mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			64 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
#include "alibi.cuh"
 | 
						|
 | 
						|
static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
 | 
						|
                                 const int n_heads_log2_floor, const float m0, const float m1) {
 | 
						|
    const int col = blockDim.x*blockIdx.x + threadIdx.x;
 | 
						|
 | 
						|
    if (col >= ncols) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    const int row = blockDim.y*blockIdx.y + threadIdx.y;
 | 
						|
    const int i = row*ncols + col;
 | 
						|
 | 
						|
    const int k = row/k_rows;
 | 
						|
 | 
						|
    float m_k;
 | 
						|
    if (k < n_heads_log2_floor) {
 | 
						|
        m_k = powf(m0, k + 1);
 | 
						|
    } else {
 | 
						|
        m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
 | 
						|
    }
 | 
						|
 | 
						|
    dst[i] = col * m_k + x[i];
 | 
						|
}
 | 
						|
 | 
						|
static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
 | 
						|
                           const int k_rows, const int n_heads_log2_floor, const float m0,
 | 
						|
                           const float m1, cudaStream_t stream) {
 | 
						|
    const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1);
 | 
						|
    const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE);
 | 
						|
    const dim3 block_nums(num_blocks_x, nrows, 1);
 | 
						|
    alibi_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1);
 | 
						|
}
 | 
						|
 | 
						|
void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | 
						|
    const ggml_tensor * src0 = dst->src[0];
 | 
						|
    const float * src0_d = (const float *)src0->data;
 | 
						|
    float * dst_d = (float *)dst->data;
 | 
						|
    cudaStream_t stream = ctx.stream();
 | 
						|
 | 
						|
    GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | 
						|
    GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | 
						|
 | 
						|
    const int64_t ne00 = src0->ne[0];
 | 
						|
    const int64_t ne01 = src0->ne[1];
 | 
						|
    const int64_t ne02 = src0->ne[2];
 | 
						|
    const int64_t nrows = ggml_nrows(src0);
 | 
						|
 | 
						|
    //const int n_past = ((int32_t *) dst->op_params)[0];
 | 
						|
    const int n_head = ((int32_t *) dst->op_params)[1];
 | 
						|
    float max_bias;
 | 
						|
    memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
 | 
						|
 | 
						|
    //GGML_ASSERT(ne01 + n_past == ne00);
 | 
						|
    GGML_ASSERT(n_head == ne02);
 | 
						|
 | 
						|
    const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
 | 
						|
 | 
						|
    const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
 | 
						|
    const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
 | 
						|
 | 
						|
    alibi_f32_cuda(src0_d, dst_d, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, stream);
 | 
						|
}
 |