mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* py : switch to snake_case ggml-ci * cont ggml-ci * cont ggml-ci * cont : fix link * gguf-py : use snake_case in scripts entrypoint export * py : rename requirements for convert_legacy_llama.py Needed for scripts/check-requirements.sh --------- Co-authored-by: Francis Couture-Harpin <git@compilade.net>
		
			
				
	
	
		
			332 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			332 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import argparse
 | 
						|
import os
 | 
						|
import json
 | 
						|
import re
 | 
						|
 | 
						|
import torch
 | 
						|
import numpy as np
 | 
						|
from gguf import *
 | 
						|
from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
 | 
						|
 | 
						|
TEXT = "clip.text"
 | 
						|
VISION = "clip.vision"
 | 
						|
 | 
						|
 | 
						|
def k(raw_key: str, arch: str) -> str:
 | 
						|
    return raw_key.format(arch=arch)
 | 
						|
 | 
						|
 | 
						|
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool:
 | 
						|
    if name in (
 | 
						|
        "logit_scale",
 | 
						|
        "text_model.embeddings.position_ids",
 | 
						|
        "vision_model.embeddings.position_ids",
 | 
						|
    ):
 | 
						|
        return True
 | 
						|
 | 
						|
    if has_llava and name in ["visual_projection.weight", "vision_model.post_layernorm.weight", "vision_model.post_layernorm.bias"]:
 | 
						|
        return True
 | 
						|
 | 
						|
    if name.startswith("v") and not has_vision:
 | 
						|
        return True
 | 
						|
 | 
						|
    if name.startswith("t") and not has_text:
 | 
						|
        return True
 | 
						|
 | 
						|
    return False
 | 
						|
 | 
						|
 | 
						|
def get_tensor_name(name: str) -> str:
 | 
						|
    if "projection" in name:
 | 
						|
        return name
 | 
						|
    if "mm_projector" in name:
 | 
						|
        name = name.replace("model.mm_projector", "mm")
 | 
						|
        name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
 | 
						|
        name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
 | 
						|
        return name
 | 
						|
 | 
						|
    return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
 | 
						|
 | 
						|
 | 
						|
def bytes_to_unicode():
 | 
						|
    """
 | 
						|
    Returns list of utf-8 byte and a corresponding list of unicode strings.
 | 
						|
    The reversible bpe codes work on unicode strings.
 | 
						|
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
 | 
						|
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
 | 
						|
    This is a significant percentage of your normal, say, 32K bpe vocab.
 | 
						|
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
 | 
						|
    And avoids mapping to whitespace/control characters the bpe code barfs on.
 | 
						|
    """
 | 
						|
    bs = (
 | 
						|
        list(range(ord("!"), ord("~") + 1))
 | 
						|
        + list(range(ord("¡"), ord("¬") + 1))
 | 
						|
        + list(range(ord("®"), ord("ÿ") + 1))
 | 
						|
    )
 | 
						|
    cs = bs[:]
 | 
						|
    n = 0
 | 
						|
    for b in range(2**8):
 | 
						|
        if b not in bs:
 | 
						|
            bs.append(b)
 | 
						|
            cs.append(2**8 + n)
 | 
						|
            n += 1
 | 
						|
    cs = [chr(n) for n in cs]
 | 
						|
    return dict(zip(bs, cs))
 | 
						|
 | 
						|
 | 
						|
ap = argparse.ArgumentParser()
 | 
						|
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
 | 
						|
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
 | 
						|
ap.add_argument("--text-only", action="store_true", required=False,
 | 
						|
                help="Save a text-only model. It can't be used to encode images")
 | 
						|
ap.add_argument("--vision-only", action="store_true", required=False,
 | 
						|
                help="Save a vision-only model. It can't be used to encode texts")
 | 
						|
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
 | 
						|
                help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
 | 
						|
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
 | 
						|
                help="The clip model is from openclip (for ViT-SO400M type))")
 | 
						|
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
 | 
						|
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
 | 
						|
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
 | 
						|
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
 | 
						|
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
 | 
						|
default_image_mean = [0.48145466, 0.4578275, 0.40821073]
 | 
						|
default_image_std = [0.26862954, 0.26130258, 0.27577711]
 | 
						|
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
 | 
						|
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
 | 
						|
 | 
						|
# with proper
 | 
						|
args = ap.parse_args()
 | 
						|
 | 
						|
 | 
						|
if args.text_only and args.vision_only:
 | 
						|
    print("--text-only and --image-only arguments cannot be specified at the same time.")
 | 
						|
    exit(1)
 | 
						|
 | 
						|
if args.use_f32:
 | 
						|
    print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
 | 
						|
 | 
						|
# output in the same directory as the model if output_dir is None
 | 
						|
dir_model = args.model_dir
 | 
						|
 | 
						|
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
 | 
						|
    vocab = None
 | 
						|
    tokens = None
 | 
						|
else:
 | 
						|
    with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
 | 
						|
        vocab = json.load(f)
 | 
						|
        tokens = [key for key in vocab]
 | 
						|
 | 
						|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
 | 
						|
    config = json.load(f)
 | 
						|
    if args.clip_model_is_vision:
 | 
						|
        v_hparams = config
 | 
						|
        t_hparams = None
 | 
						|
    else:
 | 
						|
        v_hparams = config["vision_config"]
 | 
						|
        t_hparams = config["text_config"]
 | 
						|
 | 
						|
# possible data types
 | 
						|
#   ftype == 0 -> float32
 | 
						|
#   ftype == 1 -> float16
 | 
						|
#
 | 
						|
# map from ftype to string
 | 
						|
ftype_str = ["f32", "f16"]
 | 
						|
 | 
						|
ftype = 1
 | 
						|
if args.use_f32:
 | 
						|
    ftype = 0
 | 
						|
 | 
						|
if args.clip_model_is_vision or args.clip_model_is_openclip:
 | 
						|
    model = CLIPVisionModel.from_pretrained(dir_model)
 | 
						|
    processor = None
 | 
						|
else:
 | 
						|
    model = CLIPModel.from_pretrained(dir_model)
 | 
						|
    processor = CLIPProcessor.from_pretrained(dir_model)
 | 
						|
 | 
						|
fname_middle = None
 | 
						|
has_text_encoder = True
 | 
						|
has_vision_encoder = True
 | 
						|
has_llava_projector = False
 | 
						|
if args.text_only:
 | 
						|
    fname_middle = "text-"
 | 
						|
    has_vision_encoder = False
 | 
						|
elif args.llava_projector is not None:
 | 
						|
    fname_middle = "mmproj-"
 | 
						|
    has_text_encoder = False
 | 
						|
    has_llava_projector = True
 | 
						|
elif args.vision_only:
 | 
						|
    fname_middle = "vision-"
 | 
						|
    has_text_encoder = False
 | 
						|
else:
 | 
						|
    fname_middle = ""
 | 
						|
 | 
						|
output_dir = args.output_dir if args.output_dir is not None else dir_model
 | 
						|
os.makedirs(output_dir, exist_ok=True)
 | 
						|
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
 | 
						|
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
 | 
						|
fout = GGUFWriter(path=fname_out, arch="clip")
 | 
						|
 | 
						|
fout.add_bool("clip.has_text_encoder", has_text_encoder)
 | 
						|
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
 | 
						|
fout.add_bool("clip.has_llava_projector", has_llava_projector)
 | 
						|
fout.add_file_type(ftype)
 | 
						|
model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model)
 | 
						|
fout.add_name(model_name)
 | 
						|
if args.text_only:
 | 
						|
    fout.add_description("text-only CLIP model")
 | 
						|
elif args.vision_only and not has_llava_projector:
 | 
						|
    fout.add_description("vision-only CLIP model")
 | 
						|
elif has_llava_projector:
 | 
						|
    fout.add_description("image encoder for LLaVA")
 | 
						|
    # add projector type
 | 
						|
    fout.add_string("clip.projector_type", args.projector_type)
 | 
						|
else:
 | 
						|
    fout.add_description("two-tower CLIP model")
 | 
						|
 | 
						|
if has_text_encoder:
 | 
						|
    # text_model hparams
 | 
						|
    fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
 | 
						|
    fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
 | 
						|
    fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
 | 
						|
    fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"]))
 | 
						|
    fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
 | 
						|
    fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
 | 
						|
    fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
 | 
						|
    fout.add_token_list(tokens)
 | 
						|
 | 
						|
if has_vision_encoder:
 | 
						|
    # vision_model hparams
 | 
						|
    fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
 | 
						|
    fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
 | 
						|
    fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
 | 
						|
    fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
 | 
						|
    fout.add_uint32("clip.vision.projection_dim", v_hparams.get("projection_dim", config["projection_dim"]))
 | 
						|
    fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
 | 
						|
    fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
 | 
						|
    block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
 | 
						|
    fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
 | 
						|
                            #     /**
 | 
						|
                            #      "image_grid_pinpoints": [
 | 
						|
                            #         [
 | 
						|
                            #         336,
 | 
						|
                            #         672
 | 
						|
                            #         ],
 | 
						|
                            #         [
 | 
						|
                            #         672,
 | 
						|
                            #         336
 | 
						|
                            #         ],
 | 
						|
                            #         [
 | 
						|
                            #         672,
 | 
						|
                            #         672
 | 
						|
                            #         ],
 | 
						|
                            #         [
 | 
						|
                            #         1008,
 | 
						|
                            #         336
 | 
						|
                            #         ],
 | 
						|
                            #         [
 | 
						|
                            #         336,
 | 
						|
                            #         1008
 | 
						|
                            #         ]
 | 
						|
                            #     ],
 | 
						|
                            #     Flattened:
 | 
						|
                            #     [
 | 
						|
                            #         336, 672,
 | 
						|
                            #         672, 336,
 | 
						|
                            #         672, 672,
 | 
						|
                            #         1008, 336,
 | 
						|
                            #         336, 1008
 | 
						|
                            #     ]
 | 
						|
                            #  *
 | 
						|
                            #  */
 | 
						|
    if "image_grid_pinpoints" in v_hparams:
 | 
						|
        # flatten it
 | 
						|
        image_grid_pinpoints = []
 | 
						|
        for pinpoint in v_hparams["image_grid_pinpoints"]:
 | 
						|
            for p in pinpoint:
 | 
						|
                image_grid_pinpoints.append(p)
 | 
						|
        fout.add_array("clip.vision.image_grid_pinpoints", image_grid_pinpoints)
 | 
						|
    if "image_crop_resolution" in v_hparams:
 | 
						|
        fout.add_uint32("clip.vision.image_crop_resolution", v_hparams["image_crop_resolution"])
 | 
						|
    if "image_aspect_ratio" in v_hparams:
 | 
						|
        fout.add_string("clip.vision.image_aspect_ratio", v_hparams["image_aspect_ratio"])
 | 
						|
    if "image_split_resolution" in v_hparams:
 | 
						|
        fout.add_uint32("clip.vision.image_split_resolution", v_hparams["image_split_resolution"])
 | 
						|
    if "mm_patch_merge_type" in v_hparams:
 | 
						|
        fout.add_string("clip.vision.mm_patch_merge_type", v_hparams["mm_patch_merge_type"])
 | 
						|
    if "mm_projector_type" in v_hparams:
 | 
						|
        fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"])
 | 
						|
 | 
						|
 | 
						|
    if processor is not None:
 | 
						|
        image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
 | 
						|
        image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
 | 
						|
    else:
 | 
						|
        image_mean = args.image_mean if args.image_mean is not None else default_image_mean
 | 
						|
        image_std = args.image_std if args.image_std is not None else default_image_std
 | 
						|
    fout.add_array("clip.vision.image_mean", image_mean)
 | 
						|
    fout.add_array("clip.vision.image_std", image_std)
 | 
						|
 | 
						|
use_gelu = v_hparams["hidden_act"] == "gelu"
 | 
						|
fout.add_bool("clip.use_gelu", use_gelu)
 | 
						|
 | 
						|
 | 
						|
if has_llava_projector:
 | 
						|
    model.vision_model.encoder.layers.pop(-1)
 | 
						|
    projector = torch.load(args.llava_projector)
 | 
						|
    for name, data in projector.items():
 | 
						|
        name = get_tensor_name(name)
 | 
						|
        # pw and dw conv ndim==4
 | 
						|
        if data.ndim == 2 or data.ndim == 4:
 | 
						|
            data = data.squeeze().numpy().astype(np.float16)
 | 
						|
        else:
 | 
						|
            data = data.squeeze().numpy().astype(np.float32)
 | 
						|
 | 
						|
        fout.add_tensor(name, data)
 | 
						|
 | 
						|
    print("Projector tensors added\n")
 | 
						|
 | 
						|
state_dict = model.state_dict()
 | 
						|
for name, data in state_dict.items():
 | 
						|
    if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector):
 | 
						|
        # we don't need this
 | 
						|
        print(f"skipping parameter: {name}")
 | 
						|
        continue
 | 
						|
 | 
						|
    name = get_tensor_name(name)
 | 
						|
    data = data.squeeze().numpy()
 | 
						|
 | 
						|
    n_dims = len(data.shape)
 | 
						|
 | 
						|
    # ftype == 0 -> float32, ftype == 1 -> float16
 | 
						|
    ftype_cur = 0
 | 
						|
    if n_dims == 4:
 | 
						|
        print(f"tensor {name} is always saved in f16")
 | 
						|
        data = data.astype(np.float16)
 | 
						|
        ftype_cur = 1
 | 
						|
    elif ftype == 1:
 | 
						|
        if name[-7:] == ".weight" and n_dims == 2:
 | 
						|
            print("  Converting to float16")
 | 
						|
            data = data.astype(np.float16)
 | 
						|
            ftype_cur = 1
 | 
						|
        else:
 | 
						|
            print("  Converting to float32")
 | 
						|
            data = data.astype(np.float32)
 | 
						|
            ftype_cur = 0
 | 
						|
    else:
 | 
						|
        if data.dtype != np.float32:
 | 
						|
            print("  Converting to float32")
 | 
						|
            data = data.astype(np.float32)
 | 
						|
            ftype_cur = 0
 | 
						|
 | 
						|
    print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
 | 
						|
    fout.add_tensor(name, data)
 | 
						|
 | 
						|
 | 
						|
fout.write_header_to_file()
 | 
						|
fout.write_kv_data_to_file()
 | 
						|
fout.write_tensors_to_file()
 | 
						|
fout.close()
 | 
						|
 | 
						|
print("Done. Output file: " + fname_out)
 |