mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	- Add `struct llama_sampler` and `struct llama_sampler_i` - Add `llama_sampler_` API - Add `llama_sampler_chain_` API for chaining multiple samplers - Remove `LLAMA_API_INTERNAL` - Add `llama_perf_` API and remove old `llama_print_timings` and `llama_reset_timings`
		
			
				
	
	
		
			132 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			132 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#pragma once
 | 
						|
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
enum gpt_sampler_type {
 | 
						|
    GPT_SAMPLER_TYPE_NONE        = 0,
 | 
						|
    GPT_SAMPLER_TYPE_TOP_K       = 1,
 | 
						|
    GPT_SAMPLER_TYPE_TOP_P       = 2,
 | 
						|
    GPT_SAMPLER_TYPE_MIN_P       = 3,
 | 
						|
    GPT_SAMPLER_TYPE_TFS_Z       = 4,
 | 
						|
    GPT_SAMPLER_TYPE_TYPICAL_P   = 5,
 | 
						|
    GPT_SAMPLER_TYPE_TEMPERATURE = 6,
 | 
						|
};
 | 
						|
 | 
						|
// sampling parameters
 | 
						|
struct gpt_sampler_params {
 | 
						|
    uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
 | 
						|
 | 
						|
    int32_t n_prev            = 64;    // number of previous tokens to remember
 | 
						|
    int32_t n_probs           = 0;     // if greater than 0, output the probabilities of top n_probs tokens.
 | 
						|
    int32_t min_keep          = 0;     // 0 = disabled, otherwise samplers should return at least min_keep tokens
 | 
						|
    int32_t top_k             = 40;    // <= 0 to use vocab size
 | 
						|
    float   top_p             = 0.95f; // 1.0 = disabled
 | 
						|
    float   min_p             = 0.05f; // 0.0 = disabled
 | 
						|
    float   tfs_z             = 1.00f; // 1.0 = disabled
 | 
						|
    float   typ_p             = 1.00f; // typical_p, 1.0 = disabled
 | 
						|
    float   temp              = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
 | 
						|
    float   dynatemp_range    = 0.00f; // 0.0 = disabled
 | 
						|
    float   dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
 | 
						|
    int32_t penalty_last_n    = 64;    // last n tokens to penalize (0 = disable penalty, -1 = context size)
 | 
						|
    float   penalty_repeat    = 1.00f; // 1.0 = disabled
 | 
						|
    float   penalty_freq      = 0.00f; // 0.0 = disabled
 | 
						|
    float   penalty_present   = 0.00f; // 0.0 = disabled
 | 
						|
    int32_t mirostat          = 0;     // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
 | 
						|
    float   mirostat_tau      = 5.00f; // target entropy
 | 
						|
    float   mirostat_eta      = 0.10f; // learning rate
 | 
						|
    bool    penalize_nl       = false; // consider newlines as a repeatable token
 | 
						|
    bool    ignore_eos        = false;
 | 
						|
 | 
						|
    std::vector<enum gpt_sampler_type> samplers = {
 | 
						|
        GPT_SAMPLER_TYPE_TOP_K,
 | 
						|
        GPT_SAMPLER_TYPE_TFS_Z,
 | 
						|
        GPT_SAMPLER_TYPE_TYPICAL_P,
 | 
						|
        GPT_SAMPLER_TYPE_TOP_P,
 | 
						|
        GPT_SAMPLER_TYPE_MIN_P,
 | 
						|
        GPT_SAMPLER_TYPE_TEMPERATURE
 | 
						|
    };
 | 
						|
 | 
						|
    std::string grammar; // optional BNF-like grammar to constrain sampling
 | 
						|
 | 
						|
    std::vector<llama_logit_bias> logit_bias; // logit biases to apply
 | 
						|
 | 
						|
    // print the parameters into a string
 | 
						|
    std::string print() const;
 | 
						|
};
 | 
						|
 | 
						|
// gpt_sampler extends llama_sampler with additional functionality:
 | 
						|
//
 | 
						|
//  - grammar support
 | 
						|
//  - custom sampler logic based on the parameters
 | 
						|
//  - history of the last accepted tokens
 | 
						|
//  - performance metrics
 | 
						|
//
 | 
						|
// This goal is to have a common implementation of the sampling logic shared across the examples.
 | 
						|
// For example, depending on the temperature, the sampling chain can be very simple (greedy) or more
 | 
						|
// complex (top-k, top-p, etc).
 | 
						|
//
 | 
						|
// Another example is related to the grammar. In general, the grammar constraints applied on the full
 | 
						|
// vocabulary can be very taxing. To improve performance, the grammar can be applied only to the sampled
 | 
						|
// token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
 | 
						|
// grammar constraints are applied to the full vocabulary and the token is resampled.
 | 
						|
//
 | 
						|
// The gpt_sampler also maintains a container with the last accepted tokens. In the future, this can
 | 
						|
// be moved into the core llama library.
 | 
						|
//
 | 
						|
// For convenience, the gpt_sampler also maintains a container with the current candidate tokens.
 | 
						|
// This can be used to access the probabilities of the rest of the non-sampled tokens.
 | 
						|
//
 | 
						|
// TODO: measure grammar performance
 | 
						|
//
 | 
						|
 | 
						|
struct gpt_sampler;
 | 
						|
 | 
						|
// llama_sampler API overloads
 | 
						|
 | 
						|
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params);
 | 
						|
 | 
						|
void gpt_sampler_free(struct gpt_sampler * gsmpl);
 | 
						|
 | 
						|
// if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
 | 
						|
void                 gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar);
 | 
						|
void                 gpt_sampler_reset (struct gpt_sampler * gsmpl);
 | 
						|
struct gpt_sampler * gpt_sampler_clone (struct gpt_sampler * gsmpl);
 | 
						|
 | 
						|
// arguments can be nullptr to skip printing
 | 
						|
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl);
 | 
						|
 | 
						|
// extended sampling implementation:
 | 
						|
//
 | 
						|
// - set logits
 | 
						|
// - apply the configured sampler chain
 | 
						|
// - check if the token fits the grammar (if any)
 | 
						|
// - if not: resample by first applying the grammar constraints and then sampling again (slower path)
 | 
						|
//
 | 
						|
// if grammar_first is true, the grammar is applied before the samplers (slower)
 | 
						|
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
 | 
						|
//
 | 
						|
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
 | 
						|
 | 
						|
// helpers
 | 
						|
 | 
						|
// access the internal list of current candidate tokens
 | 
						|
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl);
 | 
						|
 | 
						|
// get the last accepted token
 | 
						|
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl);
 | 
						|
 | 
						|
// print the sampler chain into a string
 | 
						|
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl);
 | 
						|
 | 
						|
// get a string representation of the last accepted tokens
 | 
						|
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx, int n);
 | 
						|
 | 
						|
char        gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr);
 | 
						|
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr);
 | 
						|
 | 
						|
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
 | 
						|
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars);
 |