mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 f578b86b21
			
		
	
	f578b86b21
	
	
	
		
			
			* move BLAS to a separate backend * rename GGML_USE_OPENBLAS to GGML_USE_BLAS * alloc : reuse same buffer when the same buffer type if used multiple times * set number of threads automatically for openblas and blis * sched : print assignments when GGML_SCHED_DEBUG env variable is set * sched : allow ops with weights on an incompatible buffer type This will cause the weight to be copied to a backend that supports the op, which is very costly. The weight should have been stored in a buffer of a backend that can run the op, but llama.cpp cannot do this automatically at the moment. --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			2039 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2039 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| #include "ggml-backend.h"
 | |
| #include "ggml-backend-impl.h"
 | |
| #include "ggml-kompute.h"
 | |
| 
 | |
| // These are generated at build time by cmake custom command
 | |
| #include "shaderop_scale.h"
 | |
| #include "shaderop_scale_8.h"
 | |
| #include "shaderop_add.h"
 | |
| #include "shaderop_addrow.h"
 | |
| #include "shaderop_mul.h"
 | |
| #include "shaderop_silu.h"
 | |
| #include "shaderop_relu.h"
 | |
| #include "shaderop_gelu.h"
 | |
| #include "shaderop_softmax.h"
 | |
| #include "shaderop_norm.h"
 | |
| #include "shaderop_rmsnorm.h"
 | |
| #include "shaderop_diagmask.h"
 | |
| #include "shaderop_mul_mat_f16.h"
 | |
| #include "shaderop_mul_mat_q8_0.h"
 | |
| #include "shaderop_mul_mat_q4_0.h"
 | |
| #include "shaderop_mul_mat_q4_1.h"
 | |
| #include "shaderop_mul_mat_q6_k.h"
 | |
| #include "shaderop_mul_mat_mat_f32.h"
 | |
| #include "shaderop_getrows_f32.h"
 | |
| #include "shaderop_getrows_f16.h"
 | |
| #include "shaderop_getrows_q4_0.h"
 | |
| #include "shaderop_getrows_q4_1.h"
 | |
| #include "shaderop_getrows_q6_k.h"
 | |
| #include "shaderop_rope_f16.h"
 | |
| #include "shaderop_rope_f32.h"
 | |
| #include "shaderop_cpy_f16_f16.h"
 | |
| #include "shaderop_cpy_f16_f32.h"
 | |
| #include "shaderop_cpy_f32_f16.h"
 | |
| #include "shaderop_cpy_f32_f32.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <array>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <iostream>
 | |
| #include <memory>
 | |
| #include <stdexcept>
 | |
| #include <string>
 | |
| #include <unordered_map>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| #include <kompute/Kompute.hpp>
 | |
| #include <vulkan/vulkan.hpp>
 | |
| 
 | |
| #ifdef __linux__
 | |
| #include <cstdlib> // for setenv
 | |
| #endif
 | |
| 
 | |
| #define QK4_0 32
 | |
| #define QR4_0 2
 | |
| #define QK4_1 32
 | |
| #define QK_NL 16
 | |
| 
 | |
| typedef ggml_fp16_t half;
 | |
| 
 | |
| static std::string ggml_kompute_format_name(int device) {
 | |
|     return "Kompute" + std::to_string(device);
 | |
| }
 | |
| 
 | |
| struct ggml_kompute_context {
 | |
|     int device;
 | |
|     std::string name;
 | |
|     std::shared_ptr<vk::DescriptorPool> pool;
 | |
| 
 | |
|     ggml_kompute_context(int device)
 | |
|         : device(device), name(ggml_kompute_format_name(device)) {}
 | |
| };
 | |
| 
 | |
| // FIXME: It would be good to consolidate the kompute manager and the kompute context into one object
 | |
| // and consolidate the init functions and simplify object lifetime management. As it currently stands,
 | |
| // we *have* to have the kompute manager no matter what for device discovery, but the kompute context
 | |
| // is only created when a device is set and vulkan is explicitly turned on.
 | |
| static ggml_kompute_context *s_kompute_context = nullptr;
 | |
| 
 | |
| class kompute_manager {
 | |
|     kp::Manager *s_mgr = nullptr;
 | |
| 
 | |
| public:
 | |
|     kp::Manager *operator()() {
 | |
|         if (s_mgr && !s_mgr->hasInstance()) {
 | |
|             destroy();
 | |
|         }
 | |
|         if (!s_mgr) {
 | |
|             s_mgr = new kp::Manager;
 | |
|         }
 | |
|         return s_mgr;
 | |
|     }
 | |
| 
 | |
|     void destroy() {
 | |
|         delete s_mgr;
 | |
|         s_mgr = nullptr;
 | |
|     }
 | |
| };
 | |
| 
 | |
| static kompute_manager komputeManager;
 | |
| 
 | |
| struct ggml_vk_memory {
 | |
|     void *data = nullptr;
 | |
|     size_t size = 0;
 | |
|     vk::DeviceMemory *primaryMemory = nullptr;
 | |
|     vk::Buffer *primaryBuffer = nullptr;
 | |
|     vk::DeviceMemory *stagingMemory = nullptr;
 | |
|     vk::Buffer *stagingBuffer = nullptr;
 | |
| };
 | |
| 
 | |
| #ifdef __linux__
 | |
| __attribute__((constructor))
 | |
| static void enable_sam() {
 | |
|     setenv("RADV_PERFTEST", "sam", false);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) {
 | |
|     vk::PhysicalDeviceFeatures availableFeatures;
 | |
|     physical_device.getFeatures(&availableFeatures);
 | |
| 
 | |
|     if (!availableFeatures.shaderInt16)
 | |
|         return false;
 | |
| 
 | |
|     vk::PhysicalDeviceVulkan11Features availableFeatures11;
 | |
|     vk::PhysicalDeviceVulkan12Features availableFeatures12;
 | |
| 
 | |
|     availableFeatures11.pNext = &availableFeatures12;
 | |
|     availableFeatures12.pNext = nullptr;
 | |
| 
 | |
|     vk::PhysicalDeviceFeatures2 features2;
 | |
|     features2.pNext = &availableFeatures11;
 | |
| 
 | |
|     physical_device.getFeatures2(&features2);
 | |
| 
 | |
|     if (!availableFeatures11.uniformAndStorageBuffer16BitAccess ||
 | |
|         !availableFeatures11.storageBuffer16BitAccess) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (!availableFeatures12.storageBuffer8BitAccess ||
 | |
|         !availableFeatures12.uniformAndStorageBuffer8BitAccess ||
 | |
|         !availableFeatures12.shaderFloat16 ||
 | |
|         !availableFeatures12.shaderInt8) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static const char * ggml_vk_getVendorName(uint32_t vendorID) {
 | |
|     switch (vendorID) {
 | |
|         case 0x10DE:
 | |
|             return "nvidia";
 | |
|         case 0x1002:
 | |
|             return "amd";
 | |
|         case 0x8086:
 | |
|             return "intel";
 | |
|         default:
 | |
|             return "unknown";
 | |
|     }
 | |
| }
 | |
| 
 | |
| static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) {
 | |
|     std::vector<ggml_vk_device> results;
 | |
|     if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance())
 | |
|         return results;
 | |
| 
 | |
|     std::vector<vk::PhysicalDevice> physical_devices;
 | |
|     try {
 | |
|         physical_devices = komputeManager()->listDevices();
 | |
|     } catch (vk::SystemError & err) {
 | |
|         std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n";
 | |
|         return results;
 | |
|     }
 | |
| 
 | |
|     uint32_t deviceCount = physical_devices.size();
 | |
|     if (deviceCount == 0)
 | |
|         return results;
 | |
| 
 | |
|     std::unordered_map<std::string, size_t> count_by_name;
 | |
| 
 | |
|     for (uint32_t i = 0; i < deviceCount; i++) {
 | |
|         const auto & physical_device = physical_devices[i];
 | |
| 
 | |
|         VkPhysicalDeviceProperties dev_props = physical_device.getProperties();
 | |
|         VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties();
 | |
|         const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion);
 | |
|         const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion);
 | |
|         if (major < 1 || minor < 2)
 | |
|             continue;
 | |
| 
 | |
|         if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device))
 | |
|             continue;
 | |
| 
 | |
|         size_t heapSize = 0;
 | |
|         for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) {
 | |
|             VkMemoryHeap heap = memoryProperties.memoryHeaps[j];
 | |
|             if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) {
 | |
|                 heapSize = heap.size;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (heapSize < memoryRequired)
 | |
|             continue;
 | |
| 
 | |
|         auto ext_props = physical_device.enumerateDeviceExtensionProperties();
 | |
|         bool has_maintenance4 = false;
 | |
| 
 | |
|         // Check if maintenance4 is supported
 | |
|         for (const auto & properties : ext_props) {
 | |
|             if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
 | |
|                 has_maintenance4 = true;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         vk::PhysicalDeviceSubgroupProperties subgroup_props;
 | |
|         vk::PhysicalDeviceProperties2 dev_props2;
 | |
|         vk::PhysicalDeviceMaintenance3Properties dev_props3;
 | |
|         vk::PhysicalDeviceMaintenance4Properties dev_props4;
 | |
|         dev_props2.pNext = &dev_props3;
 | |
|         dev_props3.pNext = &subgroup_props;
 | |
|         if (has_maintenance4) {
 | |
|             subgroup_props.pNext = &dev_props4;
 | |
|         }
 | |
|         physical_device.getProperties2(&dev_props2);
 | |
| 
 | |
|         if (subgroup_props.subgroupSize < 32)
 | |
|             continue;
 | |
| 
 | |
|         ggml_vk_device d;
 | |
|         d.index = i;
 | |
|         d.type = dev_props.deviceType;
 | |
|         d.heapSize = heapSize;
 | |
|         d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID));
 | |
|         d.subgroupSize = subgroup_props.subgroupSize;
 | |
|         d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment;
 | |
| 
 | |
|         if (has_maintenance4) {
 | |
|             d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize);
 | |
|         } else {
 | |
|             d.maxAlloc = dev_props3.maxMemoryAllocationSize;
 | |
|         }
 | |
| 
 | |
|         std::string name(dev_props.deviceName);
 | |
|         size_t n_idx = ++count_by_name[name];
 | |
|         if (n_idx > 1) {
 | |
|             name += " (" + std::to_string(n_idx) + ")";
 | |
|         }
 | |
|         d.name = strdup(name.c_str());
 | |
| 
 | |
|         results.push_back(d);
 | |
|     }
 | |
| 
 | |
|     std::stable_sort(results.begin(), results.end(),
 | |
|         [](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool {
 | |
|             if (lhs.type != rhs.type) {
 | |
|                 if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true;
 | |
|                 if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false;
 | |
| 
 | |
|                 if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true;
 | |
|                 if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false;
 | |
|             }
 | |
|             return lhs.heapSize < rhs.heapSize;
 | |
|         }
 | |
|     );
 | |
| 
 | |
|     return results;
 | |
| }
 | |
| 
 | |
| // public API returns a C-style array
 | |
| ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) {
 | |
|     auto devices = ggml_vk_available_devices_internal(memoryRequired);
 | |
|     *count = devices.size();
 | |
|     if (devices.empty()) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     size_t nbytes = sizeof (ggml_vk_device) * (devices.size());
 | |
|     auto * arr = static_cast<ggml_vk_device *>(malloc(nbytes));
 | |
|     memcpy(arr, devices.data(), nbytes);
 | |
|     return arr;
 | |
| }
 | |
| 
 | |
| static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) {
 | |
|     devices.erase(
 | |
|         std::remove_if(devices.begin(), devices.end(),
 | |
|             [&targetVendor](const ggml_vk_device& device) {
 | |
|                 return device.vendor != targetVendor;
 | |
|             }),
 | |
|         devices.end()
 | |
|     );
 | |
| }
 | |
| 
 | |
| static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) {
 | |
|     devices.erase(
 | |
|         std::remove_if(devices.begin(), devices.end(),
 | |
|             [&targetName](const ggml_vk_device& device) {
 | |
|                 return device.name != targetName;
 | |
|             }),
 | |
|         devices.end()
 | |
|     );
 | |
| }
 | |
| 
 | |
| static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) {
 | |
|     if (name.empty())
 | |
|         return false;
 | |
| 
 | |
|     auto devices = ggml_vk_available_devices_internal(memoryRequired);
 | |
|     if (name == "amd" || name == "nvidia" || name == "intel") {
 | |
|         ggml_vk_filterByVendor(devices, name);
 | |
|     } else if (name != "gpu") {
 | |
|         ggml_vk_filterByName(devices, name);
 | |
|     }
 | |
| 
 | |
|     if (devices.empty())
 | |
|         return false;
 | |
| 
 | |
|     *device = devices.front();
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) {
 | |
|     return ggml_vk_get_device(device, memoryRequired, std::string(name));
 | |
| }
 | |
| 
 | |
| bool ggml_vk_has_vulkan() {
 | |
|     return komputeManager()->hasVulkan();
 | |
| }
 | |
| 
 | |
| bool ggml_vk_has_device() {
 | |
|     return komputeManager()->hasDevice();
 | |
| }
 | |
| 
 | |
| ggml_vk_device ggml_vk_current_device() {
 | |
|     if (!komputeManager()->hasDevice())
 | |
|         return ggml_vk_device();
 | |
| 
 | |
|     auto devices = ggml_vk_available_devices_internal(0);
 | |
|     ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data());
 | |
|     GGML_ASSERT(!devices.empty());
 | |
|     return devices.front();
 | |
| }
 | |
| 
 | |
| static
 | |
| void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) {
 | |
|     std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = {
 | |
|         vk::DescriptorPoolSize(
 | |
|           vk::DescriptorType::eStorageBuffer,
 | |
|           3 * size // Descriptor count is number of possible tensors to pass into an algorithm
 | |
|           )
 | |
|     };
 | |
| 
 | |
|     vk::DescriptorPoolCreateInfo descriptorPoolInfo(
 | |
|       vk::DescriptorPoolCreateFlags(),
 | |
|       size, // Max sets
 | |
|       static_cast<uint32_t>(descriptorPoolSizes.size()),
 | |
|       descriptorPoolSizes.data());
 | |
| 
 | |
|     ctx->pool = std::make_shared<vk::DescriptorPool>();
 | |
|     vk::Result r = komputeManager()->device()->createDescriptorPool(
 | |
|       &descriptorPoolInfo, nullptr, ctx->pool.get());
 | |
|     if (r != vk::Result::eSuccess)
 | |
|         std::cerr << "Error allocating descriptor pool" << vk::to_string(r);
 | |
| }
 | |
| 
 | |
| static
 | |
| void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) {
 | |
|     if (ctx->pool) {
 | |
|         komputeManager()->device()->destroy(
 | |
|           *ctx->pool,
 | |
|           (vk::Optional<const vk::AllocationCallbacks>)nullptr);
 | |
|         ctx->pool = nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static
 | |
| vk::Buffer *ggml_vk_allocate_buffer(size_t size) {
 | |
|     vk::BufferCreateInfo bufferCreateInfo;
 | |
|     bufferCreateInfo.size = size;
 | |
|     bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer |
 | |
|                              vk::BufferUsageFlagBits::eTransferSrc |
 | |
|                              vk::BufferUsageFlagBits::eTransferDst;
 | |
|     bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
 | |
| 
 | |
|     vk::Buffer *vkBuffer = new vk::Buffer;
 | |
|     vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer);
 | |
|     if (r != vk::Result::eSuccess)
 | |
|         std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl;
 | |
|     return vkBuffer;
 | |
| }
 | |
| 
 | |
| static
 | |
| vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) {
 | |
| 
 | |
|     uint32_t memoryTypeIndex = -1;
 | |
|     bool memoryTypeIndexFound = false;
 | |
|     vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties();
 | |
|     for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) {
 | |
|         const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i];
 | |
|         const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex];
 | |
|         if (memoryHeap.size < size) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (requirements.memoryTypeBits & (1 << i)) {
 | |
|             if (((memoryProperties.memoryTypes[i]).propertyFlags &
 | |
|                  flags) == flags) {
 | |
|                 memoryTypeIndex = i;
 | |
|                 memoryTypeIndexFound = true;
 | |
|                 if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
 | |
|                     *isHostVisible = true;
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (!memoryTypeIndexFound) {
 | |
|         throw std::runtime_error(
 | |
|           "Memory type index for buffer creation not found");
 | |
|     }
 | |
| 
 | |
|     vk::MemoryAllocateInfo allocInfo;
 | |
|     allocInfo.allocationSize = size;
 | |
|     allocInfo.memoryTypeIndex = memoryTypeIndex;
 | |
|     vk::DeviceMemory *vkDeviceMemory =  new vk::DeviceMemory;
 | |
|     vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory);
 | |
|     if (r != vk::Result::eSuccess) {
 | |
|         std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl;
 | |
|         throw std::runtime_error("Error allocating vulkan memory.");
 | |
|     }
 | |
|     return vkDeviceMemory;
 | |
| }
 | |
| 
 | |
| static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) {
 | |
|     size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer);
 | |
| 
 | |
|     // If offset is already aligned, return it directly
 | |
|     if (offset % minStorageBufferOffsetAlignment == 0) {
 | |
|         return offset;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset
 | |
|     return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment;
 | |
| }
 | |
| 
 | |
| static ggml_vk_memory ggml_vk_allocate(size_t size) {
 | |
|     ggml_vk_memory memory;
 | |
|     bool isHostVisible = false;
 | |
|     {
 | |
|         memory.primaryBuffer = ggml_vk_allocate_buffer(size);
 | |
|         vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer);
 | |
|         vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal;
 | |
|         memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
 | |
|         komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0);
 | |
|         if (isHostVisible) {
 | |
|             vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
 | |
|             if (r != vk::Result::eSuccess)
 | |
|                 std::cerr << "Error mapping memory" << vk::to_string(r);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!isHostVisible) {
 | |
|         memory.stagingBuffer = ggml_vk_allocate_buffer(size);
 | |
|         vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer);
 | |
|         vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible |
 | |
|                                                       vk::MemoryPropertyFlagBits::eHostCoherent |
 | |
|                                                       vk::MemoryPropertyFlagBits::eHostCached;
 | |
|         memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
 | |
|         komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0);
 | |
|         vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
 | |
|         if (r != vk::Result::eSuccess)
 | |
|             std::cerr << "Error mapping memory" << vk::to_string(r);
 | |
|     }
 | |
| 
 | |
|     memory.size = size;
 | |
|     return memory;
 | |
| }
 | |
| 
 | |
| static void ggml_vk_free_memory(ggml_vk_memory &memory)
 | |
| {
 | |
|     komputeManager()->device()->destroy(
 | |
|       *memory.primaryBuffer,
 | |
|       (vk::Optional<const vk::AllocationCallbacks>)nullptr);
 | |
|     if (memory.stagingBuffer) {
 | |
|         komputeManager()->device()->destroy(
 | |
|           *memory.stagingBuffer,
 | |
|           (vk::Optional<const vk::AllocationCallbacks>)nullptr);
 | |
|     }
 | |
|     komputeManager()->device()->freeMemory(
 | |
|       *memory.primaryMemory,
 | |
|       (vk::Optional<const vk::AllocationCallbacks>)nullptr);
 | |
|     if (memory.stagingMemory) {
 | |
|         komputeManager()->device()->freeMemory(
 | |
|           *memory.stagingMemory,
 | |
|           (vk::Optional<const vk::AllocationCallbacks>)nullptr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft);
 | |
| 
 | |
| static
 | |
| ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) {
 | |
|     ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
 | |
| 
 | |
|     // compatibility with ggml-backend
 | |
|     GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name);
 | |
| 
 | |
|     ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context);
 | |
| 
 | |
|     const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data);
 | |
| 
 | |
|     GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size));
 | |
| 
 | |
|     offset = uint64_t(ioffs);
 | |
|     return buf_ctx;
 | |
| }
 | |
| 
 | |
| static
 | |
| const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) {
 | |
|     uint64_t originalOffset = 0;
 | |
|     auto * res = ggml_vk_find_tensor(t, originalOffset);
 | |
|     if (!res) {
 | |
|         static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
 | |
|         return nullTensor;
 | |
|     }
 | |
| 
 | |
|     // Create a tensor whose memory will be composed of our buffers at the correct offset
 | |
|     const size_t nelements = ggml_nelements(t);
 | |
|     size_t nbytes = ggml_nbytes(t);
 | |
| 
 | |
|     size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset);
 | |
|     if (alignedOffset) {
 | |
|         *alignedOffset = originalOffset - vulkanOffset;
 | |
|         nbytes += *alignedOffset;
 | |
|     }
 | |
| 
 | |
|     return komputeManager()->tensor(
 | |
|         t->data,
 | |
|         nelements,
 | |
|         nbytes, kp::Tensor::TensorDataTypes::eFloat,
 | |
|         res->primaryMemory, res->primaryBuffer,
 | |
|         res->stagingMemory, res->stagingBuffer,
 | |
|         vulkanOffset);
 | |
| }
 | |
| 
 | |
| static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) {
 | |
|     if (size % sizeof(uint32_t) != 0) {
 | |
|         throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)");
 | |
|     }
 | |
| 
 | |
|     const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData);
 | |
|     size_t count = size / sizeof(uint32_t);
 | |
|     return std::vector<uint32_t>(data_ptr, data_ptr + count);
 | |
| }
 | |
| 
 | |
| inline static
 | |
| uint32_t safe_divide(uint32_t a, uint32_t b) {
 | |
|     if (b <= 1) {
 | |
|         return a;
 | |
|     }
 | |
|     if ((a % b) != 0) {
 | |
|         fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b);
 | |
|         GGML_ASSERT(!"safe_divide result would've had remainder");
 | |
|     }
 | |
|     return a / b;
 | |
| }
 | |
| 
 | |
| static void ggml_vk_add(
 | |
|     kp::Sequence& seq,
 | |
|     const std::shared_ptr<kp::Tensor>& inA,
 | |
|     const std::shared_ptr<kp::Tensor>& inB,
 | |
|     const std::shared_ptr<kp::Tensor>& out,
 | |
|     uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | |
|     int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
 | |
|     int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
 | |
|     int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
 | |
|     int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
 | |
|     int32_t ne0,
 | |
|     int32_t nb0,  int32_t nb1,  int32_t nb2,  int32_t nb3
 | |
| ) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv,
 | |
|         kp::shader_data::op_add_comp_spv_len);
 | |
| 
 | |
|     struct PushConstants {
 | |
|         uint32_t inAOff, inBOff, outOff;
 | |
|         int32_t ne00;
 | |
|         int32_t nb00, nb01, nb02, nb03;
 | |
|         int32_t ne10, ne11, ne12, ne13;
 | |
|         int32_t nb10, nb11, nb12, nb13;
 | |
|         int32_t ne0;
 | |
|         int32_t nb0, nb1, nb2, nb3;
 | |
|     } const pushConsts {
 | |
|         safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | |
|         ne00,
 | |
|         nb00, nb01, nb02, nb03,
 | |
|         ne10, ne11, ne12, ne13,
 | |
|         nb10, nb11, nb12, nb13,
 | |
|         ne0,
 | |
|         nb0, nb1, nb2, nb3
 | |
|     };
 | |
| 
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(__func__)) {
 | |
|         s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
 | |
|     } else {
 | |
|         s_algo = komputeManager()->getAlgorithm(__func__);
 | |
|         s_algo->setTensors({inA, inB, out});
 | |
|         s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| static void ggml_vk_addrow(kp::Sequence& seq,
 | |
|                  const std::shared_ptr<kp::Tensor>& inA,
 | |
|                  const std::shared_ptr<kp::Tensor>& inB,
 | |
|                  const std::shared_ptr<kp::Tensor>& out,
 | |
|                  uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | |
|                  uint32_t size, uint32_t row = 0) {
 | |
| 
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv,
 | |
|         kp::shader_data::op_addrow_comp_spv_len);
 | |
| 
 | |
|     struct PushConstants {
 | |
|         uint32_t inAOff, inBOff, outOff;
 | |
|         uint32_t row;
 | |
|     } const pushConsts {
 | |
|         safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | |
|         row
 | |
|     };
 | |
| 
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(__func__))
 | |
|         s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
 | |
|     else {
 | |
|         s_algo = komputeManager()->getAlgorithm(__func__);
 | |
|         s_algo->setTensors({inA, inB, out});
 | |
|         s_algo->setWorkgroup({size});
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| static void ggml_vk_mul(
 | |
|     kp::Sequence& seq,
 | |
|     const std::shared_ptr<kp::Tensor>& inA,
 | |
|     const std::shared_ptr<kp::Tensor>& inB,
 | |
|     const std::shared_ptr<kp::Tensor>& out,
 | |
|     uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | |
|     int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
 | |
|     int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
 | |
|     int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
 | |
|     int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
 | |
|     int32_t ne0,
 | |
|     int32_t nb0,  int32_t nb1,  int32_t nb2,  int32_t nb3
 | |
| ) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv,
 | |
|         kp::shader_data::op_mul_comp_spv_len);
 | |
| 
 | |
|     struct PushConstants {
 | |
|         uint32_t inAOff, inBOff, outOff;
 | |
|         int32_t ne00;
 | |
|         int32_t nb00, nb01, nb02, nb03;
 | |
|         int32_t ne10, ne11, ne12, ne13;
 | |
|         int32_t nb10, nb11, nb12, nb13;
 | |
|         int32_t ne0;
 | |
|         int32_t nb0, nb1, nb2, nb3;
 | |
|     } const pushConsts {
 | |
|         safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | |
|         ne00,
 | |
|         nb00, nb01, nb02, nb03,
 | |
|         ne10, ne11, ne12, ne13,
 | |
|         nb10, nb11, nb12, nb13,
 | |
|         ne0,
 | |
|         nb0, nb1, nb2, nb3
 | |
|     };
 | |
| 
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(__func__)) {
 | |
|         s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
 | |
|     } else {
 | |
|         s_algo = komputeManager()->getAlgorithm(__func__);
 | |
|         s_algo->setTensors({inA, inB, out});
 | |
|         s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| static void ggml_vk_scale(kp::Sequence& seq,
 | |
|                    const std::shared_ptr<kp::Tensor>& in,
 | |
|                    const std::shared_ptr<kp::Tensor>& out,
 | |
|                    uint32_t inOff, uint32_t outOff,
 | |
|                    uint32_t size, float scale) {
 | |
|     const static auto spirv_1 = getSpirvShader(
 | |
|         kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len
 | |
|     );
 | |
|     const static auto spirv_8 = getSpirvShader(
 | |
|         kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len
 | |
|     );
 | |
| 
 | |
|     struct PushConstants {
 | |
|         uint32_t inOff, outOff;
 | |
|         float scale;
 | |
|     } const pushConsts {
 | |
|         safe_divide(inOff, 4), safe_divide(outOff, 4),
 | |
|         scale
 | |
|     };
 | |
| 
 | |
|     const auto * spirv = &spirv_1;
 | |
|     std::string name(__func__);
 | |
|     if (size % 8 == 0) {
 | |
|         size /= 8;
 | |
|         name += "_8";
 | |
|         spirv = &spirv_8;
 | |
|     }
 | |
| 
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(name)) {
 | |
|         s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts});
 | |
|     } else {
 | |
|         s_algo = komputeManager()->getAlgorithm(name);
 | |
|         s_algo->setTensors({in, out});
 | |
|         s_algo->setWorkgroup({size});
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| static void ggml_vk_xxlu(
 | |
|     const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
 | |
|     const std::shared_ptr<kp::Tensor>& in,
 | |
|     const std::shared_ptr<kp::Tensor>& out,
 | |
|     uint32_t inOff, uint32_t outOff,
 | |
|     uint32_t size
 | |
| ) {
 | |
|     struct PushConstants {
 | |
|         uint32_t inOff, outOff;
 | |
|     } const pushConsts {
 | |
|         safe_divide(inOff, 4), safe_divide(outOff, 4),
 | |
|     };
 | |
| 
 | |
|     auto name = std::string(__func__) + "_" + suffix;
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(name)) {
 | |
|         s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts});
 | |
|     } else {
 | |
|         s_algo = komputeManager()->getAlgorithm(name);
 | |
|         s_algo->setTensors({in, out});
 | |
|         s_algo->setWorkgroup({size});
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_silu(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv,
 | |
|         kp::shader_data::op_silu_comp_spv_len);
 | |
| 
 | |
|     ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_relu(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv,
 | |
|         kp::shader_data::op_relu_comp_spv_len);
 | |
| 
 | |
|     ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_gelu(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv,
 | |
|         kp::shader_data::op_gelu_comp_spv_len);
 | |
| 
 | |
|     ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| static void ggml_vk_soft_max(
 | |
|     kp::Sequence& seq,
 | |
|     const std::shared_ptr<kp::Tensor>& inA,
 | |
|     const std::shared_ptr<kp::Tensor>& inB,
 | |
|     const std::shared_ptr<kp::Tensor>& out,
 | |
|     uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | |
|     int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03,
 | |
|     float scale
 | |
| ) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv,
 | |
|         kp::shader_data::op_softmax_comp_spv_len);
 | |
| 
 | |
|     struct PushConstants {
 | |
|         uint32_t inAOff, inBOff, outOff;
 | |
|         int32_t ne00, ne01, ne02;
 | |
|         float scale;
 | |
|         int32_t mask;
 | |
|     } pushConsts {
 | |
|         safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | |
|         ne00, ne01, ne02,
 | |
|         scale,
 | |
|         bool(inB)
 | |
|     };
 | |
| 
 | |
|     auto & inB_ = inB ? inB : inA;
 | |
| 
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(__func__)) {
 | |
|         // FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device
 | |
|         const uint32_t local_x = 32;
 | |
|         s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts});
 | |
|     } else {
 | |
|         s_algo = komputeManager()->getAlgorithm(__func__);
 | |
|         s_algo->setTensors({inA, inB_, out});
 | |
|         s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| static void ggml_vk_norm_(
 | |
|     const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
 | |
|     const std::shared_ptr<kp::Tensor>& in,
 | |
|     const std::shared_ptr<kp::Tensor>& out,
 | |
|     uint32_t inOff, uint32_t outOff,
 | |
|     int32_t ne00, int32_t nb01,
 | |
|     int32_t nrows, float epsilon
 | |
| ) {
 | |
|     GGML_ASSERT(nb01%sizeof(float) == 0);
 | |
|     GGML_ASSERT(ne00%sizeof(float) == 0);
 | |
| 
 | |
|     struct PushConstants {
 | |
|         uint32_t inOff, outOff;
 | |
|         uint32_t ne00, nb01;
 | |
|         float eps;
 | |
|     } pushConsts {
 | |
|         safe_divide(inOff, 4), safe_divide(outOff, 4),
 | |
|         (uint32_t)ne00, (uint32_t)nb01, epsilon
 | |
|     };
 | |
| 
 | |
|     auto name = std::string(__func__) + "_" + suffix;
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(name)) {
 | |
|         s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts});
 | |
|     } else {
 | |
|         s_algo = komputeManager()->getAlgorithm(name);
 | |
|         s_algo->setTensors({in, out});
 | |
|         s_algo->setWorkgroup({(uint32_t)nrows});
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_norm(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv,
 | |
|         kp::shader_data::op_norm_comp_spv_len);
 | |
| 
 | |
|     ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_rms_norm(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv,
 | |
|         kp::shader_data::op_rmsnorm_comp_spv_len);
 | |
| 
 | |
|     ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| static void ggml_vk_diag_mask_inf(kp::Sequence& seq,
 | |
|                            const std::shared_ptr<kp::Tensor>& in,
 | |
|                            const std::shared_ptr<kp::Tensor>& out,
 | |
|                            uint32_t inOff, uint32_t outOff,
 | |
|                            uint32_t n_past,
 | |
|                            int32_t ne00, int32_t ne01, int32_t ne02) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv,
 | |
|         kp::shader_data::op_diagmask_comp_spv_len);
 | |
| 
 | |
|     struct PushConstants {
 | |
|         uint32_t inOff, outOff;
 | |
|         uint32_t n_past;
 | |
|         int32_t ne00, ne01;
 | |
|     } pushConsts {
 | |
|         safe_divide(inOff, 4), safe_divide(outOff, 4),
 | |
|         n_past,
 | |
|         ne00, ne01
 | |
|     };
 | |
| 
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(__func__))
 | |
|         s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts});
 | |
|     else {
 | |
|         s_algo = komputeManager()->getAlgorithm(__func__);
 | |
|         s_algo->setTensors({in, out});
 | |
|         s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)});
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| static void ggml_vk_mul_mat_f16(
 | |
|     kp::Sequence& seq,
 | |
|     const std::shared_ptr<kp::Tensor>& inA,
 | |
|     const std::shared_ptr<kp::Tensor>& inB,
 | |
|     const std::shared_ptr<kp::Tensor>& out,
 | |
|     uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | |
|     int32_t ne00, int32_t ne01, int32_t ne02,
 | |
|     uint32_t nb00, uint32_t nb01, uint32_t nb02,
 | |
|     int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
 | |
|     uint32_t nb10, uint32_t nb11, uint32_t nb12,
 | |
|     int32_t ne0, int32_t ne1,
 | |
|     uint32_t r2, uint32_t r3
 | |
| ) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv,
 | |
|         kp::shader_data::op_mul_mat_f16_comp_spv_len);
 | |
| 
 | |
|     struct PushConstants {
 | |
|         uint32_t inAOff, inBOff, outOff;
 | |
|         int32_t ne00, ne01, ne02;
 | |
|         uint32_t nb00, nb01, nb02;
 | |
|         int32_t ne10, ne11, ne12;
 | |
|         uint32_t nb10, nb11, nb12;
 | |
|         int32_t ne0, ne1;
 | |
|         uint32_t r2, r3;
 | |
|     } pushConsts {
 | |
|         safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | |
|         ne00, ne01, ne02,
 | |
|         nb00, nb01, nb02,
 | |
|         ne10, ne11, ne12,
 | |
|         nb10, nb11, nb12,
 | |
|         ne0, ne1,
 | |
|         r2, r3
 | |
|     };
 | |
| 
 | |
|     const unsigned ny = unsigned((ne11 + 4 - 1)/4);
 | |
| 
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(__func__)) {
 | |
|         const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
 | |
|         s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts});
 | |
|     } else {
 | |
|         s_algo = komputeManager()->getAlgorithm(__func__);
 | |
|         s_algo->setTensors({inA, inB, out});
 | |
|         s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)});
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq,
 | |
|                          const std::shared_ptr<kp::Tensor>& inA,
 | |
|                          const std::shared_ptr<kp::Tensor>& inB,
 | |
|                          const std::shared_ptr<kp::Tensor>& out,
 | |
|                          uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | |
|                          int32_t ne00, int32_t ne01, int32_t ne02,
 | |
|                          uint32_t nb01, uint32_t nb02,
 | |
|                          int32_t ne11, int32_t ne12,
 | |
|                          uint32_t nb11, uint32_t nb12,
 | |
|                          uint32_t nb1, uint32_t nb2) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv,
 | |
|         kp::shader_data::op_mul_mat_mat_f32_comp_spv_len);
 | |
| 
 | |
|     struct PushConstants {
 | |
|         uint32_t inAOff, inBOff, outOff;
 | |
|         int32_t ne00, ne01, ne02, ne11, ne12;
 | |
|         uint32_t nb01, nb02;
 | |
|         uint32_t nb11, nb12;
 | |
|         uint32_t nb1, nb2;
 | |
|     } pushConsts {
 | |
|         safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | |
|         ne00, ne01, ne02, ne11, ne12,
 | |
|         nb01, nb02, nb11, nb12,
 | |
|         nb1, nb2
 | |
|     };
 | |
| 
 | |
|     const uint32_t local_x = ggml_vk_current_device().subgroupSize;
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(__func__)) {
 | |
|         s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(),
 | |
|         {inA, inB, out}, spirv,
 | |
|         {unsigned(ne01),
 | |
|          unsigned(ne11),
 | |
|          unsigned(std::max(ne12, ne02))
 | |
|          },
 | |
|         {local_x},
 | |
|         {pushConsts});
 | |
|     } else {
 | |
|         s_algo = komputeManager()->getAlgorithm(__func__);
 | |
|         s_algo->setTensors({inA, inB, out});
 | |
|         s_algo->setWorkgroup({unsigned(ne01),
 | |
|                               unsigned(ne11),
 | |
|                               unsigned(std::max(ne12, ne02)),
 | |
|                               });
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| static void ggml_vk_mul_mat_impl(
 | |
|     const std::vector<uint32_t>& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq,
 | |
|     const std::shared_ptr<kp::Tensor>& inA,
 | |
|     const std::shared_ptr<kp::Tensor>& inB,
 | |
|     const std::shared_ptr<kp::Tensor>& out,
 | |
|     uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | |
|     int32_t ne00, int32_t ne01, int32_t ne02,
 | |
|     int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
 | |
|     int32_t ne0, int32_t ne1,
 | |
|     uint32_t r2, uint32_t r3
 | |
| ) {
 | |
|     struct PushConstants {
 | |
|         uint32_t inAOff, inBOff, outOff;
 | |
|         int32_t ne00, ne01, ne02;
 | |
|         int32_t ne10, ne12;
 | |
|         int32_t ne0, ne1;
 | |
|         uint32_t r2, r3;
 | |
|     } pushConsts {
 | |
|         safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | |
|         ne00, ne01, ne02,
 | |
|         ne10, ne12,
 | |
|         ne0, ne1,
 | |
|         r2, r3
 | |
|     };
 | |
| 
 | |
|     auto name = std::string(__func__) + "_" + suffix;
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(name)) {
 | |
|         const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
 | |
|         s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts});
 | |
|     } else {
 | |
|         s_algo = komputeManager()->getAlgorithm(name);
 | |
|         s_algo->setTensors({inA, inB, out});
 | |
|         s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)});
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_mul_mat_q4_0(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv,
 | |
|         kp::shader_data::op_mul_mat_q4_0_comp_spv_len);
 | |
| 
 | |
|     ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_mul_mat_q4_1(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv,
 | |
|         kp::shader_data::op_mul_mat_q4_1_comp_spv_len);
 | |
| 
 | |
|     ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_mul_mat_q8_0(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv,
 | |
|         kp::shader_data::op_mul_mat_q8_0_comp_spv_len);
 | |
| 
 | |
|     ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| static void ggml_vk_mul_mat_q6_k(
 | |
|     kp::Sequence& seq,
 | |
|     const std::shared_ptr<kp::Tensor>& inA,
 | |
|     const std::shared_ptr<kp::Tensor>& inB,
 | |
|     const std::shared_ptr<kp::Tensor>& out,
 | |
|     uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | |
|     int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne1,
 | |
|     int32_t ne01, int32_t ne11, int32_t ne12, int32_t ne02
 | |
| ) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv,
 | |
|         kp::shader_data::op_mul_mat_q6_k_comp_spv_len);
 | |
| 
 | |
|     struct PushConstants {
 | |
|         uint32_t inAOff, inBOff, outOff;
 | |
|         int32_t ne00, ne10, ne0, ne1, ne01, gqa;
 | |
|     } pushConsts {
 | |
|         inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | |
|         ne00, ne10, ne0, ne1, ne01, ne12/ne02
 | |
|     };
 | |
| 
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(__func__)) {
 | |
|         const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
 | |
|         s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}, {local_x}, {pushConsts});
 | |
|     } else {
 | |
|         s_algo = komputeManager()->getAlgorithm(__func__);
 | |
|         s_algo->setTensors({inA, inB, out});
 | |
|         s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)});
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| static void ggml_vk_get_rows(
 | |
|     const std::vector<uint32_t>& spirv,
 | |
|     const char * suffix,
 | |
|     unsigned element_size, unsigned qk,
 | |
|     kp::Sequence& seq,
 | |
|     const std::shared_ptr<kp::Tensor>& inA,
 | |
|     const std::shared_ptr<kp::Tensor>& inB,
 | |
|     const std::shared_ptr<kp::Tensor>& out,
 | |
|     uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | |
|     int32_t ne00, int32_t nb01, int32_t nb1,
 | |
|     uint32_t size
 | |
| ) {
 | |
|     GGML_ASSERT(nb01%element_size == 0);
 | |
|     GGML_ASSERT(nb1%sizeof(float) == 0);
 | |
|     if (qk) GGML_ASSERT(ne00%qk == 0);
 | |
| 
 | |
|     struct PushConstants {
 | |
|         uint32_t inAOff, inBOff, outOff;
 | |
|         int32_t ne00, nb01, nb1;
 | |
|     } pushConsts {
 | |
|         safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
 | |
|         ne00, nb01, nb1
 | |
|     };
 | |
| 
 | |
|     auto name = std::string(__func__) + "_" + suffix;
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(name)) {
 | |
|         s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
 | |
|     } else {
 | |
|         s_algo = komputeManager()->getAlgorithm(name);
 | |
|         s_algo->setTensors({inA, inB, out});
 | |
|         s_algo->setWorkgroup({size});
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_get_rows_f32(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f32_comp_spv,
 | |
|         kp::shader_data::op_getrows_f32_comp_spv_len);
 | |
| 
 | |
|     ggml_vk_get_rows(spirv, "f32", sizeof(float), 0, std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_get_rows_f16(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv,
 | |
|         kp::shader_data::op_getrows_f16_comp_spv_len);
 | |
| 
 | |
|     ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_get_rows_q4_0(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv,
 | |
|         kp::shader_data::op_getrows_q4_0_comp_spv_len);
 | |
| 
 | |
|     ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_get_rows_q4_1(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv,
 | |
|         kp::shader_data::op_getrows_q4_1_comp_spv_len);
 | |
| 
 | |
|     ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_get_rows_q6_k(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv,
 | |
|         kp::shader_data::op_getrows_q6_k_comp_spv_len);
 | |
|     ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| static void ggml_vk_rope(
 | |
|     kp::Sequence& seq,
 | |
|     const std::shared_ptr<kp::Tensor>& inA,
 | |
|     const std::shared_ptr<kp::Tensor>& inB,
 | |
|     const std::shared_ptr<kp::Tensor>& out,
 | |
|     uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
 | |
|     ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_ctx_orig,
 | |
|     float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow,
 | |
|     int32_t ne01, int32_t ne02, int32_t ne03,
 | |
|     uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
 | |
|     int32_t ne0,
 | |
|     uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
 | |
| ) {
 | |
|     GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32);
 | |
| 
 | |
|     static const auto spirv_f16 = getSpirvShader(
 | |
|         kp::shader_data::op_rope_f16_comp_spv, kp::shader_data::op_rope_f16_comp_spv_len
 | |
|     );
 | |
|     static const auto spirv_f32 = getSpirvShader(
 | |
|         kp::shader_data::op_rope_f32_comp_spv, kp::shader_data::op_rope_f32_comp_spv_len
 | |
|     );
 | |
| 
 | |
|     int type_size = src0t == GGML_TYPE_F16 ? 2 : 4;
 | |
| 
 | |
|     GGML_ASSERT(nb03 % type_size == 0);
 | |
|     GGML_ASSERT(nb02 % type_size == 0);
 | |
|     GGML_ASSERT(nb01 % type_size == 0);
 | |
|     GGML_ASSERT(nb00 % type_size == 0);
 | |
|     GGML_ASSERT(nb3  % type_size == 0);
 | |
|     GGML_ASSERT(nb2  % type_size == 0);
 | |
|     GGML_ASSERT(nb1  % type_size == 0);
 | |
|     GGML_ASSERT(nb0  % type_size == 0);
 | |
| 
 | |
|     struct PushConstants {
 | |
|         uint32_t inAOff, inBOff, outOff;
 | |
|         int32_t n_dims, mode, n_ctx_orig;
 | |
|         float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
 | |
|         uint32_t nb00, nb01, nb02, nb03;
 | |
|         int32_t ne0;
 | |
|         uint32_t nb0, nb1, nb2, nb3;
 | |
|     } pushConsts {
 | |
|         safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size),
 | |
|         n_dims, mode, n_ctx_orig,
 | |
|         freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
 | |
|         nb00, nb01, nb02, nb03,
 | |
|         ne0,
 | |
|         nb0, nb1, nb2, nb3
 | |
|     };
 | |
| 
 | |
|     auto name = std::string(__func__) + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32");
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(name)) {
 | |
|         s_algo = komputeManager()->algorithm<float, PushConstants>(
 | |
|             name, s_kompute_context->pool.get(), {inA, inB, out},
 | |
|             src0t == GGML_TYPE_F16 ? spirv_f16 : spirv_f32,
 | |
|             {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}
 | |
|         );
 | |
|     } else {
 | |
|         s_algo = komputeManager()->getAlgorithm(name);
 | |
|         s_algo->setTensors({inA, inB, out});
 | |
|         s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| static void ggml_vk_cpy(
 | |
|     const std::vector<uint32_t>& spirv,
 | |
|     uint32_t in_element_size, uint32_t out_element_size,
 | |
|     kp::Sequence& seq,
 | |
|     const std::shared_ptr<kp::Tensor>& in,
 | |
|     const std::shared_ptr<kp::Tensor>& out,
 | |
|     uint32_t inOff, uint32_t outOff,
 | |
|     int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
 | |
|     uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
 | |
|     int32_t ne0, int32_t ne1, int32_t ne2,
 | |
|     uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
 | |
| ) {
 | |
|     struct PushConstants {
 | |
|         uint32_t inOff, outOff;
 | |
|         int32_t ne00, ne01, ne02;
 | |
|         uint32_t nb00, nb01, nb02, nb03;
 | |
|         int32_t ne0, ne1, ne2;
 | |
|         uint32_t nb0, nb1, nb2, nb3;
 | |
|     } pushConsts {
 | |
|         safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size),
 | |
|         ne00, ne01, ne02,
 | |
|         nb00, nb01, nb02, nb03,
 | |
|         ne0, ne1, ne2,
 | |
|         nb0, nb1, nb2, nb3
 | |
|     };
 | |
| 
 | |
|     std::string name = std::string(__func__)
 | |
|                        + "_i_" + std::to_string(in_element_size)
 | |
|                        + "_o_" + std::to_string(out_element_size);
 | |
|     std::shared_ptr<kp::Algorithm> s_algo = nullptr;
 | |
|     if (!komputeManager()->hasAlgorithm(name))
 | |
|         s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
 | |
|     else {
 | |
|         s_algo = komputeManager()->getAlgorithm(name);
 | |
|         s_algo->setTensors({in, out});
 | |
|         s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
 | |
|         s_algo->setPushConstants<PushConstants>({pushConsts});
 | |
|         s_algo->updateDescriptors(s_kompute_context->pool.get());
 | |
|     }
 | |
|     seq.record<kp::OpAlgoDispatch>(s_algo);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_cpy_f32_f16(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv,
 | |
|         kp::shader_data::op_cpy_f32_f16_comp_spv_len);
 | |
|     ggml_vk_cpy(spirv, 4, 2, std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_cpy_f32_f32(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv,
 | |
|         kp::shader_data::op_cpy_f32_f32_comp_spv_len);
 | |
|     ggml_vk_cpy(spirv, 4, 4, std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_cpy_f16_f16(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv,
 | |
|         kp::shader_data::op_cpy_f16_f16_comp_spv_len);
 | |
|     ggml_vk_cpy(spirv, 2, 2, std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| template <typename... Args>
 | |
| static void ggml_vk_cpy_f16_f32(Args&&... args) {
 | |
|     const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv,
 | |
|         kp::shader_data::op_cpy_f16_f32_comp_spv_len);
 | |
|     ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...);
 | |
| }
 | |
| 
 | |
| static bool ggml_vk_supports_op(const struct ggml_tensor * op) {
 | |
|     switch (op->type) {
 | |
|         case GGML_TYPE_F16:
 | |
|         case GGML_TYPE_F32:
 | |
|         case GGML_TYPE_Q4_0:
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             break;
 | |
|         default:
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     switch (op->op) {
 | |
|         case GGML_OP_UNARY:
 | |
|             switch (ggml_get_unary_op(op)) {
 | |
|                 case GGML_UNARY_OP_RELU:
 | |
|                 case GGML_UNARY_OP_GELU:
 | |
|                 case GGML_UNARY_OP_SILU:
 | |
|                     return ggml_is_contiguous(op->src[0]);
 | |
|                 default:
 | |
|                     ;
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_NONE:
 | |
|         case GGML_OP_RESHAPE:
 | |
|         case GGML_OP_VIEW:
 | |
|         case GGML_OP_TRANSPOSE:
 | |
|         case GGML_OP_PERMUTE:
 | |
|         case GGML_OP_ADD:
 | |
|         case GGML_OP_MUL:
 | |
|         case GGML_OP_SCALE:
 | |
|         case GGML_OP_SOFT_MAX:
 | |
|         case GGML_OP_RMS_NORM:
 | |
|         case GGML_OP_NORM:
 | |
|         case GGML_OP_ROPE:
 | |
|             return true;
 | |
|         case GGML_OP_DUP:
 | |
|         case GGML_OP_CPY:
 | |
|         case GGML_OP_CONT:
 | |
|             switch (op->src[0]->type) {
 | |
|                 case GGML_TYPE_F32:
 | |
|                 case GGML_TYPE_F16:
 | |
|                     break;
 | |
|                 default:
 | |
|                     return false;
 | |
|             }
 | |
|             switch (op->type) {
 | |
|                 case GGML_TYPE_F32:
 | |
|                 case GGML_TYPE_F16:
 | |
|                     break;
 | |
|                 default:
 | |
|                     return false;
 | |
|             }
 | |
|             return true;
 | |
|         case GGML_OP_DIAG_MASK_INF:
 | |
|             return op->ne[3] == 1;
 | |
|         case GGML_OP_GET_ROWS:
 | |
|             switch (op->src[0]->type) {
 | |
|                 case GGML_TYPE_F32:
 | |
|                 case GGML_TYPE_F16:
 | |
|                 case GGML_TYPE_Q4_0:
 | |
|                 case GGML_TYPE_Q4_1:
 | |
|                 case GGML_TYPE_Q6_K:
 | |
|                     return op->ne[2] == 1 && op->ne[3] == 1;
 | |
|                 default:
 | |
|                     ;
 | |
|             }
 | |
|             return false;
 | |
|         case GGML_OP_MUL_MAT:
 | |
|             if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1]))
 | |
|                 return false;
 | |
| 
 | |
|             switch (op->src[0]->type) {
 | |
|                 case GGML_TYPE_F32:
 | |
|                 case GGML_TYPE_Q6_K:
 | |
|                     return op->ne[3] == 1;
 | |
|                 case GGML_TYPE_F16:
 | |
|                 case GGML_TYPE_Q8_0:
 | |
|                 case GGML_TYPE_Q4_0:
 | |
|                 case GGML_TYPE_Q4_1:
 | |
|                     return true;
 | |
|                 default:
 | |
|                     ;
 | |
|             }
 | |
|         default:
 | |
|             ;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) {
 | |
|     const int n_seq = 8;
 | |
| 
 | |
|     // FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting
 | |
|     // it to the size of the graph, but I think it can be made smaller?
 | |
|     ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes);
 | |
| 
 | |
|     std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq);
 | |
| 
 | |
|     for (auto& sequence : sequences) {
 | |
|         sequence = komputeManager()->sequence();
 | |
|     }
 | |
|     for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) {
 | |
|         const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq;
 | |
| 
 | |
|         auto& seq = *sequences[seq_idx];
 | |
| 
 | |
|         const int node_start = (seq_idx + 0) * n_nodes_per_seq;
 | |
|         const int node_end   = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes);
 | |
| 
 | |
|         bool any_commands_recorded = false;
 | |
| 
 | |
|         for (int i = node_start; i < node_end; ++i) {
 | |
|             struct ggml_tensor * src0 = gf->nodes[i]->src[0];
 | |
|             struct ggml_tensor * src1 = gf->nodes[i]->src[1];
 | |
|             struct ggml_tensor * src2 = gf->nodes[i]->src[2]; GGML_UNUSED(src2);
 | |
|             struct ggml_tensor * dst = gf->nodes[i];
 | |
|             GGML_ASSERT(dst->data != nullptr);
 | |
| 
 | |
|             if (ggml_is_empty(dst)) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             switch (dst->op) {
 | |
|                 case GGML_OP_NONE:
 | |
|                 case GGML_OP_RESHAPE:
 | |
|                 case GGML_OP_VIEW:
 | |
|                 case GGML_OP_TRANSPOSE:
 | |
|                 case GGML_OP_PERMUTE:
 | |
|                     continue; // noop -> next node
 | |
|                 default:
 | |
|                     break;
 | |
|             }
 | |
| 
 | |
|             any_commands_recorded = true;
 | |
| 
 | |
|             if (!ggml_vk_supports_op(dst)) {
 | |
|                  fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
 | |
|                  GGML_ASSERT(!"unsupported op");
 | |
|             }
 | |
| 
 | |
|             const int32_t ne00 = src0 ? src0->ne[0] : 0;
 | |
|             const int32_t ne01 = src0 ? src0->ne[1] : 0;
 | |
|             const int32_t ne02 = src0 ? src0->ne[2] : 0;
 | |
|             const int32_t ne03 = src0 ? src0->ne[3] : 0;
 | |
| 
 | |
|             const uint32_t nb00 = src0 ? src0->nb[0] : 0;
 | |
|             const uint32_t nb01 = src0 ? src0->nb[1] : 0;
 | |
|             const uint32_t nb02 = src0 ? src0->nb[2] : 0;
 | |
|             const uint32_t nb03 = src0 ? src0->nb[3] : 0;
 | |
| 
 | |
|             const int32_t ne10 = src1 ? src1->ne[0] : 0;
 | |
|             const int32_t ne11 = src1 ? src1->ne[1] : 0;
 | |
|             const int32_t ne12 = src1 ? src1->ne[2] : 0;
 | |
|             const int32_t ne13 = src1 ? src1->ne[3] : 0;
 | |
| 
 | |
|             const uint32_t nb10 = src1 ? src1->nb[0] : 0;
 | |
|             const uint32_t nb11 = src1 ? src1->nb[1] : 0;
 | |
|             const uint32_t nb12 = src1 ? src1->nb[2] : 0;
 | |
|             const uint32_t nb13 = src1 ? src1->nb[3] : 0;
 | |
| 
 | |
|             const int32_t ne0 = dst ? dst->ne[0] : 0;
 | |
|             const int32_t ne1 = dst ? dst->ne[1] : 0;
 | |
|             const int32_t ne2 = dst ? dst->ne[2] : 0;
 | |
| //            const int32_t ne3 = dst ? dst->ne[3] : 0;
 | |
| 
 | |
|             const uint32_t nb0 = dst ? dst->nb[0] : 0;
 | |
|             const uint32_t nb1 = dst ? dst->nb[1] : 0;
 | |
|             const uint32_t nb2 = dst ? dst->nb[2] : 0;
 | |
|             const uint32_t nb3 = dst ? dst->nb[3] : 0;
 | |
| 
 | |
|             const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
 | |
|             const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
 | |
|             const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
 | |
| 
 | |
|             const static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
 | |
|             uint32_t off_src0 = 0;
 | |
|             uint32_t off_src1 = 0;
 | |
|             uint32_t off_dst  = 0;
 | |
|             const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor;
 | |
|             const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor;
 | |
|             const std::shared_ptr<kp::Tensor>& id_dst  = dst  ? ggml_vk_get_tensor(dst,  &off_dst)  : nullTensor;
 | |
| 
 | |
|             switch (dst->op) {
 | |
|                 case GGML_OP_ADD:
 | |
|                     {
 | |
|                         if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
 | |
|                             // src1 is a row
 | |
|                             ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00);
 | |
|                         } else {
 | |
|                             ggml_vk_add(
 | |
|                                 seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | |
|                                 ne00, ne01, ne02, ne03,
 | |
|                                 nb00, nb01, nb02, nb03,
 | |
|                                 ne10, ne11, ne12, ne13,
 | |
|                                 nb10, nb11, nb12, nb13,
 | |
|                                 ne0,
 | |
|                                 nb0, nb1, nb2, nb3
 | |
|                             );
 | |
|                         }
 | |
|                     } break;
 | |
|                 case GGML_OP_MUL:
 | |
|                     {
 | |
|                         ggml_vk_mul(
 | |
|                             seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | |
|                             ne00, ne01, ne02, ne03,
 | |
|                             nb00, nb01, nb02, nb03,
 | |
|                             ne10, ne11, ne12, ne13,
 | |
|                             nb10, nb11, nb12, nb13,
 | |
|                             ne0,
 | |
|                             nb0, nb1, nb2, nb3
 | |
|                         );
 | |
|                     } break;
 | |
|                 case GGML_OP_SCALE:
 | |
|                     {
 | |
|                         float scale; memcpy(&scale, dst->op_params, sizeof(float));
 | |
| 
 | |
|                         ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale);
 | |
|                     } break;
 | |
|                 case GGML_OP_UNARY:
 | |
|                     {
 | |
|                         int64_t n = ggml_nelements(dst);
 | |
|                         GGML_ASSERT(n % 4 == 0);
 | |
|                         switch (ggml_get_unary_op(gf->nodes[i])) {
 | |
|                             case GGML_UNARY_OP_SILU:
 | |
|                                 {
 | |
|                                     ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
 | |
|                                 } break;
 | |
|                             case GGML_UNARY_OP_RELU:
 | |
|                                 {
 | |
|                                     ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
 | |
|                                 } break;
 | |
|                             case GGML_UNARY_OP_GELU:
 | |
|                                 {
 | |
|                                     GGML_ASSERT(n % 8 == 0);
 | |
|                                     ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8);
 | |
|                                 } break;
 | |
|                             default:
 | |
|                                 {
 | |
|                                     fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
 | |
|                                     GGML_ASSERT(false);
 | |
|                                 }
 | |
|                         }
 | |
|                     } break;
 | |
|                 case GGML_OP_SOFT_MAX:
 | |
|                     {
 | |
|                         float scale;
 | |
|                         float max_bias;
 | |
| 
 | |
|                         memcpy(&scale,    (float *)dst->op_params + 0, sizeof(float));
 | |
|                         memcpy(&max_bias, (float *)dst->op_params + 1, sizeof(float));
 | |
| 
 | |
| #pragma message("TODO: add ggml_vk_soft_max() F16 src1 support")
 | |
| #pragma message("ref:  https://github.com/ggerganov/llama.cpp/pull/5021")
 | |
|                         GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32);
 | |
| 
 | |
| #pragma message("TODO: add ALiBi support")
 | |
| #pragma message("ref:  https://github.com/ggerganov/llama.cpp/pull/7192")
 | |
|                         GGML_ASSERT(max_bias == 0.0f);
 | |
| 
 | |
|                         ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale);
 | |
|                     } break;
 | |
|                 case GGML_OP_DIAG_MASK_INF:
 | |
|                     {
 | |
|                         const int n_past = ((int32_t *)(dst->op_params))[0];
 | |
|                         ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02);
 | |
|                     } break;
 | |
|                 case GGML_OP_NORM:
 | |
|                     {
 | |
|                         float eps;
 | |
|                         memcpy(&eps, dst->op_params, sizeof(float));
 | |
|                         ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
 | |
|                     } break;
 | |
|                 case GGML_OP_RMS_NORM:
 | |
|                     {
 | |
|                         GGML_ASSERT(ne00 % 4 == 0);
 | |
| 
 | |
|                         float eps;
 | |
|                         memcpy(&eps, dst->op_params, sizeof(float));
 | |
|                         ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
 | |
|                     } break;
 | |
|                 case GGML_OP_MUL_MAT:
 | |
|                     {
 | |
|                         GGML_ASSERT(ne00 == ne10);
 | |
| 
 | |
|                         GGML_ASSERT(ne12 % ne02 == 0);
 | |
|                         GGML_ASSERT(ne13 % ne03 == 0);
 | |
| 
 | |
|                         const uint32_t r2 = ne12/ne02;
 | |
|                         const uint32_t r3 = ne13/ne03;
 | |
| 
 | |
|                         if (src1t != GGML_TYPE_F32) {
 | |
|                             fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
 | |
|                             goto not_implemented;
 | |
|                         }
 | |
| 
 | |
|                         if (ggml_is_transposed(src0) ||
 | |
|                             ggml_is_transposed(src1)) {
 | |
|                             fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
 | |
|                             goto not_implemented;
 | |
|                         }
 | |
| 
 | |
|                         switch (src0t) {
 | |
|                             case GGML_TYPE_F32:
 | |
|                                 ggml_vk_mul_mat_mat_f32(
 | |
|                                     seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | |
|                                     ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2
 | |
|                                 );
 | |
|                                 break;
 | |
|                             case GGML_TYPE_F16:
 | |
|                                 ggml_vk_mul_mat_f16(
 | |
|                                     seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | |
|                                     ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, ne13, nb10, nb11, nb12,
 | |
|                                     ne0, ne1, r2, r3
 | |
|                                 );
 | |
|                                 break;
 | |
|                             case GGML_TYPE_Q8_0:
 | |
|                                 ggml_vk_mul_mat_q8_0(
 | |
|                                     seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | |
|                                     ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
 | |
|                                 );
 | |
|                                 break;
 | |
|                             case GGML_TYPE_Q4_0:
 | |
|                                 ggml_vk_mul_mat_q4_0(
 | |
|                                     seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | |
|                                     ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
 | |
|                                 );
 | |
|                                 break;
 | |
|                             case GGML_TYPE_Q4_1:
 | |
|                                 ggml_vk_mul_mat_q4_1(
 | |
|                                     seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | |
|                                     ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
 | |
|                                 );
 | |
|                                 break;
 | |
|                             case GGML_TYPE_Q6_K:
 | |
|                                 ggml_vk_mul_mat_q6_k(
 | |
|                                     seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
 | |
|                                     ne00, ne10, ne0, ne1, ne01, ne11, ne12, ne02
 | |
|                                 );
 | |
|                                 break;
 | |
|                             default: {
 | |
|                                 fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
 | |
|                                 goto not_implemented;
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                     } break;
 | |
|                 case GGML_OP_GET_ROWS:
 | |
|                     {
 | |
|                         if (src0t == GGML_TYPE_F32) {
 | |
|                             ggml_vk_get_rows_f32(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
 | |
|                         } else if (src0t == GGML_TYPE_F16) {
 | |
|                             ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
 | |
|                         } else if (src0t == GGML_TYPE_Q4_0) {
 | |
|                             ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
 | |
|                         } else if (src0t == GGML_TYPE_Q4_1) {
 | |
|                             ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
 | |
|                         } else if (src0t == GGML_TYPE_Q6_K) {
 | |
|                             ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
 | |
|                         } else {
 | |
|                             fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t);
 | |
|                             goto not_implemented;
 | |
|                         }
 | |
|                     } break;
 | |
|                 case GGML_OP_ROPE:
 | |
|                     {
 | |
| #pragma message("TODO: implement phi3 frequency factors support")
 | |
| #pragma message("      https://github.com/ggerganov/llama.cpp/pull/7225")
 | |
|                         GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet");
 | |
| 
 | |
| #pragma message("TODO: update rope NORM mode to match NEOX mode")
 | |
| #pragma message("      https://github.com/ggerganov/llama.cpp/pull/7634")
 | |
| 
 | |
|                         GGML_ASSERT(ne10 == ne02);
 | |
|                         GGML_ASSERT(src0t == dstt);
 | |
|                         // const int n_past = ((int32_t *) dst->op_params)[0];
 | |
|                         const int n_dims     = ((int32_t *) dst->op_params)[1];
 | |
|                         const int mode       = ((int32_t *) dst->op_params)[2];
 | |
|                         // skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan
 | |
|                         const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
 | |
| 
 | |
|                         float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
 | |
|                         memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
 | |
|                         memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
 | |
|                         memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
 | |
|                         memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
 | |
|                         memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
 | |
|                         memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
 | |
|                         ggml_vk_rope(
 | |
|                             seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_ctx_orig,
 | |
|                             freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
 | |
|                             ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3
 | |
|                         );
 | |
|                     } break;
 | |
|                 case GGML_OP_DUP:
 | |
|                 case GGML_OP_CPY:
 | |
|                 case GGML_OP_CONT:
 | |
|                     {
 | |
|                         switch (src0t) {
 | |
|                             case GGML_TYPE_F32:
 | |
|                                 {
 | |
|                                     switch (dstt) {
 | |
|                                         case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
 | |
|                                         case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
 | |
|                                         default: goto not_implemented;
 | |
|                                     }
 | |
|                                 } break;
 | |
|                             case GGML_TYPE_F16:
 | |
|                                 {
 | |
|                                     switch (dstt) {
 | |
|                                         case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
 | |
|                                         case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
 | |
|                                     default: goto not_implemented;
 | |
|                                 } break;
 | |
|                             default: goto not_implemented;
 | |
|                             }
 | |
|                         }
 | |
|                     } break;
 | |
|                 default: goto not_implemented;
 | |
|             }
 | |
|             continue;
 | |
|             not_implemented: {}
 | |
|             fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
 | |
|             //GGML_ASSERT(false);
 | |
|         }
 | |
| 
 | |
|         // Evaluate sequence
 | |
|         if (any_commands_recorded) {
 | |
|             seq.evalAsync();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Wait for all sequences to finish
 | |
|     for (auto& sequence : sequences) {
 | |
|         if (sequence->isRunning())
 | |
|             sequence->evalAwait();
 | |
|     }
 | |
| 
 | |
|     ggml_vk_free_descriptor_pool(ctx);
 | |
| }
 | |
| 
 | |
| template<>
 | |
| kp::Tensor::TensorDataTypes
 | |
| kp::TensorT<half>::dataType()
 | |
| {
 | |
|     return TensorDataTypes::eFloat;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| kp::Tensor::TensorDataTypes
 | |
| kp::TensorT<uint8_t>::dataType()
 | |
| {
 | |
|     return TensorDataTypes::eUnsignedInt;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| // backend interface
 | |
| 
 | |
| struct ggml_backend_kompute_buffer_type_context {
 | |
|     int         device;
 | |
|     int         device_ref = 0;
 | |
|     uint64_t    buffer_alignment;
 | |
|     uint64_t    max_alloc;
 | |
|     std::string name;
 | |
| 
 | |
|     ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc)
 | |
|         : device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {}
 | |
| };
 | |
| 
 | |
| static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) {
 | |
|     auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
 | |
| 
 | |
|     if (!ctx->device_ref) {
 | |
|         komputeManager()->initializeDevice(
 | |
|             ctx->device, {}, {
 | |
|                 "VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage",
 | |
|                 "VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info"
 | |
|             }
 | |
|         );
 | |
|     }
 | |
| 
 | |
|     assert(ggml_vk_has_device());
 | |
|     ctx->device_ref++;
 | |
| }
 | |
| 
 | |
| static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) {
 | |
|     auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
 | |
| 
 | |
|     assert(ctx->device_ref > 0);
 | |
| 
 | |
|     ctx->device_ref--;
 | |
| 
 | |
|     if (!ctx->device_ref) {
 | |
|         komputeManager.destroy();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const char * ggml_backend_kompute_buffer_get_name(ggml_backend_buffer_t buffer) {
 | |
|     auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buffer->buft->context);
 | |
|     return ctx->name.c_str();
 | |
| }
 | |
| 
 | |
| static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | |
|     auto * memory = (ggml_vk_memory *)buffer->context;
 | |
|     if (ggml_vk_has_device()) {
 | |
|         ggml_vk_free_memory(*memory);
 | |
|     }
 | |
|     delete memory;
 | |
| }
 | |
| 
 | |
| static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
 | |
|     return ((ggml_vk_memory *)buffer->context)->data;
 | |
| }
 | |
| 
 | |
| static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
 | |
|     GGML_UNUSED(buffer);
 | |
| 
 | |
|     const auto res = ggml_vk_get_tensor(tensor);
 | |
|     GGML_ASSERT(res);
 | |
| 
 | |
|     memcpy((char *)tensor->data + offset, data, size);
 | |
| 
 | |
|     komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res});
 | |
| }
 | |
| 
 | |
| static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
 | |
|     GGML_UNUSED(buffer);
 | |
| 
 | |
|     const auto res = ggml_vk_get_tensor(tensor);
 | |
|     GGML_ASSERT(res);
 | |
| 
 | |
|     komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res});
 | |
| 
 | |
|     memcpy(data, (const char *)tensor->data + offset, size);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
 | |
|     auto * memory = (ggml_vk_memory *)buffer->context;
 | |
|     memset(memory->data, value, buffer->size);
 | |
| 
 | |
|     if (memory->stagingBuffer)
 | |
|         komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory->primaryBuffer, memory->stagingBuffer, memory->size);
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = {
 | |
|     /* .get_name        = */ ggml_backend_kompute_buffer_get_name,
 | |
|     /* .free_buffer     = */ ggml_backend_kompute_buffer_free_buffer,
 | |
|     /* .get_base        = */ ggml_backend_kompute_buffer_get_base,
 | |
|     /* .init_tensor     = */ NULL,
 | |
|     /* .set_tensor      = */ ggml_backend_kompute_buffer_set_tensor,
 | |
|     /* .get_tensor      = */ ggml_backend_kompute_buffer_get_tensor,
 | |
|     /* .cpy_tensor      = */ NULL,
 | |
|     /* .clear           = */ ggml_backend_kompute_buffer_clear,
 | |
|     /* .reset           = */ NULL,
 | |
| };
 | |
| 
 | |
| // default buffer type
 | |
| 
 | |
| static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
 | |
|     auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
 | |
|     return ctx->name.c_str();
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | |
|     ggml_backend_kompute_device_ref(buft);
 | |
|     auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size));
 | |
|     return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size);
 | |
| }
 | |
| 
 | |
| static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
 | |
|     auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
 | |
|     return ctx->buffer_alignment;
 | |
| }
 | |
| 
 | |
| static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
 | |
|     auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
 | |
|     return ctx->max_alloc;
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = {
 | |
|     /* .get_name         = */ ggml_backend_kompute_buffer_type_get_name,
 | |
|     /* .alloc_buffer     = */ ggml_backend_kompute_buffer_type_alloc_buffer,
 | |
|     /* .get_alignment    = */ ggml_backend_kompute_buffer_type_get_alignment,
 | |
|     /* .get_max_size     = */ ggml_backend_vk_buffer_type_get_max_size,
 | |
|     /* .get_alloc_size   = */ NULL, // defaults to ggml_nbytes
 | |
|     /* .is_host          = */ NULL,
 | |
| };
 | |
| 
 | |
| ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) {
 | |
|     static std::vector<ggml_backend_buffer_type> bufts = []() {
 | |
|         std::vector<ggml_backend_buffer_type> vec;
 | |
|         auto devices = ggml_vk_available_devices_internal(0);
 | |
|         vec.reserve(devices.size());
 | |
| 
 | |
|         for (const auto & dev : devices) {
 | |
|             vec.push_back({
 | |
|                 /* .iface   = */ ggml_backend_kompute_buffer_type_interface,
 | |
|                 /* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc)
 | |
|             });
 | |
|         }
 | |
|         return vec;
 | |
|     }();
 | |
| 
 | |
|     auto it = std::find_if(bufts.begin(), bufts.end(), [device](const ggml_backend_buffer_type & t) {
 | |
|         return device == static_cast<ggml_backend_kompute_buffer_type_context *>(t.context)->device;
 | |
|     });
 | |
|     return it < bufts.end() ? &*it : nullptr;
 | |
| }
 | |
| 
 | |
| // backend
 | |
| 
 | |
| static const char * ggml_backend_kompute_name(ggml_backend_t backend) {
 | |
|     auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
 | |
|     return ctx->name.c_str();
 | |
| }
 | |
| 
 | |
| static void ggml_backend_kompute_free(ggml_backend_t backend) {
 | |
|     auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
 | |
| 
 | |
|     assert(ctx == s_kompute_context);
 | |
|     s_kompute_context = nullptr;
 | |
|     if (ctx != nullptr) {
 | |
|         delete ctx;
 | |
|     }
 | |
| 
 | |
|     delete backend;
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(ggml_backend_t backend) {
 | |
|     auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
 | |
|     return ggml_backend_kompute_buffer_type(ctx->device);
 | |
| }
 | |
| 
 | |
| static ggml_status ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
 | |
|     auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
 | |
|     ggml_vk_graph_compute(ctx, cgraph);
 | |
|     return GGML_STATUS_SUCCESS;
 | |
| }
 | |
| 
 | |
| static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
 | |
|     GGML_UNUSED(backend);
 | |
|     return ggml_vk_supports_op(op);
 | |
| }
 | |
| 
 | |
| static bool ggml_backend_kompute_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
 | |
|     GGML_UNUSED(backend);
 | |
|     return buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name;
 | |
| }
 | |
| 
 | |
| static struct ggml_backend_i kompute_backend_i = {
 | |
|     /* .get_name                = */ ggml_backend_kompute_name,
 | |
|     /* .free                    = */ ggml_backend_kompute_free,
 | |
|     /* .get_default_buffer_type = */ ggml_backend_kompute_get_default_buffer_type,
 | |
|     /* .set_tensor_async        = */ NULL,
 | |
|     /* .get_tensor_async        = */ NULL,
 | |
|     /* .cpy_tensor_async        = */ NULL,
 | |
|     /* .synchronize             = */ NULL,
 | |
|     /* .graph_plan_create       = */ NULL,
 | |
|     /* .graph_plan_free         = */ NULL,
 | |
|     /* .graph_plan_update       = */ NULL,
 | |
|     /* .graph_plan_compute      = */ NULL,
 | |
|     /* .graph_compute           = */ ggml_backend_kompute_graph_compute,
 | |
|     /* .supports_op             = */ ggml_backend_kompute_supports_op,
 | |
|     /* .supports_buft           = */ ggml_backend_kompute_supports_buft,
 | |
|     /* .offload_op              = */ NULL,
 | |
|     /* .event_new               = */ NULL,
 | |
|     /* .event_free              = */ NULL,
 | |
|     /* .event_record            = */ NULL,
 | |
|     /* .event_wait              = */ NULL,
 | |
|     /* .event_synchronize       = */ NULL,
 | |
| };
 | |
| 
 | |
| static ggml_guid_t ggml_backend_kompute_guid() {
 | |
|     static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca };
 | |
|     return &guid;
 | |
| }
 | |
| 
 | |
| ggml_backend_t ggml_backend_kompute_init(int device) {
 | |
|     GGML_ASSERT(s_kompute_context == nullptr);
 | |
|     s_kompute_context = new ggml_kompute_context(device);
 | |
| 
 | |
|     ggml_backend_t kompute_backend = new ggml_backend {
 | |
|         /* .guid      = */ ggml_backend_kompute_guid(),
 | |
|         /* .interface = */ kompute_backend_i,
 | |
|         /* .context   = */ s_kompute_context,
 | |
|     };
 | |
| 
 | |
|     return kompute_backend;
 | |
| }
 | |
| 
 | |
| bool ggml_backend_is_kompute(ggml_backend_t backend) {
 | |
|     return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid());
 | |
| }
 | |
| 
 | |
| static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) {
 | |
|     GGML_UNUSED(params);
 | |
|     return ggml_backend_kompute_init(intptr_t(user_data));
 | |
| }
 | |
| 
 | |
| extern "C" int ggml_backend_kompute_reg_devices();
 | |
| 
 | |
| int ggml_backend_kompute_reg_devices() {
 | |
|     auto devices = ggml_vk_available_devices_internal(0);
 | |
|     for (const auto & device : devices) {
 | |
|         ggml_backend_register(
 | |
|             ggml_kompute_format_name(device.index).c_str(),
 | |
|             ggml_backend_reg_kompute_init,
 | |
|             ggml_backend_kompute_buffer_type(device.index),
 | |
|             reinterpret_cast<void *>(intptr_t(device.index))
 | |
|         );
 | |
|     }
 | |
|     return devices.size();
 | |
| }
 |