mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* ggml : add ggml_flash_attn_ext API * ggml : fix GQA support in ggml_flash_attn_ext * ggml : online attention (CPU) * metal : initial implementation * metal : f16 precision * metal : reduce branches * metal : specialize for head size * wip : 8 rows per simd group * wip : 4 rows per simd group * wip : template for rows per warp * metal : parallelize across KV size * metal : parallel reduce across heads * metal : efficient flash_attn_f16 implementation * metal : avoid redundant loads of the attention * metal : scale and mask in matrix form * metal : fix comment * llama : avoid ggml_cast, use F32 query * metal : add parallel reduce version (disabled) * metal : move output into local memory + optimize - the result from each simdgroup now stays in the registers - significantly reduced SRAM usage - more efficient skipping of -INF blocks - avoid simdgroup barrier in hot loop - add comments * metal : add tests, fix scaling, support C > 32 * metal : improve precision * ggml : fix f16 mad * metal : minor * metal : support Q > 8 * tests : add ATTN tests * metal : disable buffer allocation logs * tests : more * metal : faster inner loop for C == 32 * metal : fix array initialization * tests : ifdef * ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext * ggml : fix ggml_soft_max mask requirement * cuda : fix soft_max to use correct mask size * cuda : add flash_attn kernel (wip) * metal : optimize softmax for C > 32 * metal : optimize softmax * tests : minor fix * cuda : avoid zeroing fragments * tests : update dims * cuda : fix __hisinf() result check * cuda : avoid warp_reduce for smax * cuda : use int instead of int64_t Noticeably improves performance (thanks to Johannes) * cuda : make loops use the same loop values Thanks Johannes again for the tip * cuda : unroll some of the loops * cuda : avoid __hisinf branches * cuda : use half2 in softmax * cuda : switch to 1 warp for bs > 16 * cuda : speed-up reduce part of the kernel * cuda : unroll Q*K^T loop * cuda : fix -INF block check * cuda : simplify softmax * cuda : fix matrix names * cuda : minor * llama : adapt to F16 KQ_pos * llama : adapt new models to F16 KQ_mask * ggml : fix F16 store (ARM NEON) * llama : fix type of KQ_mask and KQ_pos * ggml : fix CPU soft_max * tests : add hs=256 * cuda : fix build * metal : improve perf via smaller int registers * cuda : adapt soft_max to F16 mask and pos * CUDA: faster FlashAttention, kernel for bs == 1 * 16 cols for Phi-2 * no vec for hs, no hs==256 ncols==32 for Volta * adjust kernel selection logic * 4 warps, 256 stride for all D * no ncols == 64 * Multiple parallel blocks for batch size 1 * fix compile warnings * fix excessive KQ_b loads * fix cmake build * fix KV cache padding, NaN from INFINITY (#6438) * llama : flash_attn cparam + fix defrag * server: support flash_attn param * server: bench: enable flash_attn param * CUDA: refactor host code, dyn. par. blocks * fix flash_attn_vec_f16 race condition * flush softmax exp below threshold to 0 * store temp KQ in registers * Calculate KQ as FP32 if KQV has GGML_PREC_F32 * Add __hgt2_mask implementation for CUDA 11 * fix KQ FP32 precision fpr parallel_blocks > 1 * llama-bench : add -fa,--flash-attn arg * metal : add BS=1 kernel for flash attention (#6508) * metal : add BS=1 kernel for flash attention (wip) * metal : support more than 1 warps * metal : opts * metal : opt * metal : switch to parallel reduce * metal : reduce registers * metal : simplify * metal : initial FA vec kernel * metal : use F32 attention accumulators * batched-bench : add fattn arg * llama : simplify llama_build_kv_store ggml-ci * llama : adapt build_olmo to changes * ggml : fix arm fp16 store on windows * metal : clean-up * metal : clean-up kernel code * metal : minor * tests : remove benchmarks ggml-ci * ggml : fix avx512 const correctness ggml-ci * ggml : fix soft_max with bias on CPU ggml-ci * common : print --flash-attn in help * ggml : fix num dimensions in ggml_flash_attn_ext * llama : force disable flash attention for incompatible models * ggml : ggml_soft_max support F16/F32 mask/pos ggml-ci * cuda : uint -> uint32_t * cuda : "constexpr dim3" -> "const dim3" ggml-ci * cuda : try to fix __hgt2_mask ggml-ci * ggml : add TODO's for F16/F32 mask/pos support in other backends * llama : replace bool need_kq_pos with use_alibi * llama : prep ALiBi support for BERT models ggml-ci * llama : fix n_batch requirements ggml-ci * cont * server : add help for --flash-attn arg * llama : disable FA for AMD * tests : remove TMP_ATTN_BENCH ggml-ci * llama : support save/load state with FA enabled ggml-ci * ci : add CUDA save-load-state tests ggml-ci * llama : llama_kv_cache_clear zeroes data + fix save-load seq ggml-ci * llama : fix copy-paste errors, add TODO * llama : disallow incompatible states * llama : update llama_state_get_size after v_trans field * metal : remove tmp log * llama : add static reminder for llama_state_get_size * metal : fix max nsg ggml-ci * ci : fix arg order ggml-ci --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de> Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
		
			
				
	
	
		
			2014 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2014 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "ggml.h"
 | 
						|
#include "ggml-backend.h"
 | 
						|
#include "ggml-backend-impl.h"
 | 
						|
#include "ggml-kompute.h"
 | 
						|
 | 
						|
// These are generated at build time by cmake custom command
 | 
						|
#include "shaderop_scale.h"
 | 
						|
#include "shaderop_scale_8.h"
 | 
						|
#include "shaderop_add.h"
 | 
						|
#include "shaderop_addrow.h"
 | 
						|
#include "shaderop_mul.h"
 | 
						|
#include "shaderop_silu.h"
 | 
						|
#include "shaderop_relu.h"
 | 
						|
#include "shaderop_gelu.h"
 | 
						|
#include "shaderop_softmax.h"
 | 
						|
#include "shaderop_norm.h"
 | 
						|
#include "shaderop_rmsnorm.h"
 | 
						|
#include "shaderop_diagmask.h"
 | 
						|
#include "shaderop_mul_mat_f16.h"
 | 
						|
#include "shaderop_mul_mat_q8_0.h"
 | 
						|
#include "shaderop_mul_mat_q4_0.h"
 | 
						|
#include "shaderop_mul_mat_q4_1.h"
 | 
						|
#include "shaderop_mul_mat_q6_k.h"
 | 
						|
#include "shaderop_mul_mat_mat_f32.h"
 | 
						|
#include "shaderop_getrows_f16.h"
 | 
						|
#include "shaderop_getrows_q4_0.h"
 | 
						|
#include "shaderop_getrows_q4_1.h"
 | 
						|
#include "shaderop_getrows_q6_k.h"
 | 
						|
#include "shaderop_rope_f16.h"
 | 
						|
#include "shaderop_rope_f32.h"
 | 
						|
#include "shaderop_cpy_f16_f16.h"
 | 
						|
#include "shaderop_cpy_f16_f32.h"
 | 
						|
#include "shaderop_cpy_f32_f16.h"
 | 
						|
#include "shaderop_cpy_f32_f32.h"
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <array>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <cstdio>
 | 
						|
#include <cstring>
 | 
						|
#include <iostream>
 | 
						|
#include <memory>
 | 
						|
#include <stdexcept>
 | 
						|
#include <string>
 | 
						|
#include <unordered_map>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#include <kompute/Kompute.hpp>
 | 
						|
#include <vulkan/vulkan.hpp>
 | 
						|
 | 
						|
#ifdef __linux__
 | 
						|
#include <cstdlib> // for setenv
 | 
						|
#endif
 | 
						|
 | 
						|
#define QK4_0 32
 | 
						|
#define QR4_0 2
 | 
						|
#define QK4_1 32
 | 
						|
#define QK_NL 16
 | 
						|
 | 
						|
typedef ggml_fp16_t half;
 | 
						|
 | 
						|
static std::string ggml_kompute_format_name(int device) {
 | 
						|
    return "Kompute" + std::to_string(device);
 | 
						|
}
 | 
						|
 | 
						|
struct ggml_kompute_context {
 | 
						|
    int device;
 | 
						|
    std::string name;
 | 
						|
    std::shared_ptr<vk::DescriptorPool> pool;
 | 
						|
 | 
						|
    ggml_kompute_context(int device)
 | 
						|
        : device(device), name(ggml_kompute_format_name(device)) {}
 | 
						|
};
 | 
						|
 | 
						|
// FIXME: It would be good to consolidate the kompute manager and the kompute context into one object
 | 
						|
// and consolidate the init functions and simplify object lifetime management. As it currently stands,
 | 
						|
// we *have* to have the kompute manager no matter what for device discovery, but the kompute context
 | 
						|
// is only created when a device is set and vulkan is explicitly turned on.
 | 
						|
static ggml_kompute_context *s_kompute_context = nullptr;
 | 
						|
 | 
						|
class kompute_manager {
 | 
						|
    kp::Manager *s_mgr = nullptr;
 | 
						|
 | 
						|
public:
 | 
						|
    kp::Manager *operator()() {
 | 
						|
        if (s_mgr && !s_mgr->hasInstance()) {
 | 
						|
            destroy();
 | 
						|
        }
 | 
						|
        if (!s_mgr) {
 | 
						|
            s_mgr = new kp::Manager;
 | 
						|
        }
 | 
						|
        return s_mgr;
 | 
						|
    }
 | 
						|
 | 
						|
    void destroy() {
 | 
						|
        delete s_mgr;
 | 
						|
        s_mgr = nullptr;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
static kompute_manager komputeManager;
 | 
						|
 | 
						|
struct ggml_vk_memory {
 | 
						|
    void *data = nullptr;
 | 
						|
    size_t size = 0;
 | 
						|
    vk::DeviceMemory *primaryMemory = nullptr;
 | 
						|
    vk::Buffer *primaryBuffer = nullptr;
 | 
						|
    vk::DeviceMemory *stagingMemory = nullptr;
 | 
						|
    vk::Buffer *stagingBuffer = nullptr;
 | 
						|
};
 | 
						|
 | 
						|
#ifdef __linux__
 | 
						|
__attribute__((constructor))
 | 
						|
static void enable_sam() {
 | 
						|
    setenv("RADV_PERFTEST", "sam", false);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) {
 | 
						|
    vk::PhysicalDeviceFeatures availableFeatures;
 | 
						|
    physical_device.getFeatures(&availableFeatures);
 | 
						|
 | 
						|
    if (!availableFeatures.shaderInt16)
 | 
						|
        return false;
 | 
						|
 | 
						|
    vk::PhysicalDeviceVulkan11Features availableFeatures11;
 | 
						|
    vk::PhysicalDeviceVulkan12Features availableFeatures12;
 | 
						|
 | 
						|
    availableFeatures11.pNext = &availableFeatures12;
 | 
						|
    availableFeatures12.pNext = nullptr;
 | 
						|
 | 
						|
    vk::PhysicalDeviceFeatures2 features2;
 | 
						|
    features2.pNext = &availableFeatures11;
 | 
						|
 | 
						|
    physical_device.getFeatures2(&features2);
 | 
						|
 | 
						|
    if (!availableFeatures11.uniformAndStorageBuffer16BitAccess ||
 | 
						|
        !availableFeatures11.storageBuffer16BitAccess) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!availableFeatures12.storageBuffer8BitAccess ||
 | 
						|
        !availableFeatures12.uniformAndStorageBuffer8BitAccess ||
 | 
						|
        !availableFeatures12.shaderFloat16 ||
 | 
						|
        !availableFeatures12.shaderInt8) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
static const char * ggml_vk_getVendorName(uint32_t vendorID) {
 | 
						|
    switch (vendorID) {
 | 
						|
        case 0x10DE:
 | 
						|
            return "nvidia";
 | 
						|
        case 0x1002:
 | 
						|
            return "amd";
 | 
						|
        case 0x8086:
 | 
						|
            return "intel";
 | 
						|
        default:
 | 
						|
            return "unknown";
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) {
 | 
						|
    std::vector<ggml_vk_device> results;
 | 
						|
    if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance())
 | 
						|
        return results;
 | 
						|
 | 
						|
    std::vector<vk::PhysicalDevice> physical_devices;
 | 
						|
    try {
 | 
						|
        physical_devices = komputeManager()->listDevices();
 | 
						|
    } catch (vk::SystemError & err) {
 | 
						|
        std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n";
 | 
						|
        return results;
 | 
						|
    }
 | 
						|
 | 
						|
    uint32_t deviceCount = physical_devices.size();
 | 
						|
    if (deviceCount == 0)
 | 
						|
        return results;
 | 
						|
 | 
						|
    std::unordered_map<std::string, size_t> count_by_name;
 | 
						|
 | 
						|
    for (uint32_t i = 0; i < deviceCount; i++) {
 | 
						|
        const auto & physical_device = physical_devices[i];
 | 
						|
 | 
						|
        VkPhysicalDeviceProperties dev_props = physical_device.getProperties();
 | 
						|
        VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties();
 | 
						|
        const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion);
 | 
						|
        const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion);
 | 
						|
        if (major < 1 || minor < 2)
 | 
						|
            continue;
 | 
						|
 | 
						|
        if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device))
 | 
						|
            continue;
 | 
						|
 | 
						|
        size_t heapSize = 0;
 | 
						|
        for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) {
 | 
						|
            VkMemoryHeap heap = memoryProperties.memoryHeaps[j];
 | 
						|
            if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) {
 | 
						|
                heapSize = heap.size;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (heapSize < memoryRequired)
 | 
						|
            continue;
 | 
						|
 | 
						|
        auto ext_props = physical_device.enumerateDeviceExtensionProperties();
 | 
						|
        bool has_maintenance4 = false;
 | 
						|
 | 
						|
        // Check if maintenance4 is supported
 | 
						|
        for (const auto & properties : ext_props) {
 | 
						|
            if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
 | 
						|
                has_maintenance4 = true;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        vk::PhysicalDeviceSubgroupProperties subgroup_props;
 | 
						|
        vk::PhysicalDeviceProperties2 dev_props2;
 | 
						|
        vk::PhysicalDeviceMaintenance3Properties dev_props3;
 | 
						|
        vk::PhysicalDeviceMaintenance4Properties dev_props4;
 | 
						|
        dev_props2.pNext = &dev_props3;
 | 
						|
        dev_props3.pNext = &subgroup_props;
 | 
						|
        if (has_maintenance4) {
 | 
						|
            subgroup_props.pNext = &dev_props4;
 | 
						|
        }
 | 
						|
        physical_device.getProperties2(&dev_props2);
 | 
						|
 | 
						|
        if (subgroup_props.subgroupSize < 32)
 | 
						|
            continue;
 | 
						|
 | 
						|
        ggml_vk_device d;
 | 
						|
        d.index = i;
 | 
						|
        d.type = dev_props.deviceType;
 | 
						|
        d.heapSize = heapSize;
 | 
						|
        d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID));
 | 
						|
        d.subgroupSize = subgroup_props.subgroupSize;
 | 
						|
        d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment;
 | 
						|
 | 
						|
        if (has_maintenance4) {
 | 
						|
            d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize);
 | 
						|
        } else {
 | 
						|
            d.maxAlloc = dev_props3.maxMemoryAllocationSize;
 | 
						|
        }
 | 
						|
 | 
						|
        std::string name(dev_props.deviceName);
 | 
						|
        size_t n_idx = ++count_by_name[name];
 | 
						|
        if (n_idx > 1) {
 | 
						|
            name += " (" + std::to_string(n_idx) + ")";
 | 
						|
        }
 | 
						|
        d.name = strdup(name.c_str());
 | 
						|
 | 
						|
        results.push_back(d);
 | 
						|
    }
 | 
						|
 | 
						|
    std::stable_sort(results.begin(), results.end(),
 | 
						|
        [](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool {
 | 
						|
            if (lhs.type != rhs.type) {
 | 
						|
                if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true;
 | 
						|
                if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false;
 | 
						|
 | 
						|
                if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true;
 | 
						|
                if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false;
 | 
						|
            }
 | 
						|
            return lhs.heapSize < rhs.heapSize;
 | 
						|
        }
 | 
						|
    );
 | 
						|
 | 
						|
    return results;
 | 
						|
}
 | 
						|
 | 
						|
// public API returns a C-style array
 | 
						|
ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) {
 | 
						|
    auto devices = ggml_vk_available_devices_internal(memoryRequired);
 | 
						|
    *count = devices.size();
 | 
						|
    if (devices.empty()) {
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    size_t nbytes = sizeof (ggml_vk_device) * (devices.size());
 | 
						|
    auto * arr = static_cast<ggml_vk_device *>(malloc(nbytes));
 | 
						|
    memcpy(arr, devices.data(), nbytes);
 | 
						|
    return arr;
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) {
 | 
						|
    devices.erase(
 | 
						|
        std::remove_if(devices.begin(), devices.end(),
 | 
						|
            [&targetVendor](const ggml_vk_device& device) {
 | 
						|
                return device.vendor != targetVendor;
 | 
						|
            }),
 | 
						|
        devices.end()
 | 
						|
    );
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) {
 | 
						|
    devices.erase(
 | 
						|
        std::remove_if(devices.begin(), devices.end(),
 | 
						|
            [&targetName](const ggml_vk_device& device) {
 | 
						|
                return device.name != targetName;
 | 
						|
            }),
 | 
						|
        devices.end()
 | 
						|
    );
 | 
						|
}
 | 
						|
 | 
						|
static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) {
 | 
						|
    if (name.empty())
 | 
						|
        return false;
 | 
						|
 | 
						|
    auto devices = ggml_vk_available_devices_internal(memoryRequired);
 | 
						|
    if (name == "amd" || name == "nvidia" || name == "intel") {
 | 
						|
        ggml_vk_filterByVendor(devices, name);
 | 
						|
    } else if (name != "gpu") {
 | 
						|
        ggml_vk_filterByName(devices, name);
 | 
						|
    }
 | 
						|
 | 
						|
    if (devices.empty())
 | 
						|
        return false;
 | 
						|
 | 
						|
    *device = devices.front();
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) {
 | 
						|
    return ggml_vk_get_device(device, memoryRequired, std::string(name));
 | 
						|
}
 | 
						|
 | 
						|
bool ggml_vk_has_vulkan() {
 | 
						|
    return komputeManager()->hasVulkan();
 | 
						|
}
 | 
						|
 | 
						|
bool ggml_vk_has_device() {
 | 
						|
    return komputeManager()->hasDevice();
 | 
						|
}
 | 
						|
 | 
						|
ggml_vk_device ggml_vk_current_device() {
 | 
						|
    if (!komputeManager()->hasDevice())
 | 
						|
        return ggml_vk_device();
 | 
						|
 | 
						|
    auto devices = ggml_vk_available_devices_internal(0);
 | 
						|
    ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data());
 | 
						|
    GGML_ASSERT(!devices.empty());
 | 
						|
    return devices.front();
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) {
 | 
						|
    std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = {
 | 
						|
        vk::DescriptorPoolSize(
 | 
						|
          vk::DescriptorType::eStorageBuffer,
 | 
						|
          3 * size // Descriptor count is number of possible tensors to pass into an algorithm
 | 
						|
          )
 | 
						|
    };
 | 
						|
 | 
						|
    vk::DescriptorPoolCreateInfo descriptorPoolInfo(
 | 
						|
      vk::DescriptorPoolCreateFlags(),
 | 
						|
      size, // Max sets
 | 
						|
      static_cast<uint32_t>(descriptorPoolSizes.size()),
 | 
						|
      descriptorPoolSizes.data());
 | 
						|
 | 
						|
    ctx->pool = std::make_shared<vk::DescriptorPool>();
 | 
						|
    vk::Result r = komputeManager()->device()->createDescriptorPool(
 | 
						|
      &descriptorPoolInfo, nullptr, ctx->pool.get());
 | 
						|
    if (r != vk::Result::eSuccess)
 | 
						|
        std::cerr << "Error allocating descriptor pool" << vk::to_string(r);
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) {
 | 
						|
    if (ctx->pool) {
 | 
						|
        komputeManager()->device()->destroy(
 | 
						|
          *ctx->pool,
 | 
						|
          (vk::Optional<const vk::AllocationCallbacks>)nullptr);
 | 
						|
        ctx->pool = nullptr;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
vk::Buffer *ggml_vk_allocate_buffer(size_t size) {
 | 
						|
    vk::BufferCreateInfo bufferCreateInfo;
 | 
						|
    bufferCreateInfo.size = size;
 | 
						|
    bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer |
 | 
						|
                             vk::BufferUsageFlagBits::eTransferSrc |
 | 
						|
                             vk::BufferUsageFlagBits::eTransferDst;
 | 
						|
    bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
 | 
						|
 | 
						|
    vk::Buffer *vkBuffer = new vk::Buffer;
 | 
						|
    vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer);
 | 
						|
    if (r != vk::Result::eSuccess)
 | 
						|
        std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl;
 | 
						|
    return vkBuffer;
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) {
 | 
						|
 | 
						|
    uint32_t memoryTypeIndex = -1;
 | 
						|
    bool memoryTypeIndexFound = false;
 | 
						|
    vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties();
 | 
						|
    for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) {
 | 
						|
        const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i];
 | 
						|
        const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex];
 | 
						|
        if (memoryHeap.size < size) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        if (requirements.memoryTypeBits & (1 << i)) {
 | 
						|
            if (((memoryProperties.memoryTypes[i]).propertyFlags &
 | 
						|
                 flags) == flags) {
 | 
						|
                memoryTypeIndex = i;
 | 
						|
                memoryTypeIndexFound = true;
 | 
						|
                if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
 | 
						|
                    *isHostVisible = true;
 | 
						|
                }
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (!memoryTypeIndexFound) {
 | 
						|
        throw std::runtime_error(
 | 
						|
          "Memory type index for buffer creation not found");
 | 
						|
    }
 | 
						|
 | 
						|
    vk::MemoryAllocateInfo allocInfo;
 | 
						|
    allocInfo.allocationSize = size;
 | 
						|
    allocInfo.memoryTypeIndex = memoryTypeIndex;
 | 
						|
    vk::DeviceMemory *vkDeviceMemory =  new vk::DeviceMemory;
 | 
						|
    vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory);
 | 
						|
    if (r != vk::Result::eSuccess) {
 | 
						|
        std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl;
 | 
						|
        throw std::runtime_error("Error allocating vulkan memory.");
 | 
						|
    }
 | 
						|
    return vkDeviceMemory;
 | 
						|
}
 | 
						|
 | 
						|
static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) {
 | 
						|
    size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer);
 | 
						|
 | 
						|
    // If offset is already aligned, return it directly
 | 
						|
    if (offset % minStorageBufferOffsetAlignment == 0) {
 | 
						|
        return offset;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset
 | 
						|
    return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment;
 | 
						|
}
 | 
						|
 | 
						|
static ggml_vk_memory ggml_vk_allocate(size_t size) {
 | 
						|
    ggml_vk_memory memory;
 | 
						|
    bool isHostVisible = false;
 | 
						|
    {
 | 
						|
        memory.primaryBuffer = ggml_vk_allocate_buffer(size);
 | 
						|
        vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer);
 | 
						|
        vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal;
 | 
						|
        memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
 | 
						|
        komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0);
 | 
						|
        if (isHostVisible) {
 | 
						|
            vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
 | 
						|
            if (r != vk::Result::eSuccess)
 | 
						|
                std::cerr << "Error mapping memory" << vk::to_string(r);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!isHostVisible) {
 | 
						|
        memory.stagingBuffer = ggml_vk_allocate_buffer(size);
 | 
						|
        vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer);
 | 
						|
        vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible |
 | 
						|
                                                      vk::MemoryPropertyFlagBits::eHostCoherent |
 | 
						|
                                                      vk::MemoryPropertyFlagBits::eHostCached;
 | 
						|
        memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
 | 
						|
        komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0);
 | 
						|
        vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
 | 
						|
        if (r != vk::Result::eSuccess)
 | 
						|
            std::cerr << "Error mapping memory" << vk::to_string(r);
 | 
						|
    }
 | 
						|
 | 
						|
    memory.size = size;
 | 
						|
    return memory;
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_free_memory(ggml_vk_memory &memory)
 | 
						|
{
 | 
						|
    komputeManager()->device()->destroy(
 | 
						|
      *memory.primaryBuffer,
 | 
						|
      (vk::Optional<const vk::AllocationCallbacks>)nullptr);
 | 
						|
    if (memory.stagingBuffer) {
 | 
						|
        komputeManager()->device()->destroy(
 | 
						|
          *memory.stagingBuffer,
 | 
						|
          (vk::Optional<const vk::AllocationCallbacks>)nullptr);
 | 
						|
    }
 | 
						|
    komputeManager()->device()->freeMemory(
 | 
						|
      *memory.primaryMemory,
 | 
						|
      (vk::Optional<const vk::AllocationCallbacks>)nullptr);
 | 
						|
    if (memory.stagingMemory) {
 | 
						|
        komputeManager()->device()->freeMemory(
 | 
						|
          *memory.stagingMemory,
 | 
						|
          (vk::Optional<const vk::AllocationCallbacks>)nullptr);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft);
 | 
						|
 | 
						|
static
 | 
						|
ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) {
 | 
						|
    ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
 | 
						|
 | 
						|
    // compatibility with ggml-backend
 | 
						|
    GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name);
 | 
						|
 | 
						|
    ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context);
 | 
						|
 | 
						|
    const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data);
 | 
						|
 | 
						|
    GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size));
 | 
						|
 | 
						|
    offset = uint64_t(ioffs);
 | 
						|
    return buf_ctx;
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) {
 | 
						|
    uint64_t originalOffset = 0;
 | 
						|
    auto * res = ggml_vk_find_tensor(t, originalOffset);
 | 
						|
    if (!res) {
 | 
						|
        static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
 | 
						|
        return nullTensor;
 | 
						|
    }
 | 
						|
 | 
						|
    // Create a tensor whose memory will be composed of our buffers at the correct offset
 | 
						|
    const size_t nelements = ggml_nelements(t);
 | 
						|
    size_t nbytes = ggml_nbytes(t);
 | 
						|
 | 
						|
    size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset);
 | 
						|
    if (alignedOffset) {
 | 
						|
        *alignedOffset = originalOffset - vulkanOffset;
 | 
						|
        nbytes += *alignedOffset;
 | 
						|
    }
 | 
						|
 | 
						|
    return komputeManager()->tensor(
 | 
						|
        t->data,
 | 
						|
        nelements,
 | 
						|
        nbytes, kp::Tensor::TensorDataTypes::eFloat,
 | 
						|
        res->primaryMemory, res->primaryBuffer,
 | 
						|
        res->stagingMemory, res->stagingBuffer,
 | 
						|
        vulkanOffset);
 | 
						|
}
 | 
						|
 | 
						|
static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) {
 | 
						|
    if (size % sizeof(uint32_t) != 0) {
 | 
						|
        throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)");
 | 
						|
    }
 | 
						|
 | 
						|
    const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData);
 | 
						|
    size_t count = size / sizeof(uint32_t);
 | 
						|
    return std::vector<uint32_t>(data_ptr, data_ptr + count);
 | 
						|
}
 | 
						|
 | 
						|
inline static
 | 
						|
uint32_t safe_divide(uint32_t a, uint32_t b) {
 | 
						|
    if (b <= 1) {
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ((a % b) != 0) {
 | 
						|
        fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b);
 | 
						|
        GGML_ASSERT(!"safe_divide result would've had remainder");
 | 
						|
    }
 | 
						|
    return a / b;
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_add(
 | 
						|
    kp::Sequence& seq,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inA,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inB,
 | 
						|
    const std::shared_ptr<kp::Tensor>& out,
 | 
						|
    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | 
						|
    int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
 | 
						|
    int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
 | 
						|
    int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
 | 
						|
    int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
 | 
						|
    int32_t ne0,
 | 
						|
    int32_t nb0,  int32_t nb1,  int32_t nb2,  int32_t nb3
 | 
						|
) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv,
 | 
						|
        kp::shader_data::op_add_comp_spv_len);
 | 
						|
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inAOff, inBOff, outOff;
 | 
						|
        int32_t ne00;
 | 
						|
        int32_t nb00, nb01, nb02, nb03;
 | 
						|
        int32_t ne10, ne11, ne12, ne13;
 | 
						|
        int32_t nb10, nb11, nb12, nb13;
 | 
						|
        int32_t ne0;
 | 
						|
        int32_t nb0, nb1, nb2, nb3;
 | 
						|
    } const pushConsts {
 | 
						|
        safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | 
						|
        ne00,
 | 
						|
        nb00, nb01, nb02, nb03,
 | 
						|
        ne10, ne11, ne12, ne13,
 | 
						|
        nb10, nb11, nb12, nb13,
 | 
						|
        ne0,
 | 
						|
        nb0, nb1, nb2, nb3
 | 
						|
    };
 | 
						|
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(__func__)) {
 | 
						|
        s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
 | 
						|
    } else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(__func__);
 | 
						|
        s_algo->setTensors({inA, inB, out});
 | 
						|
        s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_addrow(kp::Sequence& seq,
 | 
						|
                 const std::shared_ptr<kp::Tensor>& inA,
 | 
						|
                 const std::shared_ptr<kp::Tensor>& inB,
 | 
						|
                 const std::shared_ptr<kp::Tensor>& out,
 | 
						|
                 uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | 
						|
                 uint32_t size, uint32_t row = 0) {
 | 
						|
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv,
 | 
						|
        kp::shader_data::op_addrow_comp_spv_len);
 | 
						|
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inAOff, inBOff, outOff;
 | 
						|
        uint32_t row;
 | 
						|
    } const pushConsts {
 | 
						|
        safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | 
						|
        row
 | 
						|
    };
 | 
						|
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(__func__))
 | 
						|
        s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
 | 
						|
    else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(__func__);
 | 
						|
        s_algo->setTensors({inA, inB, out});
 | 
						|
        s_algo->setWorkgroup({size});
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_mul(
 | 
						|
    kp::Sequence& seq,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inA,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inB,
 | 
						|
    const std::shared_ptr<kp::Tensor>& out,
 | 
						|
    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | 
						|
    int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
 | 
						|
    int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
 | 
						|
    int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
 | 
						|
    int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
 | 
						|
    int32_t ne0,
 | 
						|
    int32_t nb0,  int32_t nb1,  int32_t nb2,  int32_t nb3
 | 
						|
) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv,
 | 
						|
        kp::shader_data::op_mul_comp_spv_len);
 | 
						|
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inAOff, inBOff, outOff;
 | 
						|
        int32_t ne00;
 | 
						|
        int32_t nb00, nb01, nb02, nb03;
 | 
						|
        int32_t ne10, ne11, ne12, ne13;
 | 
						|
        int32_t nb10, nb11, nb12, nb13;
 | 
						|
        int32_t ne0;
 | 
						|
        int32_t nb0, nb1, nb2, nb3;
 | 
						|
    } const pushConsts {
 | 
						|
        safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | 
						|
        ne00,
 | 
						|
        nb00, nb01, nb02, nb03,
 | 
						|
        ne10, ne11, ne12, ne13,
 | 
						|
        nb10, nb11, nb12, nb13,
 | 
						|
        ne0,
 | 
						|
        nb0, nb1, nb2, nb3
 | 
						|
    };
 | 
						|
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(__func__)) {
 | 
						|
        s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
 | 
						|
    } else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(__func__);
 | 
						|
        s_algo->setTensors({inA, inB, out});
 | 
						|
        s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_scale(kp::Sequence& seq,
 | 
						|
                   const std::shared_ptr<kp::Tensor>& in,
 | 
						|
                   const std::shared_ptr<kp::Tensor>& out,
 | 
						|
                   uint32_t inOff, uint32_t outOff,
 | 
						|
                   uint32_t size, float scale) {
 | 
						|
    const static auto spirv_1 = getSpirvShader(
 | 
						|
        kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len
 | 
						|
    );
 | 
						|
    const static auto spirv_8 = getSpirvShader(
 | 
						|
        kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len
 | 
						|
    );
 | 
						|
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inOff, outOff;
 | 
						|
        float scale;
 | 
						|
    } const pushConsts {
 | 
						|
        safe_divide(inOff, 4), safe_divide(outOff, 4),
 | 
						|
        scale
 | 
						|
    };
 | 
						|
 | 
						|
    const auto * spirv = &spirv_1;
 | 
						|
    std::string name(__func__);
 | 
						|
    if (size % 8 == 0) {
 | 
						|
        size /= 8;
 | 
						|
        name += "_8";
 | 
						|
        spirv = &spirv_8;
 | 
						|
    }
 | 
						|
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(name)) {
 | 
						|
        s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts});
 | 
						|
    } else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(name);
 | 
						|
        s_algo->setTensors({in, out});
 | 
						|
        s_algo->setWorkgroup({size});
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_xxlu(
 | 
						|
    const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
 | 
						|
    const std::shared_ptr<kp::Tensor>& in,
 | 
						|
    const std::shared_ptr<kp::Tensor>& out,
 | 
						|
    uint32_t inOff, uint32_t outOff,
 | 
						|
    uint32_t size
 | 
						|
) {
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inOff, outOff;
 | 
						|
    } const pushConsts {
 | 
						|
        safe_divide(inOff, 4), safe_divide(outOff, 4),
 | 
						|
    };
 | 
						|
 | 
						|
    auto name = std::string(__func__) + "_" + suffix;
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(name)) {
 | 
						|
        s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts});
 | 
						|
    } else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(name);
 | 
						|
        s_algo->setTensors({in, out});
 | 
						|
        s_algo->setWorkgroup({size});
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_silu(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv,
 | 
						|
        kp::shader_data::op_silu_comp_spv_len);
 | 
						|
 | 
						|
    ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_relu(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv,
 | 
						|
        kp::shader_data::op_relu_comp_spv_len);
 | 
						|
 | 
						|
    ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_gelu(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv,
 | 
						|
        kp::shader_data::op_gelu_comp_spv_len);
 | 
						|
 | 
						|
    ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_soft_max(
 | 
						|
    kp::Sequence& seq,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inA,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inB,
 | 
						|
    const std::shared_ptr<kp::Tensor>& out,
 | 
						|
    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | 
						|
    int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03,
 | 
						|
    float scale
 | 
						|
) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv,
 | 
						|
        kp::shader_data::op_softmax_comp_spv_len);
 | 
						|
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inAOff, inBOff, outOff;
 | 
						|
        int32_t ne00, ne01, ne02;
 | 
						|
        float scale;
 | 
						|
        int32_t mask;
 | 
						|
    } pushConsts {
 | 
						|
        safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | 
						|
        ne00, ne01, ne02,
 | 
						|
        scale,
 | 
						|
        bool(inB)
 | 
						|
    };
 | 
						|
 | 
						|
    auto & inB_ = inB ? inB : inA;
 | 
						|
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(__func__)) {
 | 
						|
        // FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device
 | 
						|
        const uint32_t local_x = 32;
 | 
						|
        s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts});
 | 
						|
    } else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(__func__);
 | 
						|
        s_algo->setTensors({inA, inB_, out});
 | 
						|
        s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_norm_(
 | 
						|
    const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
 | 
						|
    const std::shared_ptr<kp::Tensor>& in,
 | 
						|
    const std::shared_ptr<kp::Tensor>& out,
 | 
						|
    uint32_t inOff, uint32_t outOff,
 | 
						|
    int32_t ne00, int32_t nb01,
 | 
						|
    int32_t nrows, float epsilon
 | 
						|
) {
 | 
						|
    GGML_ASSERT(nb01%sizeof(float) == 0);
 | 
						|
    GGML_ASSERT(ne00%sizeof(float) == 0);
 | 
						|
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inOff, outOff;
 | 
						|
        uint32_t ne00, nb01;
 | 
						|
        float eps;
 | 
						|
    } pushConsts {
 | 
						|
        safe_divide(inOff, 4), safe_divide(outOff, 4),
 | 
						|
        (uint32_t)ne00, (uint32_t)nb01, epsilon
 | 
						|
    };
 | 
						|
 | 
						|
    auto name = std::string(__func__) + "_" + suffix;
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(name)) {
 | 
						|
        s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts});
 | 
						|
    } else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(name);
 | 
						|
        s_algo->setTensors({in, out});
 | 
						|
        s_algo->setWorkgroup({(uint32_t)nrows});
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_norm(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv,
 | 
						|
        kp::shader_data::op_norm_comp_spv_len);
 | 
						|
 | 
						|
    ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_rms_norm(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv,
 | 
						|
        kp::shader_data::op_rmsnorm_comp_spv_len);
 | 
						|
 | 
						|
    ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_diag_mask_inf(kp::Sequence& seq,
 | 
						|
                           const std::shared_ptr<kp::Tensor>& in,
 | 
						|
                           const std::shared_ptr<kp::Tensor>& out,
 | 
						|
                           uint32_t inOff, uint32_t outOff,
 | 
						|
                           uint32_t n_past,
 | 
						|
                           int32_t ne00, int32_t ne01, int32_t ne02) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv,
 | 
						|
        kp::shader_data::op_diagmask_comp_spv_len);
 | 
						|
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inOff, outOff;
 | 
						|
        uint32_t n_past;
 | 
						|
        int32_t ne00, ne01;
 | 
						|
    } pushConsts {
 | 
						|
        safe_divide(inOff, 4), safe_divide(outOff, 4),
 | 
						|
        n_past,
 | 
						|
        ne00, ne01
 | 
						|
    };
 | 
						|
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(__func__))
 | 
						|
        s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts});
 | 
						|
    else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(__func__);
 | 
						|
        s_algo->setTensors({in, out});
 | 
						|
        s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)});
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_mul_mat_f16(
 | 
						|
    kp::Sequence& seq,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inA,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inB,
 | 
						|
    const std::shared_ptr<kp::Tensor>& out,
 | 
						|
    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | 
						|
    int32_t ne00, int32_t ne01, int32_t ne02,
 | 
						|
    uint32_t nb00, uint32_t nb01, uint32_t nb02,
 | 
						|
    int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
 | 
						|
    uint32_t nb10, uint32_t nb11, uint32_t nb12,
 | 
						|
    int32_t ne0, int32_t ne1,
 | 
						|
    uint32_t r2, uint32_t r3
 | 
						|
) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv,
 | 
						|
        kp::shader_data::op_mul_mat_f16_comp_spv_len);
 | 
						|
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inAOff, inBOff, outOff;
 | 
						|
        int32_t ne00, ne01, ne02;
 | 
						|
        uint32_t nb00, nb01, nb02;
 | 
						|
        int32_t ne10, ne11, ne12;
 | 
						|
        uint32_t nb10, nb11, nb12;
 | 
						|
        int32_t ne0, ne1;
 | 
						|
        uint32_t r2, r3;
 | 
						|
    } pushConsts {
 | 
						|
        safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | 
						|
        ne00, ne01, ne02,
 | 
						|
        nb00, nb01, nb02,
 | 
						|
        ne10, ne11, ne12,
 | 
						|
        nb10, nb11, nb12,
 | 
						|
        ne0, ne1,
 | 
						|
        r2, r3
 | 
						|
    };
 | 
						|
 | 
						|
    const unsigned ny = unsigned((ne11 + 4 - 1)/4);
 | 
						|
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(__func__)) {
 | 
						|
        const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
 | 
						|
        s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts});
 | 
						|
    } else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(__func__);
 | 
						|
        s_algo->setTensors({inA, inB, out});
 | 
						|
        s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)});
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq,
 | 
						|
                         const std::shared_ptr<kp::Tensor>& inA,
 | 
						|
                         const std::shared_ptr<kp::Tensor>& inB,
 | 
						|
                         const std::shared_ptr<kp::Tensor>& out,
 | 
						|
                         uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | 
						|
                         int32_t ne00, int32_t ne01, int32_t ne02,
 | 
						|
                         uint32_t nb01, uint32_t nb02,
 | 
						|
                         int32_t ne11, int32_t ne12,
 | 
						|
                         uint32_t nb11, uint32_t nb12,
 | 
						|
                         uint32_t nb1, uint32_t nb2) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv,
 | 
						|
        kp::shader_data::op_mul_mat_mat_f32_comp_spv_len);
 | 
						|
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inAOff, inBOff, outOff;
 | 
						|
        int32_t ne00, ne01, ne02, ne11, ne12;
 | 
						|
        uint32_t nb01, nb02;
 | 
						|
        uint32_t nb11, nb12;
 | 
						|
        uint32_t nb1, nb2;
 | 
						|
    } pushConsts {
 | 
						|
        safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | 
						|
        ne00, ne01, ne02, ne11, ne12,
 | 
						|
        nb01, nb02, nb11, nb12,
 | 
						|
        nb1, nb2
 | 
						|
    };
 | 
						|
 | 
						|
    const uint32_t local_x = ggml_vk_current_device().subgroupSize;
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(__func__)) {
 | 
						|
        s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(),
 | 
						|
        {inA, inB, out}, spirv,
 | 
						|
        {unsigned(ne01),
 | 
						|
         unsigned(ne11),
 | 
						|
         unsigned(std::max(ne12, ne02))
 | 
						|
         },
 | 
						|
        {local_x},
 | 
						|
        {pushConsts});
 | 
						|
    } else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(__func__);
 | 
						|
        s_algo->setTensors({inA, inB, out});
 | 
						|
        s_algo->setWorkgroup({unsigned(ne01),
 | 
						|
                              unsigned(ne11),
 | 
						|
                              unsigned(std::max(ne12, ne02)),
 | 
						|
                              });
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_mul_mat_impl(
 | 
						|
    const std::vector<uint32_t>& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inA,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inB,
 | 
						|
    const std::shared_ptr<kp::Tensor>& out,
 | 
						|
    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | 
						|
    int32_t ne00, int32_t ne01, int32_t ne02,
 | 
						|
    int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
 | 
						|
    int32_t ne0, int32_t ne1,
 | 
						|
    uint32_t r2, uint32_t r3
 | 
						|
) {
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inAOff, inBOff, outOff;
 | 
						|
        int32_t ne00, ne01, ne02;
 | 
						|
        int32_t ne10, ne12;
 | 
						|
        int32_t ne0, ne1;
 | 
						|
        uint32_t r2, r3;
 | 
						|
    } pushConsts {
 | 
						|
        safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | 
						|
        ne00, ne01, ne02,
 | 
						|
        ne10, ne12,
 | 
						|
        ne0, ne1,
 | 
						|
        r2, r3
 | 
						|
    };
 | 
						|
 | 
						|
    auto name = std::string(__func__) + "_" + suffix;
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(name)) {
 | 
						|
        const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
 | 
						|
        s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts});
 | 
						|
    } else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(name);
 | 
						|
        s_algo->setTensors({inA, inB, out});
 | 
						|
        s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)});
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_mul_mat_q4_0(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv,
 | 
						|
        kp::shader_data::op_mul_mat_q4_0_comp_spv_len);
 | 
						|
 | 
						|
    ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_mul_mat_q4_1(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv,
 | 
						|
        kp::shader_data::op_mul_mat_q4_1_comp_spv_len);
 | 
						|
 | 
						|
    ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_mul_mat_q8_0(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv,
 | 
						|
        kp::shader_data::op_mul_mat_q8_0_comp_spv_len);
 | 
						|
 | 
						|
    ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_mul_mat_q6_k(
 | 
						|
    kp::Sequence& seq,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inA,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inB,
 | 
						|
    const std::shared_ptr<kp::Tensor>& out,
 | 
						|
    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | 
						|
    int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne1,
 | 
						|
    int32_t ne01, int32_t ne11, int32_t ne12, int32_t ne02
 | 
						|
) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv,
 | 
						|
        kp::shader_data::op_mul_mat_q6_k_comp_spv_len);
 | 
						|
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inAOff, inBOff, outOff;
 | 
						|
        int32_t ne00, ne10, ne0, ne1, ne01, gqa;
 | 
						|
    } pushConsts {
 | 
						|
        inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | 
						|
        ne00, ne10, ne0, ne1, ne01, ne12/ne02
 | 
						|
    };
 | 
						|
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(__func__)) {
 | 
						|
        const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
 | 
						|
        s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}, {local_x}, {pushConsts});
 | 
						|
    } else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(__func__);
 | 
						|
        s_algo->setTensors({inA, inB, out});
 | 
						|
        s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)});
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_get_rows(
 | 
						|
    const std::vector<uint32_t>& spirv,
 | 
						|
    const char * suffix,
 | 
						|
    unsigned element_size, unsigned qk,
 | 
						|
    kp::Sequence& seq,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inA,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inB,
 | 
						|
    const std::shared_ptr<kp::Tensor>& out,
 | 
						|
    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | 
						|
    int32_t ne00, int32_t nb01, int32_t nb1,
 | 
						|
    uint32_t size
 | 
						|
) {
 | 
						|
    GGML_ASSERT(nb01%element_size == 0);
 | 
						|
    GGML_ASSERT(nb1%sizeof(float) == 0);
 | 
						|
    if (qk) GGML_ASSERT(ne00%qk == 0);
 | 
						|
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inAOff, inBOff, outOff;
 | 
						|
        int32_t ne00, nb01, nb1;
 | 
						|
    } pushConsts {
 | 
						|
        safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | 
						|
        ne00, nb01, nb1
 | 
						|
    };
 | 
						|
 | 
						|
    auto name = std::string(__func__) + "_" + suffix;
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(name)) {
 | 
						|
        s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
 | 
						|
    } else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(name);
 | 
						|
        s_algo->setTensors({inA, inB, out});
 | 
						|
        s_algo->setWorkgroup({size});
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_get_rows_f16(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv,
 | 
						|
        kp::shader_data::op_getrows_f16_comp_spv_len);
 | 
						|
 | 
						|
    ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_get_rows_q4_0(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv,
 | 
						|
        kp::shader_data::op_getrows_q4_0_comp_spv_len);
 | 
						|
 | 
						|
    ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_get_rows_q4_1(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv,
 | 
						|
        kp::shader_data::op_getrows_q4_1_comp_spv_len);
 | 
						|
 | 
						|
    ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_get_rows_q6_k(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv,
 | 
						|
        kp::shader_data::op_getrows_q6_k_comp_spv_len);
 | 
						|
    ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_rope(
 | 
						|
    kp::Sequence& seq,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inA,
 | 
						|
    const std::shared_ptr<kp::Tensor>& inB,
 | 
						|
    const std::shared_ptr<kp::Tensor>& out,
 | 
						|
    uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | 
						|
    ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_orig_ctx,
 | 
						|
    float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow,
 | 
						|
    int32_t ne01, int32_t ne02, int32_t ne03,
 | 
						|
    uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
 | 
						|
    int32_t ne0,
 | 
						|
    uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
 | 
						|
) {
 | 
						|
    GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32);
 | 
						|
 | 
						|
    static const auto spirv_f16 = getSpirvShader(
 | 
						|
        kp::shader_data::op_rope_f16_comp_spv, kp::shader_data::op_rope_f16_comp_spv_len
 | 
						|
    );
 | 
						|
    static const auto spirv_f32 = getSpirvShader(
 | 
						|
        kp::shader_data::op_rope_f32_comp_spv, kp::shader_data::op_rope_f32_comp_spv_len
 | 
						|
    );
 | 
						|
 | 
						|
    int type_size = src0t == GGML_TYPE_F16 ? 2 : 4;
 | 
						|
 | 
						|
    GGML_ASSERT(nb03 % type_size == 0);
 | 
						|
    GGML_ASSERT(nb02 % type_size == 0);
 | 
						|
    GGML_ASSERT(nb01 % type_size == 0);
 | 
						|
    GGML_ASSERT(nb00 % type_size == 0);
 | 
						|
    GGML_ASSERT(nb3  % type_size == 0);
 | 
						|
    GGML_ASSERT(nb2  % type_size == 0);
 | 
						|
    GGML_ASSERT(nb1  % type_size == 0);
 | 
						|
    GGML_ASSERT(nb0  % type_size == 0);
 | 
						|
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inAOff, inBOff, outOff;
 | 
						|
        int32_t n_dims, mode, n_orig_ctx;
 | 
						|
        float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
 | 
						|
        uint32_t nb00, nb01, nb02, nb03;
 | 
						|
        int32_t ne0;
 | 
						|
        uint32_t nb0, nb1, nb2, nb3;
 | 
						|
    } pushConsts {
 | 
						|
        safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size),
 | 
						|
        n_dims, mode, n_orig_ctx,
 | 
						|
        freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
 | 
						|
        nb00, nb01, nb02, nb03,
 | 
						|
        ne0,
 | 
						|
        nb0, nb1, nb2, nb3
 | 
						|
    };
 | 
						|
 | 
						|
    auto name = std::string(__func__) + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32");
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(name)) {
 | 
						|
        s_algo = komputeManager()->algorithm<float, PushConstants>(
 | 
						|
            name, s_kompute_context->pool.get(), {inA, inB, out},
 | 
						|
            src0t == GGML_TYPE_F16 ? spirv_f16 : spirv_f32,
 | 
						|
            {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}
 | 
						|
        );
 | 
						|
    } else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(name);
 | 
						|
        s_algo->setTensors({inA, inB, out});
 | 
						|
        s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_cpy(
 | 
						|
    const std::vector<uint32_t>& spirv,
 | 
						|
    uint32_t in_element_size, uint32_t out_element_size,
 | 
						|
    kp::Sequence& seq,
 | 
						|
    const std::shared_ptr<kp::Tensor>& in,
 | 
						|
    const std::shared_ptr<kp::Tensor>& out,
 | 
						|
    uint32_t inOff, uint32_t outOff,
 | 
						|
    int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
 | 
						|
    uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
 | 
						|
    int32_t ne0, int32_t ne1, int32_t ne2,
 | 
						|
    uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
 | 
						|
) {
 | 
						|
    struct PushConstants {
 | 
						|
        uint32_t inOff, outOff;
 | 
						|
        int32_t ne00, ne01, ne02;
 | 
						|
        uint32_t nb00, nb01, nb02, nb03;
 | 
						|
        int32_t ne0, ne1, ne2;
 | 
						|
        uint32_t nb0, nb1, nb2, nb3;
 | 
						|
    } pushConsts {
 | 
						|
        safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size),
 | 
						|
        ne00, ne01, ne02,
 | 
						|
        nb00, nb01, nb02, nb03,
 | 
						|
        ne0, ne1, ne2,
 | 
						|
        nb0, nb1, nb2, nb3
 | 
						|
    };
 | 
						|
 | 
						|
    std::string name = std::string(__func__)
 | 
						|
                       + "_i_" + std::to_string(in_element_size)
 | 
						|
                       + "_o_" + std::to_string(out_element_size);
 | 
						|
    std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | 
						|
    if (!komputeManager()->hasAlgorithm(name))
 | 
						|
        s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
 | 
						|
    else {
 | 
						|
        s_algo = komputeManager()->getAlgorithm(name);
 | 
						|
        s_algo->setTensors({in, out});
 | 
						|
        s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
 | 
						|
        s_algo->setPushConstants<PushConstants>({pushConsts});
 | 
						|
        s_algo->updateDescriptors(s_kompute_context->pool.get());
 | 
						|
    }
 | 
						|
    seq.record<kp::OpAlgoDispatch>(s_algo);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_cpy_f32_f16(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv,
 | 
						|
        kp::shader_data::op_cpy_f32_f16_comp_spv_len);
 | 
						|
    ggml_vk_cpy(spirv, 4, 2, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_cpy_f32_f32(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv,
 | 
						|
        kp::shader_data::op_cpy_f32_f32_comp_spv_len);
 | 
						|
    ggml_vk_cpy(spirv, 4, 4, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_cpy_f16_f16(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv,
 | 
						|
        kp::shader_data::op_cpy_f16_f16_comp_spv_len);
 | 
						|
    ggml_vk_cpy(spirv, 2, 2, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
template <typename... Args>
 | 
						|
static void ggml_vk_cpy_f16_f32(Args&&... args) {
 | 
						|
    const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv,
 | 
						|
        kp::shader_data::op_cpy_f16_f32_comp_spv_len);
 | 
						|
    ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...);
 | 
						|
}
 | 
						|
 | 
						|
static bool ggml_vk_supports_op(const struct ggml_tensor * op) {
 | 
						|
    switch (op->type) {
 | 
						|
        case GGML_TYPE_F16:
 | 
						|
        case GGML_TYPE_F32:
 | 
						|
        case GGML_TYPE_Q4_0:
 | 
						|
        case GGML_TYPE_Q4_1:
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            return false;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (op->op) {
 | 
						|
        case GGML_OP_UNARY:
 | 
						|
            switch (ggml_get_unary_op(op)) {
 | 
						|
                case GGML_UNARY_OP_RELU:
 | 
						|
                case GGML_UNARY_OP_GELU:
 | 
						|
                case GGML_UNARY_OP_SILU:
 | 
						|
                    return true;
 | 
						|
                default:
 | 
						|
                    ;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case GGML_OP_NONE:
 | 
						|
        case GGML_OP_RESHAPE:
 | 
						|
        case GGML_OP_VIEW:
 | 
						|
        case GGML_OP_TRANSPOSE:
 | 
						|
        case GGML_OP_PERMUTE:
 | 
						|
        case GGML_OP_ADD:
 | 
						|
        case GGML_OP_MUL:
 | 
						|
        case GGML_OP_SCALE:
 | 
						|
        case GGML_OP_SOFT_MAX:
 | 
						|
        case GGML_OP_RMS_NORM:
 | 
						|
        case GGML_OP_NORM:
 | 
						|
        case GGML_OP_ROPE:
 | 
						|
            return true;
 | 
						|
        case GGML_OP_DUP:
 | 
						|
        case GGML_OP_CPY:
 | 
						|
        case GGML_OP_CONT:
 | 
						|
            switch (op->src[0]->type) {
 | 
						|
                case GGML_TYPE_F32:
 | 
						|
                case GGML_TYPE_F16:
 | 
						|
                    break;
 | 
						|
                default:
 | 
						|
                    return false;
 | 
						|
            }
 | 
						|
            switch (op->type) {
 | 
						|
                case GGML_TYPE_F32:
 | 
						|
                case GGML_TYPE_F16:
 | 
						|
                    break;
 | 
						|
                default:
 | 
						|
                    return false;
 | 
						|
            }
 | 
						|
            return true;
 | 
						|
        case GGML_OP_DIAG_MASK_INF:
 | 
						|
            return op->ne[3] == 1;
 | 
						|
        case GGML_OP_GET_ROWS:
 | 
						|
            switch (op->src[0]->type) {
 | 
						|
                case GGML_TYPE_F16:
 | 
						|
                case GGML_TYPE_Q4_0:
 | 
						|
                case GGML_TYPE_Q4_1:
 | 
						|
                case GGML_TYPE_Q6_K:
 | 
						|
                    return op->ne[2] == 1 && op->ne[3] == 1;
 | 
						|
                default:
 | 
						|
                    ;
 | 
						|
            }
 | 
						|
            return false;
 | 
						|
        case GGML_OP_MUL_MAT:
 | 
						|
            if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1]))
 | 
						|
                return false;
 | 
						|
 | 
						|
            switch (op->src[0]->type) {
 | 
						|
                case GGML_TYPE_F32:
 | 
						|
                case GGML_TYPE_Q6_K:
 | 
						|
                    return op->ne[3] == 1;
 | 
						|
                case GGML_TYPE_F16:
 | 
						|
                case GGML_TYPE_Q8_0:
 | 
						|
                case GGML_TYPE_Q4_0:
 | 
						|
                case GGML_TYPE_Q4_1:
 | 
						|
                    return true;
 | 
						|
                default:
 | 
						|
                    ;
 | 
						|
            }
 | 
						|
        default:
 | 
						|
            ;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) {
 | 
						|
    const int n_seq = 8;
 | 
						|
 | 
						|
    // FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting
 | 
						|
    // it to the size of the graph, but I think it can be made smaller?
 | 
						|
    ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes);
 | 
						|
 | 
						|
    std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq);
 | 
						|
 | 
						|
    for (auto& sequence : sequences) {
 | 
						|
        sequence = komputeManager()->sequence();
 | 
						|
    }
 | 
						|
    for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) {
 | 
						|
        const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq;
 | 
						|
 | 
						|
        auto& seq = *sequences[seq_idx];
 | 
						|
 | 
						|
        const int node_start = (seq_idx + 0) * n_nodes_per_seq;
 | 
						|
        const int node_end   = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes);
 | 
						|
 | 
						|
        bool any_commands_recorded = false;
 | 
						|
 | 
						|
        for (int i = node_start; i < node_end; ++i) {
 | 
						|
            struct ggml_tensor * src0 = gf->nodes[i]->src[0];
 | 
						|
            struct ggml_tensor * src1 = gf->nodes[i]->src[1];
 | 
						|
            struct ggml_tensor * src2 = gf->nodes[i]->src[2]; GGML_UNUSED(src2);
 | 
						|
            struct ggml_tensor * dst = gf->nodes[i];
 | 
						|
            GGML_ASSERT(dst->data != nullptr);
 | 
						|
 | 
						|
            if (ggml_is_empty(dst)) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            switch (dst->op) {
 | 
						|
                case GGML_OP_NONE:
 | 
						|
                case GGML_OP_RESHAPE:
 | 
						|
                case GGML_OP_VIEW:
 | 
						|
                case GGML_OP_TRANSPOSE:
 | 
						|
                case GGML_OP_PERMUTE:
 | 
						|
                    continue; // noop -> next node
 | 
						|
                default:
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
 | 
						|
            any_commands_recorded = true;
 | 
						|
 | 
						|
            if (!ggml_vk_supports_op(dst)) {
 | 
						|
                 fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
 | 
						|
                 GGML_ASSERT(!"unsupported op");
 | 
						|
            }
 | 
						|
 | 
						|
            const int32_t ne00 = src0 ? src0->ne[0] : 0;
 | 
						|
            const int32_t ne01 = src0 ? src0->ne[1] : 0;
 | 
						|
            const int32_t ne02 = src0 ? src0->ne[2] : 0;
 | 
						|
            const int32_t ne03 = src0 ? src0->ne[3] : 0;
 | 
						|
 | 
						|
            const uint32_t nb00 = src0 ? src0->nb[0] : 0;
 | 
						|
            const uint32_t nb01 = src0 ? src0->nb[1] : 0;
 | 
						|
            const uint32_t nb02 = src0 ? src0->nb[2] : 0;
 | 
						|
            const uint32_t nb03 = src0 ? src0->nb[3] : 0;
 | 
						|
 | 
						|
            const int32_t ne10 = src1 ? src1->ne[0] : 0;
 | 
						|
            const int32_t ne11 = src1 ? src1->ne[1] : 0;
 | 
						|
            const int32_t ne12 = src1 ? src1->ne[2] : 0;
 | 
						|
            const int32_t ne13 = src1 ? src1->ne[3] : 0;
 | 
						|
 | 
						|
            const uint32_t nb10 = src1 ? src1->nb[0] : 0;
 | 
						|
            const uint32_t nb11 = src1 ? src1->nb[1] : 0;
 | 
						|
            const uint32_t nb12 = src1 ? src1->nb[2] : 0;
 | 
						|
            const uint32_t nb13 = src1 ? src1->nb[3] : 0;
 | 
						|
 | 
						|
            const int32_t ne0 = dst ? dst->ne[0] : 0;
 | 
						|
            const int32_t ne1 = dst ? dst->ne[1] : 0;
 | 
						|
            const int32_t ne2 = dst ? dst->ne[2] : 0;
 | 
						|
//            const int32_t ne3 = dst ? dst->ne[3] : 0;
 | 
						|
 | 
						|
            const uint32_t nb0 = dst ? dst->nb[0] : 0;
 | 
						|
            const uint32_t nb1 = dst ? dst->nb[1] : 0;
 | 
						|
            const uint32_t nb2 = dst ? dst->nb[2] : 0;
 | 
						|
            const uint32_t nb3 = dst ? dst->nb[3] : 0;
 | 
						|
 | 
						|
            const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
 | 
						|
            const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
 | 
						|
            const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
 | 
						|
 | 
						|
            const static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
 | 
						|
            uint32_t off_src0 = 0;
 | 
						|
            uint32_t off_src1 = 0;
 | 
						|
            uint32_t off_dst  = 0;
 | 
						|
            const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor;
 | 
						|
            const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor;
 | 
						|
            const std::shared_ptr<kp::Tensor>& id_dst  = dst  ? ggml_vk_get_tensor(dst,  &off_dst)  : nullTensor;
 | 
						|
 | 
						|
            switch (dst->op) {
 | 
						|
                case GGML_OP_ADD:
 | 
						|
                    {
 | 
						|
                        if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
 | 
						|
                            // src1 is a row
 | 
						|
                            ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00);
 | 
						|
                        } else {
 | 
						|
                            ggml_vk_add(
 | 
						|
                                seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | 
						|
                                ne00, ne01, ne02, ne03,
 | 
						|
                                nb00, nb01, nb02, nb03,
 | 
						|
                                ne10, ne11, ne12, ne13,
 | 
						|
                                nb10, nb11, nb12, nb13,
 | 
						|
                                ne0,
 | 
						|
                                nb0, nb1, nb2, nb3
 | 
						|
                            );
 | 
						|
                        }
 | 
						|
                    } break;
 | 
						|
                case GGML_OP_MUL:
 | 
						|
                    {
 | 
						|
                        ggml_vk_mul(
 | 
						|
                            seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | 
						|
                            ne00, ne01, ne02, ne03,
 | 
						|
                            nb00, nb01, nb02, nb03,
 | 
						|
                            ne10, ne11, ne12, ne13,
 | 
						|
                            nb10, nb11, nb12, nb13,
 | 
						|
                            ne0,
 | 
						|
                            nb0, nb1, nb2, nb3
 | 
						|
                        );
 | 
						|
                    } break;
 | 
						|
                case GGML_OP_SCALE:
 | 
						|
                    {
 | 
						|
                        float scale; memcpy(&scale, dst->op_params, sizeof(float));
 | 
						|
 | 
						|
                        ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale);
 | 
						|
                    } break;
 | 
						|
                case GGML_OP_UNARY:
 | 
						|
                    {
 | 
						|
                        int64_t n = ggml_nelements(dst);
 | 
						|
                        GGML_ASSERT(n % 4 == 0);
 | 
						|
                        switch (ggml_get_unary_op(gf->nodes[i])) {
 | 
						|
                            case GGML_UNARY_OP_SILU:
 | 
						|
                                {
 | 
						|
                                    ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
 | 
						|
                                } break;
 | 
						|
                            case GGML_UNARY_OP_RELU:
 | 
						|
                                {
 | 
						|
                                    ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
 | 
						|
                                } break;
 | 
						|
                            case GGML_UNARY_OP_GELU:
 | 
						|
                                {
 | 
						|
                                    GGML_ASSERT(n % 8 == 0);
 | 
						|
                                    ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8);
 | 
						|
                                } break;
 | 
						|
                            default:
 | 
						|
                                {
 | 
						|
                                    fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
 | 
						|
                                    GGML_ASSERT(false);
 | 
						|
                                }
 | 
						|
                        }
 | 
						|
                    } break;
 | 
						|
                case GGML_OP_SOFT_MAX:
 | 
						|
                    {
 | 
						|
                        float scale;
 | 
						|
                        memcpy(&scale, dst->op_params, sizeof(float));
 | 
						|
 | 
						|
#pragma message("TODO: add ggml_vk_soft_max() F16/F32 src1 and src2 support")
 | 
						|
#pragma message("ref:  https://github.com/ggerganov/llama.cpp/pull/5021")
 | 
						|
                        GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32);
 | 
						|
                        GGML_ASSERT(src2 == nullptr);
 | 
						|
 | 
						|
                        ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale);
 | 
						|
                    } break;
 | 
						|
                case GGML_OP_DIAG_MASK_INF:
 | 
						|
                    {
 | 
						|
                        const int n_past = ((int32_t *)(dst->op_params))[0];
 | 
						|
                        ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02);
 | 
						|
                    } break;
 | 
						|
                case GGML_OP_NORM:
 | 
						|
                    {
 | 
						|
                        float eps;
 | 
						|
                        memcpy(&eps, dst->op_params, sizeof(float));
 | 
						|
                        ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
 | 
						|
                    } break;
 | 
						|
                case GGML_OP_RMS_NORM:
 | 
						|
                    {
 | 
						|
                        GGML_ASSERT(ne00 % 4 == 0);
 | 
						|
 | 
						|
                        float eps;
 | 
						|
                        memcpy(&eps, dst->op_params, sizeof(float));
 | 
						|
                        ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
 | 
						|
                    } break;
 | 
						|
                case GGML_OP_MUL_MAT:
 | 
						|
                    {
 | 
						|
                        GGML_ASSERT(ne00 == ne10);
 | 
						|
 | 
						|
                        // TODO: assert that dim2 and dim3 are contiguous
 | 
						|
                        GGML_ASSERT(ne12 % ne02 == 0);
 | 
						|
                        GGML_ASSERT(ne13 % ne03 == 0);
 | 
						|
 | 
						|
                        const uint32_t r2 = ne12/ne02;
 | 
						|
                        const uint32_t r3 = ne13/ne03;
 | 
						|
 | 
						|
                        if (src1t != GGML_TYPE_F32) {
 | 
						|
                            fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
 | 
						|
                            goto not_implemented;
 | 
						|
                        }
 | 
						|
 | 
						|
                        if (ggml_is_transposed(src0) ||
 | 
						|
                            ggml_is_transposed(src1)) {
 | 
						|
                            fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
 | 
						|
                            goto not_implemented;
 | 
						|
                        }
 | 
						|
 | 
						|
                        switch (src0t) {
 | 
						|
                            case GGML_TYPE_F32:
 | 
						|
                                ggml_vk_mul_mat_mat_f32(
 | 
						|
                                    seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | 
						|
                                    ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2
 | 
						|
                                );
 | 
						|
                                break;
 | 
						|
                            case GGML_TYPE_F16:
 | 
						|
                                ggml_vk_mul_mat_f16(
 | 
						|
                                    seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | 
						|
                                    ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, ne13, nb10, nb11, nb12,
 | 
						|
                                    ne0, ne1, r2, r3
 | 
						|
                                );
 | 
						|
                                break;
 | 
						|
                            case GGML_TYPE_Q8_0:
 | 
						|
                                ggml_vk_mul_mat_q8_0(
 | 
						|
                                    seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | 
						|
                                    ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
 | 
						|
                                );
 | 
						|
                                break;
 | 
						|
                            case GGML_TYPE_Q4_0:
 | 
						|
                                ggml_vk_mul_mat_q4_0(
 | 
						|
                                    seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | 
						|
                                    ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
 | 
						|
                                );
 | 
						|
                                break;
 | 
						|
                            case GGML_TYPE_Q4_1:
 | 
						|
                                ggml_vk_mul_mat_q4_1(
 | 
						|
                                    seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | 
						|
                                    ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
 | 
						|
                                );
 | 
						|
                                break;
 | 
						|
                            case GGML_TYPE_Q6_K:
 | 
						|
                                ggml_vk_mul_mat_q6_k(
 | 
						|
                                    seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | 
						|
                                    ne00, ne10, ne0, ne1, ne01, ne11, ne12, ne02
 | 
						|
                                );
 | 
						|
                                break;
 | 
						|
                            default: {
 | 
						|
                                fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
 | 
						|
                                goto not_implemented;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
 | 
						|
                    } break;
 | 
						|
                case GGML_OP_GET_ROWS:
 | 
						|
                    {
 | 
						|
                        if (src0t == GGML_TYPE_F16) {
 | 
						|
                            ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
 | 
						|
                        } else if (src0t == GGML_TYPE_Q4_0) {
 | 
						|
                            ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
 | 
						|
                        } else if (src0t == GGML_TYPE_Q4_1) {
 | 
						|
                            ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
 | 
						|
                        } else if (src0t == GGML_TYPE_Q6_K) {
 | 
						|
                            ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
 | 
						|
                        } else {
 | 
						|
                            fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t);
 | 
						|
                            goto not_implemented;
 | 
						|
                        }
 | 
						|
                    } break;
 | 
						|
                case GGML_OP_ROPE:
 | 
						|
                    {
 | 
						|
                        GGML_ASSERT(ne10 == ne02);
 | 
						|
                        GGML_ASSERT(src0t == dstt);
 | 
						|
                        // const int n_past = ((int32_t *) dst->op_params)[0];
 | 
						|
                        const int n_dims     = ((int32_t *) dst->op_params)[1];
 | 
						|
                        const int mode       = ((int32_t *) dst->op_params)[2];
 | 
						|
                        // skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan
 | 
						|
                        const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
 | 
						|
 | 
						|
                        float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
 | 
						|
                        memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
 | 
						|
                        memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
 | 
						|
                        memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
 | 
						|
                        memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
 | 
						|
                        memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
 | 
						|
                        memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
 | 
						|
                        ggml_vk_rope(
 | 
						|
                            seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_orig_ctx,
 | 
						|
                            freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
 | 
						|
                            ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3
 | 
						|
                        );
 | 
						|
                    } break;
 | 
						|
                case GGML_OP_DUP:
 | 
						|
                case GGML_OP_CPY:
 | 
						|
                case GGML_OP_CONT:
 | 
						|
                    {
 | 
						|
                        switch (src0t) {
 | 
						|
                            case GGML_TYPE_F32:
 | 
						|
                                {
 | 
						|
                                    switch (dstt) {
 | 
						|
                                        case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
 | 
						|
                                        case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
 | 
						|
                                        default: goto not_implemented;
 | 
						|
                                    }
 | 
						|
                                } break;
 | 
						|
                            case GGML_TYPE_F16:
 | 
						|
                                {
 | 
						|
                                    switch (dstt) {
 | 
						|
                                        case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
 | 
						|
                                        case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
 | 
						|
                                    default: goto not_implemented;
 | 
						|
                                } break;
 | 
						|
                            default: goto not_implemented;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    } break;
 | 
						|
                default: goto not_implemented;
 | 
						|
            }
 | 
						|
            continue;
 | 
						|
            not_implemented: {}
 | 
						|
            fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
 | 
						|
            //GGML_ASSERT(false);
 | 
						|
        }
 | 
						|
 | 
						|
        // Evaluate sequence
 | 
						|
        if (any_commands_recorded) {
 | 
						|
            seq.evalAsync();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Wait for all sequences to finish
 | 
						|
    for (auto& sequence : sequences) {
 | 
						|
        if (sequence->isRunning())
 | 
						|
            sequence->evalAwait();
 | 
						|
    }
 | 
						|
 | 
						|
    ggml_vk_free_descriptor_pool(ctx);
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
kp::Tensor::TensorDataTypes
 | 
						|
kp::TensorT<half>::dataType()
 | 
						|
{
 | 
						|
    return TensorDataTypes::eFloat;
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
kp::Tensor::TensorDataTypes
 | 
						|
kp::TensorT<uint8_t>::dataType()
 | 
						|
{
 | 
						|
    return TensorDataTypes::eUnsignedInt;
 | 
						|
}
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
// backend interface
 | 
						|
 | 
						|
struct ggml_backend_kompute_buffer_type_context {
 | 
						|
    int         device;
 | 
						|
    int         device_ref = 0;
 | 
						|
    uint64_t    buffer_alignment;
 | 
						|
    uint64_t    max_alloc;
 | 
						|
    std::string name;
 | 
						|
 | 
						|
    ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc)
 | 
						|
        : device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {}
 | 
						|
};
 | 
						|
 | 
						|
static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) {
 | 
						|
    auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
 | 
						|
 | 
						|
    if (!ctx->device_ref) {
 | 
						|
        komputeManager()->initializeDevice(
 | 
						|
            ctx->device, {}, {
 | 
						|
                "VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage",
 | 
						|
                "VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info"
 | 
						|
            }
 | 
						|
        );
 | 
						|
    }
 | 
						|
 | 
						|
    assert(ggml_vk_has_device());
 | 
						|
    ctx->device_ref++;
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) {
 | 
						|
    auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
 | 
						|
 | 
						|
    assert(ctx->device_ref > 0);
 | 
						|
 | 
						|
    ctx->device_ref--;
 | 
						|
 | 
						|
    if (!ctx->device_ref) {
 | 
						|
        komputeManager.destroy();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static const char * ggml_backend_kompute_buffer_get_name(ggml_backend_buffer_t buffer) {
 | 
						|
    auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buffer->buft->context);
 | 
						|
    return ctx->name.c_str();
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | 
						|
    auto * memory = (ggml_vk_memory *)buffer->context;
 | 
						|
    if (ggml_vk_has_device()) {
 | 
						|
        ggml_vk_free_memory(*memory);
 | 
						|
    }
 | 
						|
    delete memory;
 | 
						|
}
 | 
						|
 | 
						|
static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
 | 
						|
    return ((ggml_vk_memory *)buffer->context)->data;
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
 | 
						|
    GGML_UNUSED(buffer);
 | 
						|
 | 
						|
    const auto res = ggml_vk_get_tensor(tensor);
 | 
						|
    GGML_ASSERT(res);
 | 
						|
 | 
						|
    memcpy((char *)tensor->data + offset, data, size);
 | 
						|
 | 
						|
    komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res});
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
 | 
						|
    GGML_UNUSED(buffer);
 | 
						|
 | 
						|
    const auto res = ggml_vk_get_tensor(tensor);
 | 
						|
    GGML_ASSERT(res);
 | 
						|
 | 
						|
    komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res});
 | 
						|
 | 
						|
    memcpy(data, (const char *)tensor->data + offset, size);
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
 | 
						|
    auto * memory = (ggml_vk_memory *)buffer->context;
 | 
						|
    memset(memory->data, value, buffer->size);
 | 
						|
 | 
						|
    if (memory->stagingBuffer)
 | 
						|
        komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory->primaryBuffer, memory->stagingBuffer, memory->size);
 | 
						|
}
 | 
						|
 | 
						|
static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = {
 | 
						|
    /* .get_name        = */ ggml_backend_kompute_buffer_get_name,
 | 
						|
    /* .free_buffer     = */ ggml_backend_kompute_buffer_free_buffer,
 | 
						|
    /* .get_base        = */ ggml_backend_kompute_buffer_get_base,
 | 
						|
    /* .init_tensor     = */ NULL,
 | 
						|
    /* .set_tensor      = */ ggml_backend_kompute_buffer_set_tensor,
 | 
						|
    /* .get_tensor      = */ ggml_backend_kompute_buffer_get_tensor,
 | 
						|
    /* .cpy_tensor      = */ NULL,
 | 
						|
    /* .clear           = */ ggml_backend_kompute_buffer_clear,
 | 
						|
    /* .reset           = */ NULL,
 | 
						|
};
 | 
						|
 | 
						|
// default buffer type
 | 
						|
 | 
						|
static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
 | 
						|
    auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
 | 
						|
    return ctx->name.c_str();
 | 
						|
}
 | 
						|
 | 
						|
static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | 
						|
    ggml_backend_kompute_device_ref(buft);
 | 
						|
    auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size));
 | 
						|
    return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size);
 | 
						|
}
 | 
						|
 | 
						|
static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
 | 
						|
    auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
 | 
						|
    return ctx->buffer_alignment;
 | 
						|
}
 | 
						|
 | 
						|
static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
 | 
						|
    auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
 | 
						|
    return ctx->max_alloc;
 | 
						|
}
 | 
						|
 | 
						|
static bool ggml_backend_kompute_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
 | 
						|
    GGML_UNUSED(buft);
 | 
						|
    return ggml_backend_is_kompute(backend);
 | 
						|
}
 | 
						|
 | 
						|
static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = {
 | 
						|
    /* .get_name         = */ ggml_backend_kompute_buffer_type_get_name,
 | 
						|
    /* .alloc_buffer     = */ ggml_backend_kompute_buffer_type_alloc_buffer,
 | 
						|
    /* .get_alignment    = */ ggml_backend_kompute_buffer_type_get_alignment,
 | 
						|
    /* .get_max_size     = */ ggml_backend_vk_buffer_type_get_max_size,
 | 
						|
    /* .get_alloc_size   = */ NULL, // defaults to ggml_nbytes
 | 
						|
    /* .supports_backend = */ ggml_backend_kompute_buffer_type_supports_backend,
 | 
						|
    /* .is_host          = */ NULL,
 | 
						|
};
 | 
						|
 | 
						|
ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) {
 | 
						|
    static std::vector<ggml_backend_buffer_type> bufts = []() {
 | 
						|
        std::vector<ggml_backend_buffer_type> vec;
 | 
						|
        auto devices = ggml_vk_available_devices_internal(0);
 | 
						|
        vec.reserve(devices.size());
 | 
						|
 | 
						|
        for (const auto & dev : devices) {
 | 
						|
            vec.push_back({
 | 
						|
                /* .iface   = */ ggml_backend_kompute_buffer_type_interface,
 | 
						|
                /* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc)
 | 
						|
            });
 | 
						|
        }
 | 
						|
        return vec;
 | 
						|
    }();
 | 
						|
 | 
						|
    auto it = std::find_if(bufts.begin(), bufts.end(), [device](const ggml_backend_buffer_type & t) {
 | 
						|
        return device == static_cast<ggml_backend_kompute_buffer_type_context *>(t.context)->device;
 | 
						|
    });
 | 
						|
    return it < bufts.end() ? &*it : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// backend
 | 
						|
 | 
						|
static const char * ggml_backend_kompute_name(ggml_backend_t backend) {
 | 
						|
    auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
 | 
						|
    return ctx->name.c_str();
 | 
						|
}
 | 
						|
 | 
						|
static void ggml_backend_kompute_free(ggml_backend_t backend) {
 | 
						|
    auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
 | 
						|
 | 
						|
    assert(ctx == s_kompute_context);
 | 
						|
    s_kompute_context = nullptr;
 | 
						|
    if (ctx != nullptr) {
 | 
						|
        delete ctx;
 | 
						|
    }
 | 
						|
 | 
						|
    delete backend;
 | 
						|
}
 | 
						|
 | 
						|
static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(ggml_backend_t backend) {
 | 
						|
    auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
 | 
						|
    return ggml_backend_kompute_buffer_type(ctx->device);
 | 
						|
}
 | 
						|
 | 
						|
static ggml_status ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
 | 
						|
    auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
 | 
						|
    ggml_vk_graph_compute(ctx, cgraph);
 | 
						|
    return GGML_STATUS_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
 | 
						|
    GGML_UNUSED(backend);
 | 
						|
    return ggml_vk_supports_op(op);
 | 
						|
}
 | 
						|
 | 
						|
static struct ggml_backend_i kompute_backend_i = {
 | 
						|
    /* .get_name                = */ ggml_backend_kompute_name,
 | 
						|
    /* .free                    = */ ggml_backend_kompute_free,
 | 
						|
    /* .get_default_buffer_type = */ ggml_backend_kompute_get_default_buffer_type,
 | 
						|
    /* .set_tensor_async        = */ NULL,
 | 
						|
    /* .get_tensor_async        = */ NULL,
 | 
						|
    /* .cpy_tensor_async        = */ NULL,
 | 
						|
    /* .synchronize             = */ NULL,
 | 
						|
    /* .graph_plan_create       = */ NULL,
 | 
						|
    /* .graph_plan_free         = */ NULL,
 | 
						|
    /* .graph_plan_compute      = */ NULL,
 | 
						|
    /* .graph_compute           = */ ggml_backend_kompute_graph_compute,
 | 
						|
    /* .supports_op             = */ ggml_backend_kompute_supports_op,
 | 
						|
    /* .offload_op              = */ NULL,
 | 
						|
    /* .event_new               = */ NULL,
 | 
						|
    /* .event_free              = */ NULL,
 | 
						|
    /* .event_record            = */ NULL,
 | 
						|
    /* .event_wait              = */ NULL,
 | 
						|
    /* .event_synchronize       = */ NULL,
 | 
						|
};
 | 
						|
 | 
						|
static ggml_guid_t ggml_backend_kompute_guid() {
 | 
						|
    static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca };
 | 
						|
    return &guid;
 | 
						|
}
 | 
						|
 | 
						|
ggml_backend_t ggml_backend_kompute_init(int device) {
 | 
						|
    GGML_ASSERT(s_kompute_context == nullptr);
 | 
						|
    s_kompute_context = new ggml_kompute_context(device);
 | 
						|
 | 
						|
    ggml_backend_t kompute_backend = new ggml_backend {
 | 
						|
        /* .guid      = */ ggml_backend_kompute_guid(),
 | 
						|
        /* .interface = */ kompute_backend_i,
 | 
						|
        /* .context   = */ s_kompute_context,
 | 
						|
    };
 | 
						|
 | 
						|
    return kompute_backend;
 | 
						|
}
 | 
						|
 | 
						|
bool ggml_backend_is_kompute(ggml_backend_t backend) {
 | 
						|
    return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid());
 | 
						|
}
 | 
						|
 | 
						|
static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) {
 | 
						|
    GGML_UNUSED(params);
 | 
						|
    return ggml_backend_kompute_init(intptr_t(user_data));
 | 
						|
}
 | 
						|
 | 
						|
extern "C" int ggml_backend_kompute_reg_devices();
 | 
						|
 | 
						|
int ggml_backend_kompute_reg_devices() {
 | 
						|
    auto devices = ggml_vk_available_devices_internal(0);
 | 
						|
    for (const auto & device : devices) {
 | 
						|
        ggml_backend_register(
 | 
						|
            ggml_kompute_format_name(device.index).c_str(),
 | 
						|
            ggml_backend_reg_kompute_init,
 | 
						|
            ggml_backend_kompute_buffer_type(device.index),
 | 
						|
            reinterpret_cast<void *>(intptr_t(device.index))
 | 
						|
        );
 | 
						|
    }
 | 
						|
    return devices.size();
 | 
						|
}
 |