|         return 1 ;
 | |
|     }
 | |
| 
 | |
|     int n_kv_max     = 2048;
 | |
|     int n_batch      = 2048;
 | |
|     int n_ubatch     = 512;
 | |
|     bool flash_attn  = false;
 | |
|     int is_pp_shared = 0;
 | |
|     int n_gpu_layers = 0;
 | |
| 
 | |
|     std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, };
 | |
|     std::vector<int> n_tg = { 128, 256, };
 | |
|     std::vector<int> n_pl = { 1, 2, 4, 8, 16, 32, };
 | |
|     //std::vector<int> n_pl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, };
 | |
| 
 | |
|     if (argc >= 2) {
 | |
|         params.model = argv[1];
 | |
|     }
 | |
| 
 | |
|     if (argc >= 3) {
 | |
|         n_kv_max = std::atoi(argv[2]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 4) {
 | |
|         n_batch = std::atoi(argv[3]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 5) {
 | |
|         n_ubatch = std::atoi(argv[4]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 6) {
 | |
|         flash_attn = std::atoi(argv[5]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 7) {
 | |
|         is_pp_shared = std::atoi(argv[6]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 8) {
 | |
|         n_gpu_layers = std::atoi(argv[7]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 9) {
 | |
|         n_pp = parse_list(argv[8]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 10) {
 | |
|         n_tg = parse_list(argv[9]);
 | |
|     }
 | |
| 
 | |
|     if (argc >= 11) {
 | |
|         n_pl = parse_list(argv[10]);
 | |
|     }
 | |
| 
 | |
|     // init LLM
 | |
| 
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     // initialize the model
 | |
| 
 | |
|     llama_model_params model_params = llama_model_default_params();
 | |
| 
 | |
|     const std::vector<float> t_split(llama_max_devices(), 0.0f);
 | |
| 
 | |
|     model_params.n_gpu_layers = n_gpu_layers;
 | |
|     model_params.tensor_split = t_split.data();
 | |
| 
 | |
|     llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
 | |
| 
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr , "%s: error: unable to load model\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     llama_context_params ctx_params = llama_context_default_params();
 | |
| 
 | |
|     ctx_params.seed       = 1234;
 | |
|     ctx_params.n_ctx      = n_kv_max;
 | |
|     ctx_params.n_batch    = n_batch;
 | |
|     ctx_params.n_ubatch   = n_ubatch;
 | |
|     ctx_params.flash_attn = flash_attn;
 | |
| 
 | |
|     ctx_params.n_threads       = params.n_threads;
 | |
|     ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
 | |
| 
 | |
|     // ensure enough sequences are available
 | |
|     ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end());
 | |
| 
 | |
|     llama_context * ctx = llama_new_context_with_model(model, ctx_params);
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
 | |
| 
 | |
|     // decode in batches of ctx_params.n_batch tokens
 | |
|     auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
 | |
|         for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
 | |
|             const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
 | |
| 
 | |
|             llama_batch batch_view = {
 | |
|                 n_tokens,
 | |
|                 batch.token    + i,
 | |
|                 nullptr,
 | |
|                 batch.pos      + i,
 | |
|                 batch.n_seq_id + i,
 | |
|                 batch.seq_id   + i,
 | |
|                 batch.logits   + i,
 | |
|                 0, 0, 0, // unused
 | |
|             };
 | |
| 
 | |
|             const int ret = llama_decode(ctx, batch_view);
 | |
|             if (ret != 0) {
 | |
|                 LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             llama_synchronize(ctx);
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|     };
 | |
| 
 | |
|     // warm up
 | |
|     {
 | |
|         for (int i = 0; i < 16; ++i) {
 | |
|             llama_batch_add(batch, 0, i, { 0 }, false);
 | |
|         }
 | |
| 
 | |
|         if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
 | |
|             LOG_TEE("%s: llama_decode() failed\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     LOG_TEE("\n");
 | |
|     LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, n_batch, n_ubatch, flash_attn, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
 | |
|     LOG_TEE("\n");
 | |
| 
 | |
|     LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP",     "TG",     "B",    "N_KV",     "T_PP s",   "S_PP t/s", "T_TG s",   "S_TG t/s", "T s",      "S t/s");
 | |
|     LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
 | |
| 
 | |
|     for (        int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
 | |
|         for (    int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) {
 | |
|             for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) {
 | |
|                 const int pp = n_pp[i_pp];
 | |
|                 const int tg = n_tg[i_tg];
 | |
|                 const int pl = n_pl[i_pl];
 | |
| 
 | |
|                 const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg);
 | |
| 
 | |
|                 if (n_ctx_req > n_kv_max) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 llama_batch_clear(batch);
 | |
| 
 | |
|                 for (int i = 0; i < pp; ++i) {
 | |
|                     for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) {
 | |
|                         llama_batch_add(batch, 0, i, { j }, false);
 | |
|                     }
 | |
|                 }
 | |
|                 batch.logits[batch.n_tokens - 1] = true;
 | |
| 
 | |
|                 const auto t_pp_start = ggml_time_us();
 | |
| 
 | |
|                 llama_kv_cache_clear(ctx);
 | |
| 
 | |
|                 if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
 | |
|                     LOG_TEE("%s: llama_decode() failed\n", __func__);
 | |
|                     return 1;
 | |
|                 }
 | |
| 
 | |
|                 if (is_pp_shared) {
 | |
|                     for (int32_t i = 1; i < pl; ++i) {
 | |
|                         llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 const auto t_pp_end = ggml_time_us();
 | |
| 
 | |
|                 const auto t_tg_start = ggml_time_us();
 | |
| 
 | |
|                 for (int i = 0; i < tg; ++i) {
 | |
|                     llama_batch_clear(batch);
 | |
| 
 | |
|                     for (int j = 0; j < pl; ++j) {
 | |
|                         llama_batch_add(batch, 0, pp + i, { j }, true);
 | |
|                     }
 | |
| 
 | |
|                     if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
 | |
|                         LOG_TEE("%s: llama_decode() failed\n", __func__);
 | |
|                         return 1;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 const auto t_tg_end = ggml_time_us();
 | |
| 
 | |
|                 const int32_t n_kv = n_ctx_req;
 | |
| 
 | |
|                 const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
 | |
|                 const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
 | |
|                 const float t    = t_pp + t_tg;
 | |
| 
 | |
|                 const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp;
 | |
|                 const float speed_tg = pl*tg / t_tg;
 | |
|                 const float speed    = n_kv / t;
 | |
| 
 | |
|                 LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     llama_print_timings(ctx);
 | |
| 
 | |
|     llama_batch_free(batch);
 | |
| 
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 |