mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 f66f582927
			
		
	
	f66f582927
	
	
	
		
			
			* llama : scatter llama.cpp into multiple modules (wip) * llama : control-vector -> adapter * llama : arch * llama : mmap ggml-ci * ci : remove BUILD_SHARED_LIBS=OFF ggml-ci * llama : arch (cont) ggml-ci * llama : chat ggml-ci * llama : model ggml-ci * llama : hparams ggml-ci * llama : adapter ggml-ci * examples : fix ggml-ci * rebase ggml-ci * minor * llama : kv cache ggml-ci * llama : impl ggml-ci * llama : batch ggml-ci * cont ggml-ci * llama : context ggml-ci * minor * llama : context (cont) ggml-ci * llama : model loader ggml-ci * common : update lora ggml-ci * llama : quant ggml-ci * llama : quant (cont) ggml-ci * minor [no ci]
llama.cpp/examples/imatrix
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enchance the quality of the quantized models. More information is available here: https://github.com/ggerganov/llama.cpp/pull/4861
Usage
./llama-imatrix \
    -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] [--verbosity 1] \
    [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \
    [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...]
Here -m with a model name and -f with a file containing training data (such as e.g. wiki.train.raw) are mandatory.
The parameters in square brackets are optional and have the following meaning:
- -o(or- --output-file) specifies the name of the file where the computed data will be stored. If missing- imatrix.datis used.
- --verbosityspecifies the verbosity level. If set to- 0, no output other than the perplexity of the processed chunks will be generated. If set to- 1, each time the results are saved a message is written to- stderr. If- >=2, a message is output each time data is collected for any tensor. Default verbosity level is- 1.
- --output-frequencyspecifies how often the so far computed result is saved to disk. Default is 10 (i.e., every 10 chunks)
- --save-frequencyspecifies how often to save a copy of the imatrix in a separate file. Default is 0 (i.e., never)
- --process-outputspecifies if data will be collected for the- output.weighttensor. My experience is that it is better to not utilize the importance matrix when quantizing- output.weight, so this is set to- falseby default.
For faster computation, make sure to use GPU offloading via the -ngl argument
Example
# generate importance matrix (imatrix.dat)
./llama-imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99
# use the imatrix to perform a Q4_K_M quantization
./llama-quantize --imatrix imatrix.dat ggml-model-f16.gguf ./ggml-model-q4_k_m.gguf q4_k_m