mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-11-21 12:16:57 +00:00
92 lines
3.4 KiB
Plaintext
92 lines
3.4 KiB
Plaintext
#include "pad_reflect_1d.cuh"
|
|
|
|
static __global__ __launch_bounds__(CUDA_PAD_REFLECT_1D_BLOCK_SIZE, 1) void
|
|
pad_reflect_1d_kernel_f32(
|
|
const void * __restrict__ src0,
|
|
void * __restrict__ dst,
|
|
const int64_t ne0,
|
|
const int64_t ne00,
|
|
const uint3 ne01,
|
|
const int64_t ne02,
|
|
const int64_t ne03,
|
|
const int64_t nb00,
|
|
const int64_t nb01,
|
|
const int64_t nb02,
|
|
const int64_t nb03,
|
|
const int64_t nb0,
|
|
const int64_t nb1,
|
|
const int64_t nb2,
|
|
const int64_t nb3,
|
|
const int p0,
|
|
const int p1) {
|
|
const int64_t i3 = blockIdx.z;
|
|
const int64_t i2 = blockIdx.y;
|
|
|
|
const uint2 div_mod_packed = fast_div_modulo(blockIdx.x, ne01);
|
|
const int64_t tile1 = div_mod_packed.y; // i1
|
|
const int64_t tile0 = div_mod_packed.x; // nth i0 tile
|
|
const int64_t i1 = tile1;
|
|
const int64_t i0 = threadIdx.x + tile0 * blockDim.x;
|
|
|
|
// ne01.z is original value of unpacked ne01 (see init_fastdiv_values in common.cuh)
|
|
if (i0 >= ne0 || i1 >= ne01.z || i2 >= ne02 || i3 >= ne03) {
|
|
return;
|
|
}
|
|
|
|
const char * src0_ptr = (const char *) src0 + i3 * nb03 + i2 * nb02 + i1 * nb01;
|
|
char * dst_ptr = (char *) dst + i3 * nb3 + i2 * nb2 + i1 * nb1;
|
|
|
|
const int64_t rel_i0 = i0 - p0; // relative i0 in src0
|
|
int64_t src_idx;
|
|
|
|
if (rel_i0 < 0) {
|
|
// Left padding - reflect
|
|
src_idx = -rel_i0;
|
|
} else if (rel_i0 < ne00) {
|
|
// Middle - copy
|
|
src_idx = rel_i0;
|
|
} else {
|
|
// Right padding - reflect
|
|
src_idx = 2 * ne00 - 2 - rel_i0;
|
|
}
|
|
const float value = *(const float *) (src0_ptr + src_idx * nb00);
|
|
*(float *) (dst_ptr + i0 * nb0) = value;
|
|
|
|
GGML_UNUSED(p1);
|
|
}
|
|
|
|
void ggml_cuda_op_pad_reflect_1d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
|
|
const int32_t * opts = (const int32_t *) dst->op_params;
|
|
const int p0 = opts[0];
|
|
const int p1 = opts[1];
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const uint3 ne01_packed = init_fastdiv_values(ne01);
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
|
|
// sanity: padded length matches
|
|
GGML_ASSERT(ne0 == ne00 + p0 + p1);
|
|
|
|
constexpr int64_t bx = CUDA_PAD_REFLECT_1D_BLOCK_SIZE; // threads per block (x)
|
|
const int64_t tiles0 = (ne0 + bx - 1) / bx; // number of tiles along i0
|
|
// grid.x covers i1 and all tiles of i0: [ne01 * tiles0]
|
|
// grid.y covers i2: [ne02]
|
|
// grid.z covers i3: [ne03]
|
|
const dim3 grid_dims((unsigned) (ne01 * tiles0), (unsigned) ne02, (unsigned) ne03);
|
|
const dim3 block_dims((unsigned) bx, 1, 1);
|
|
|
|
pad_reflect_1d_kernel_f32<<<grid_dims, block_dims, 0, stream>>>(
|
|
src0->data, dst->data, ne0, ne00, ne01_packed, ne02, ne03, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
|
|
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], p0, p1);
|
|
}
|