mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* (wip) refactor downloading system [no ci] * fix all examples * fix mmproj with -hf * gemma3: update readme * only handle mmproj in llava example * fix multi-shard download * windows: fix problem with std::min and std::max * fix 2
		
			
				
	
	
		
			247 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			247 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "arg.h"
 | 
						|
#include "common.h"
 | 
						|
#include "log.h"
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cstdio>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
static void print_usage(int, char ** argv) {
 | 
						|
    LOG("\nexample usage:\n");
 | 
						|
    LOG("\n    %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
 | 
						|
    LOG("\n");
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    common_params params;
 | 
						|
 | 
						|
    params.prompt = "Hello my name is";
 | 
						|
    params.n_predict = 32;
 | 
						|
 | 
						|
    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    common_init();
 | 
						|
 | 
						|
    // number of parallel batches
 | 
						|
    int n_parallel = params.n_parallel;
 | 
						|
 | 
						|
    // total length of the sequences including the prompt
 | 
						|
    int n_predict = params.n_predict;
 | 
						|
 | 
						|
    // init LLM
 | 
						|
 | 
						|
    llama_backend_init();
 | 
						|
    llama_numa_init(params.numa);
 | 
						|
 | 
						|
    // initialize the model
 | 
						|
 | 
						|
    llama_model_params model_params = common_model_params_to_llama(params);
 | 
						|
 | 
						|
    llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
 | 
						|
 | 
						|
    if (model == NULL) {
 | 
						|
        LOG_ERR("%s: error: unable to load model\n" , __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    const llama_vocab * vocab = llama_model_get_vocab(model);
 | 
						|
 | 
						|
    // tokenize the prompt
 | 
						|
 | 
						|
    std::vector<llama_token> tokens_list;
 | 
						|
    tokens_list = common_tokenize(vocab, params.prompt, true);
 | 
						|
 | 
						|
    const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
 | 
						|
 | 
						|
    // initialize the context
 | 
						|
 | 
						|
    llama_context_params ctx_params = common_context_params_to_llama(params);
 | 
						|
 | 
						|
    ctx_params.n_ctx   = n_kv_req;
 | 
						|
    ctx_params.n_batch = std::max(n_predict, n_parallel);
 | 
						|
 | 
						|
    llama_context * ctx = llama_init_from_model(model, ctx_params);
 | 
						|
 | 
						|
    auto sparams = llama_sampler_chain_default_params();
 | 
						|
    sparams.no_perf = false;
 | 
						|
 | 
						|
    llama_sampler * smpl = llama_sampler_chain_init(sparams);
 | 
						|
 | 
						|
    llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sampling.top_k));
 | 
						|
    llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sampling.top_p, params.sampling.min_keep));
 | 
						|
    llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sampling.temp));
 | 
						|
    llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sampling.seed));
 | 
						|
 | 
						|
    if (ctx == NULL) {
 | 
						|
        LOG_ERR("%s: error: failed to create the llama_context\n" , __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    const int n_ctx = llama_n_ctx(ctx);
 | 
						|
 | 
						|
    LOG_INF("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
 | 
						|
 | 
						|
    // make sure the KV cache is big enough to hold all the prompt and generated tokens
 | 
						|
    if (n_kv_req > n_ctx) {
 | 
						|
        LOG_ERR("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__,  n_kv_req);
 | 
						|
        LOG_ERR("%s:        either reduce n_parallel or increase n_ctx\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // print the prompt token-by-token
 | 
						|
 | 
						|
    LOG("\n");
 | 
						|
 | 
						|
    for (auto id : tokens_list) {
 | 
						|
        LOG("%s", common_token_to_piece(ctx, id).c_str());
 | 
						|
    }
 | 
						|
 | 
						|
    // create a llama_batch
 | 
						|
    // we use this object to submit token data for decoding
 | 
						|
    llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t) n_parallel), 0, n_parallel);
 | 
						|
 | 
						|
    std::vector<llama_seq_id> seq_ids(n_parallel, 0);
 | 
						|
    for (int32_t i = 0; i < n_parallel; ++i) {
 | 
						|
        seq_ids[i] = i;
 | 
						|
    }
 | 
						|
 | 
						|
    // evaluate the initial prompt
 | 
						|
    for (size_t i = 0; i < tokens_list.size(); ++i) {
 | 
						|
        common_batch_add(batch, tokens_list[i], i, seq_ids, false);
 | 
						|
    }
 | 
						|
    GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
 | 
						|
 | 
						|
    if (llama_model_has_encoder(model)) {
 | 
						|
        if (llama_encode(ctx, batch)) {
 | 
						|
            LOG_ERR("%s : failed to eval\n", __func__);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
 | 
						|
        llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
 | 
						|
        if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
 | 
						|
            decoder_start_token_id = llama_vocab_bos(vocab);
 | 
						|
        }
 | 
						|
 | 
						|
        common_batch_clear(batch);
 | 
						|
        common_batch_add(batch, decoder_start_token_id, 0, seq_ids, false);
 | 
						|
    }
 | 
						|
 | 
						|
    // llama_decode will output logits only for the last token of the prompt
 | 
						|
    batch.logits[batch.n_tokens - 1] = true;
 | 
						|
 | 
						|
    if (llama_decode(ctx, batch) != 0) {
 | 
						|
        LOG_ERR("%s: llama_decode() failed\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    //// assign the system KV cache to all parallel sequences
 | 
						|
    //// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
 | 
						|
    //for (int32_t i = 1; i < n_parallel; ++i) {
 | 
						|
    //    llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
 | 
						|
    //}
 | 
						|
 | 
						|
    if (n_parallel > 1) {
 | 
						|
        LOG("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
 | 
						|
    }
 | 
						|
 | 
						|
    // main loop
 | 
						|
 | 
						|
    // we will store the parallel decoded sequences in this vector
 | 
						|
    std::vector<std::string> streams(n_parallel);
 | 
						|
 | 
						|
    // remember the batch index of the last token for each parallel sequence
 | 
						|
    // we need this to determine which logits to sample from
 | 
						|
    std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
 | 
						|
 | 
						|
    int n_cur    = batch.n_tokens;
 | 
						|
    int n_decode = 0;
 | 
						|
 | 
						|
    const auto t_main_start = ggml_time_us();
 | 
						|
 | 
						|
    while (n_cur <= n_predict) {
 | 
						|
        // prepare the next batch
 | 
						|
        common_batch_clear(batch);
 | 
						|
 | 
						|
        // sample the next token for each parallel sequence / stream
 | 
						|
        for (int32_t i = 0; i < n_parallel; ++i) {
 | 
						|
            if (i_batch[i] < 0) {
 | 
						|
                // the stream has already finished
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            const llama_token new_token_id = llama_sampler_sample(smpl, ctx, i_batch[i]);
 | 
						|
 | 
						|
            // is it an end of generation? -> mark the stream as finished
 | 
						|
            if (llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_predict) {
 | 
						|
                i_batch[i] = -1;
 | 
						|
                LOG("\n");
 | 
						|
                if (n_parallel > 1) {
 | 
						|
                    LOG_INF("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
 | 
						|
                }
 | 
						|
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            // if there is only one stream, we print immediately to stdout
 | 
						|
            if (n_parallel == 1) {
 | 
						|
                LOG("%s", common_token_to_piece(ctx, new_token_id).c_str());
 | 
						|
            }
 | 
						|
 | 
						|
            streams[i] += common_token_to_piece(ctx, new_token_id);
 | 
						|
 | 
						|
            i_batch[i] = batch.n_tokens;
 | 
						|
 | 
						|
            // push this new token for next evaluation
 | 
						|
            common_batch_add(batch, new_token_id, n_cur, { i }, true);
 | 
						|
 | 
						|
            n_decode += 1;
 | 
						|
        }
 | 
						|
 | 
						|
        // all streams are finished
 | 
						|
        if (batch.n_tokens == 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        n_cur += 1;
 | 
						|
 | 
						|
        // evaluate the current batch with the transformer model
 | 
						|
        if (llama_decode(ctx, batch)) {
 | 
						|
            LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (n_parallel > 1) {
 | 
						|
        LOG("\n");
 | 
						|
 | 
						|
        for (int32_t i = 0; i < n_parallel; ++i) {
 | 
						|
            LOG("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    const auto t_main_end = ggml_time_us();
 | 
						|
 | 
						|
    LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
 | 
						|
            __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
 | 
						|
 | 
						|
    LOG("\n");
 | 
						|
    llama_perf_sampler_print(smpl);
 | 
						|
    llama_perf_context_print(ctx);
 | 
						|
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
 | 
						|
    llama_batch_free(batch);
 | 
						|
 | 
						|
    llama_sampler_free(smpl);
 | 
						|
    llama_free(ctx);
 | 
						|
    llama_model_free(model);
 | 
						|
 | 
						|
    llama_backend_free();
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |