mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-02 09:12:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			78 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
#include "argsort.cuh"
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static inline __device__ void ggml_cuda_swap(T & a, T & b) {
 | 
						|
    T tmp = a;
 | 
						|
    a = b;
 | 
						|
    b = tmp;
 | 
						|
}
 | 
						|
 | 
						|
template<ggml_sort_order order>
 | 
						|
static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols) {
 | 
						|
    // bitonic sort
 | 
						|
    int col = threadIdx.x;
 | 
						|
    int row = blockIdx.y;
 | 
						|
 | 
						|
    if (col >= ncols) return;
 | 
						|
 | 
						|
    const float * x_row = x + row * ncols;
 | 
						|
    int * dst_row = dst + row * ncols;
 | 
						|
 | 
						|
    // initialize indices
 | 
						|
    if (col < ncols) {
 | 
						|
        dst_row[col] = col;
 | 
						|
    }
 | 
						|
    __syncthreads();
 | 
						|
 | 
						|
    for (int k = 2; k <= ncols; k *= 2) {
 | 
						|
        for (int j = k / 2; j > 0; j /= 2) {
 | 
						|
            int ixj = col ^ j;
 | 
						|
            if (ixj > col) {
 | 
						|
                if ((col & k) == 0) {
 | 
						|
                    if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
 | 
						|
                        ggml_cuda_swap(dst_row[col], dst_row[ixj]);
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
 | 
						|
                        ggml_cuda_swap(dst_row[col], dst_row[ixj]);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            __syncthreads();
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
 | 
						|
    // bitonic sort requires ncols to be power of 2
 | 
						|
    GGML_ASSERT((ncols & (ncols - 1)) == 0);
 | 
						|
 | 
						|
    const dim3 block_dims(ncols, 1, 1);
 | 
						|
    const dim3 block_nums(1, nrows, 1);
 | 
						|
    if (order == GGML_SORT_ORDER_ASC) {
 | 
						|
        k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
 | 
						|
    } else if (order == GGML_SORT_ORDER_DESC) {
 | 
						|
        k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
 | 
						|
    } else {
 | 
						|
        GGML_ASSERT(false);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const float * src0_d = (const float *)src0->data;
 | 
						|
    float * dst_d = (float *)dst->data;
 | 
						|
    cudaStream_t stream = ctx.stream();
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT( dst->type == GGML_TYPE_I32);
 | 
						|
    GGML_ASSERT(ggml_is_contiguous(src0));
 | 
						|
 | 
						|
    const int64_t ncols = src0->ne[0];
 | 
						|
    const int64_t nrows = ggml_nrows(src0);
 | 
						|
 | 
						|
    enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
 | 
						|
 | 
						|
    argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
 | 
						|
}
 |