mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 6c6e397aff
			
		
	
	6c6e397aff
	
	
	
		
			
			* support smallthinker * support 20b softmax, 4b no sliding window * new build_moe_ffn_from_probs, and can run 4b * fix 4b rope bug * fix python type check * remove is_moe judge * remove set_dense_start_swa_pattern function and modify set_swa_pattern function * trim trailing whitespace * remove get_vocab_base of SmallThinkerModel in convert_hf_to_gguf.py Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * better whitespace Apply suggestions from code review Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * use GGML_ASSERT for expert count validation Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Improve null pointer check for probs Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * use template parameter for SWA attention logic * better whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * move the creation of inp_out_ids before the layer loop * remove redundant judge for probs --------- Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			156 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			156 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "llama-hparams.h"
 | |
| 
 | |
| #include "ggml.h"
 | |
| 
 | |
| void llama_hparams::set_swa_pattern(uint32_t n_pattern, bool dense_first) {
 | |
|     if (dense_first) {
 | |
|         for (uint32_t il = 0; il < n_layer; ++il) {
 | |
|             swa_layers[il] = n_pattern == 0 || (il % n_pattern != 0);
 | |
|         }
 | |
|     } else {
 | |
|         for (uint32_t il = 0; il < n_layer; ++il) {
 | |
|             swa_layers[il] = n_pattern == 0 || (il % n_pattern < (n_pattern - 1));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool llama_hparams::is_swa_any() const {
 | |
|     for (uint32_t il = 0; il < n_layer; ++il) {
 | |
|         if (swa_layers[il]) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| uint32_t llama_hparams::n_head(uint32_t il) const {
 | |
|     if (il < n_layer) {
 | |
|         return n_head_arr[il];
 | |
|     }
 | |
| 
 | |
|     GGML_ABORT("fatal error");
 | |
| }
 | |
| 
 | |
| uint32_t llama_hparams::n_head_kv(uint32_t il) const {
 | |
|     if (il < n_layer) {
 | |
|         return n_head_kv_arr[il];
 | |
|     }
 | |
| 
 | |
|     GGML_ABORT("fatal error");
 | |
| }
 | |
| 
 | |
| uint32_t llama_hparams::n_ff(uint32_t il) const {
 | |
|     if (il < n_layer) {
 | |
|         return n_ff_arr[il];
 | |
|     }
 | |
| 
 | |
|     GGML_ABORT("fatal error");
 | |
| }
 | |
| 
 | |
| uint32_t llama_hparams::n_gqa(uint32_t il) const {
 | |
|     const uint32_t n_head    = this->n_head(il);
 | |
|     const uint32_t n_head_kv = this->n_head_kv(il);
 | |
| 
 | |
|     if (n_head_kv == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return n_head/n_head_kv;
 | |
| }
 | |
| 
 | |
| uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
 | |
|     const uint32_t n_head_kv = this->n_head_kv(il);
 | |
| 
 | |
|     return n_embd_head_k * n_head_kv;
 | |
| }
 | |
| 
 | |
| uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
 | |
|     const uint32_t n_head_kv = this->n_head_kv(il);
 | |
| 
 | |
|     return n_embd_head_v * n_head_kv;
 | |
| }
 | |
| 
 | |
| bool llama_hparams::is_n_embd_k_gqa_variable() const {
 | |
|     const uint32_t val = n_embd_k_gqa();
 | |
|     for (uint32_t il = 0; il < n_layer; ++il) {
 | |
|         if (val != n_embd_k_gqa(il)) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool llama_hparams::is_n_embd_v_gqa_variable() const {
 | |
|     const uint32_t val = n_embd_v_gqa();
 | |
|     for (uint32_t il = 0; il < n_layer; ++il) {
 | |
|         if (val != n_embd_v_gqa(il)) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| uint32_t llama_hparams::n_embd_k_gqa_max() const {
 | |
|     uint32_t val = n_embd_k_gqa();
 | |
|     for (uint32_t il = 0; il < n_layer; ++il) {
 | |
|         val = std::max(val, n_embd_k_gqa(il));
 | |
|     }
 | |
| 
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| uint32_t llama_hparams::n_embd_v_gqa_max() const {
 | |
|     uint32_t val = n_embd_v_gqa();
 | |
|     for (uint32_t il = 0; il < n_layer; ++il) {
 | |
|         val = std::max(val, n_embd_v_gqa(il));
 | |
|     }
 | |
| 
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| uint32_t llama_hparams::n_embd_r() const {
 | |
|     if (wkv_head_size != 0) {
 | |
|         // for RWKV models
 | |
|         return token_shift_count * n_embd;
 | |
|     }
 | |
| 
 | |
|     if (n_shortconv_l_cache != 0) {
 | |
|         // for LFM2 models
 | |
|         return n_embd * (n_shortconv_l_cache - 1);
 | |
|     }
 | |
| 
 | |
|     // TODO: maybe support other convolution strides than 1
 | |
|     // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
 | |
|     // Corresponds to Mamba's conv_states size
 | |
|     return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * (ssm_d_inner + 2*ssm_n_group*ssm_d_state);
 | |
| }
 | |
| 
 | |
| uint32_t llama_hparams::n_embd_s() const {
 | |
|     if (wkv_head_size != 0) {
 | |
|         // corresponds to RWKV's wkv_states size
 | |
|         return n_embd * wkv_head_size;
 | |
|     }
 | |
| 
 | |
|     // corresponds to Mamba's ssm_states size
 | |
|     return ssm_d_state * ssm_d_inner;
 | |
| }
 | |
| 
 | |
| bool llama_hparams::is_recurrent(uint32_t il) const {
 | |
|     return recurrent_layer_arr[il];
 | |
| }
 | |
| 
 | |
| uint32_t llama_hparams::n_pos_per_embd() const {
 | |
|     return rope_type == LLAMA_ROPE_TYPE_MROPE ? 4 : 1;
 | |
| }
 | |
| 
 | |
| bool llama_hparams::is_swa(uint32_t il) const {
 | |
|     if (il < n_layer) {
 | |
|         return swa_layers[il];
 | |
|     }
 | |
| 
 | |
|     GGML_ABORT("fatal error");
 | |
| }
 |