Files
llama.cpp/ggml/src/ggml-cuda/scale.cu
leejet 0a1b3982cd ggml: add ops for WAN video model (cuda && cpu) (#15669)
* add conv3d support

* add ggml_pad_ext for cpu & cuda backend

* cuda/cpu: add im2col_3d support

* cuda: make im2col a little faster

* fix cuda pad/scale/im2col3d

* make im2col_3d faster

* gguf: support loading tensors which n_dims > GGML_MAX_DIMS

* fix cuda get_rows

* avoid ggml_conv_3d conflict

* correct GGML_OP_COUNT assertion

* avoid build failure

* avoid build failure on MacOS

* cuda: remove unnecessary MIN define

* fix cpu im2col_3d

* adjust the code style

* cuda: use simpler loop in get_rows

* add test_im2col_3d to test-backend-ops

* test-backend-ops.cpp: remove trailing whitespace

* cpu: im2col_3d support non continuous src

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* fix test_im2col_3d

* remove unused variables

* cuda: get_rows: dfloat2 -> float2

* add test_pad_ext to test-backend-ops.cpp

* add gguf_init_from_file_ext impl

* Revert "gguf: support loading tensors which n_dims > GGML_MAX_DIMS"

This reverts commit d8377a0a37.

* Revert "add gguf_init_from_file_ext impl"

This reverts commit d9f1d13208.

* update ggml_backend_vk_device_supports_op

* fix ggml_backend_vk_device_supports_op

* update other backend supports op for ggml_pad_ext

* metal/opencl/sycl/vulkan: fix GGML_OP_PAD check in supports_op

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-09-04 10:38:49 +02:00

35 lines
1.4 KiB
Plaintext

#include "scale.cuh"
#define MAX_GRIDDIM_X 0x7FFFFFFF
static __global__ void scale_f32(const float * x, float * dst, const float scale, const float bias, const int64_t nelements) {
int64_t tid = (int64_t)blockIdx.x * (int64_t)blockDim.x + (int64_t)threadIdx.x;
int64_t stride = (int64_t)blockDim.x * (int64_t)gridDim.x;
for (int64_t i = tid; i < nelements; i += stride) {
dst[i] = scale * x[i] + bias;
}
}
static void scale_f32_cuda(const float * x, float * dst, const float scale, const float bias, const int64_t nelements, cudaStream_t stream) {
const int64_t num_blocks = (nelements + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
scale_f32<<<MIN(MAX_GRIDDIM_X, num_blocks), CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, bias, nelements);
}
void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
float scale;
float bias;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&bias, (float *) dst->op_params + 1, sizeof(float));
scale_f32_cuda(src0_d, dst_d, scale, bias, ggml_nelements(src0), stream);
}