mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 745aa5319b
			
		
	
	745aa5319b
	
	
	
		
			
			* llama : deprecate llama_kv_self_ API ggml-ci * llama : allow llama_memory_(nullptr) ggml-ci * memory : add flag for optional data clear in llama_memory_clear ggml-ci
		
			
				
	
	
		
			509 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			509 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| #include "gguf.h"
 | |
| 
 | |
| #include "arg.h"
 | |
| #include "common.h"
 | |
| #include "llama.h"
 | |
| #include "pca.hpp"
 | |
| #include "mean.hpp"
 | |
| 
 | |
| #ifdef GGML_USE_CUDA
 | |
| #include "ggml-cuda.h"
 | |
| #endif
 | |
| 
 | |
| #ifdef GGML_USE_METAL
 | |
| #include "ggml-metal.h"
 | |
| #endif
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <climits>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <vector>
 | |
| 
 | |
| 
 | |
| //////////////////////////////////////////////////
 | |
| // utils
 | |
| 
 | |
| template <class Iter>
 | |
| static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
 | |
|     std::string ret;
 | |
|     for (; begin != end; ++begin) {
 | |
|         ret += common_token_to_piece(ctx, *begin);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void print_usage(int, char ** argv) {
 | |
|     printf("\nexample usage:\n");
 | |
|     printf("\n    CPU only:   %s -m ./llama-3.Q4_K_M.gguf\n", argv[0]);
 | |
|     printf("\n    with GPU:   %s -m ./llama-3.Q4_K_M.gguf -ngl 99\n", argv[0]);
 | |
|     printf("\n    advanced:   %s -m ./llama-3.Q4_K_M.gguf -ngl 99 --pca-iter 2000 --pca-batch 100\n", argv[0]);
 | |
|     printf("\n    using mean: %s -m ./llama-3.Q4_K_M.gguf --method mean\n", argv[0]);
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| // cb_eval is reused for each pair of positive - negative prompt
 | |
| struct callback_data {
 | |
|     ggml_context * ctx_ggml = nullptr;   // holds v_pos, v_neg, v_diff_filtered
 | |
| 
 | |
|     int n_layers = 0;
 | |
|     int n_tokens = 0;
 | |
|     bool is_eval_pos = true;
 | |
| 
 | |
|     // each element of the vector correspond to one layer
 | |
|     std::vector<struct ggml_tensor *> v_pos; // vector of matrices of size [n_embd, n_tokens]
 | |
|     std::vector<struct ggml_tensor *> v_neg; // vector of matrices of size [n_embd, n_tokens]
 | |
|     std::vector<struct ggml_tensor *> v_diff_filtered;   // vector of matrices of size [n_embd, n_nonzero_rows]. NOTE: n_nonzero_rows maybe different for each layer
 | |
| 
 | |
|     // save a tensor into either v_pos or v_neg (decided by is_eval_pos)
 | |
|     void save_tensor_for_layer(struct ggml_tensor * t) {
 | |
|         GGML_ASSERT(t->type == GGML_TYPE_F32);
 | |
| 
 | |
|         if (ctx_ggml == nullptr) {
 | |
|             // alloc a new ctx_ggml if needed
 | |
|             struct ggml_init_params params_ggml = {
 | |
|                 /*.mem_size   =*/ ggml_tensor_overhead() * n_layers * 3u,
 | |
|                 /*.mem_buffer =*/ NULL,
 | |
|                 /*.no_alloc   =*/ true,
 | |
|             };
 | |
|             ctx_ggml = ggml_init(params_ggml);
 | |
|         }
 | |
| 
 | |
|         // copy tensor data
 | |
|         auto n_bytes = ggml_nbytes(t);
 | |
|         struct ggml_tensor * t_layer = ggml_new_tensor_2d(ctx_ggml, t->type, t->ne[0], t->ne[1]);
 | |
|         t_layer->data = malloc(n_bytes); // TODO @ngxson : get rid of this malloc somehow
 | |
|         ggml_backend_tensor_get(t, t_layer->data, 0, n_bytes);
 | |
|         ggml_set_name(t_layer, ggml_get_name(t));
 | |
|         //print_debug_tensor(t_layer);
 | |
| 
 | |
|         if (is_eval_pos) {
 | |
|             v_pos.push_back(t_layer);
 | |
|         } else {
 | |
|             v_neg.push_back(t_layer);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // calculate diff (v_pos - v_neg) and place the result back to v_pos
 | |
|     // all zero rows in the diff tensor will also be removed
 | |
|     // NOTE: final layer is ignored. we only have (n_layers - 1) to process
 | |
|     std::vector<struct ggml_tensor *> calc_diff() {
 | |
|         for (float il = 0; il < v_pos.size(); il++) {
 | |
|             float * a = (float *) v_pos[il]->data;
 | |
|             float * b = (float *) v_neg[il]->data;
 | |
|             size_t n_elem = ggml_nelements(v_pos[il]);
 | |
|             for (size_t j = 0; j < n_elem; j++) {
 | |
|                 a[j] -= b[j];
 | |
|             }
 | |
|             //print_debug_tensor(v_pos[i]);
 | |
|             auto diff_filtered = filter_nonzero_rows(v_pos[il]);
 | |
|             v_diff_filtered.push_back(diff_filtered);
 | |
|         }
 | |
|         return v_diff_filtered; // for convinient, we return the result std::vector
 | |
|     }
 | |
| 
 | |
|     // delete zero rows from a given 2D tensor
 | |
|     struct ggml_tensor * filter_nonzero_rows(struct ggml_tensor * a) {
 | |
|         //printf("filter_nonzero_rows\n");
 | |
|         auto is_row_all_zeros = [](struct ggml_tensor * t, int row, float eps) -> bool {
 | |
|             // check if given row containing all zero elements
 | |
|             int n_cols = t->ne[0]; // hint: should be equal to n_embd
 | |
|             for (int col = 0; col < n_cols; ++col) {
 | |
|                 if (ggml_get_f32_nd(t, col, row, 0, 0) > eps) {
 | |
|                     return false;
 | |
|                 }
 | |
|             }
 | |
|             return true;
 | |
|         };
 | |
|         std::vector<int> rows_to_copy; // the idx of non-zero cols (to be copied to row of diff_filtered)
 | |
|         for (int i_row = 0; i_row < a->ne[1]; i_row++) {
 | |
|             if (!is_row_all_zeros(a, i_row, 1e-6)) {
 | |
|                 rows_to_copy.push_back(i_row);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // get "n_nonzero_rows" for the output "diff_filtered"
 | |
|         int n_nonzero_rows = rows_to_copy.size();
 | |
|         //printf("n_nonzero_rows: %d\n", n_nonzero_rows);
 | |
|         int n_embd = a->ne[0];
 | |
|         GGML_ASSERT(n_nonzero_rows > 0);
 | |
| 
 | |
|         // diff_filtered: [n_embd, n_nonzero_rows]
 | |
|         struct ggml_tensor * diff_filtered = ggml_new_tensor_2d(
 | |
|             ctx_ggml, GGML_TYPE_F32, n_embd, n_nonzero_rows);
 | |
|         ggml_format_name(diff_filtered, "diff_filtered_%s", a->name);
 | |
|         diff_filtered->data = malloc(ggml_nbytes(diff_filtered));
 | |
| 
 | |
|         // copy non-zero rows
 | |
|         for (int dest_row = 0; dest_row < n_nonzero_rows; dest_row++) {
 | |
|             int src_row = rows_to_copy[dest_row];
 | |
|             for (int i = 0; i < n_embd; i++) {
 | |
|                 float src_elem = ggml_get_f32_nd(a, i, src_row, 0, 0);
 | |
|                 ggml_set_f32_nd(diff_filtered, i, dest_row, 0, 0, src_elem);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         //print_debug_tensor(diff_filtered);
 | |
| 
 | |
|         return diff_filtered;
 | |
|     }
 | |
| 
 | |
|     // we don't implement destructor, because we want to reuse callback_data. we just want to free the tensors
 | |
|     void reset() {
 | |
|         for (auto ptr : v_pos) free(ptr->data);
 | |
|         for (auto ptr : v_neg) free(ptr->data);
 | |
|         for (auto ptr : v_diff_filtered) free(ptr->data);
 | |
|         v_pos.clear();
 | |
|         v_neg.clear();
 | |
|         v_diff_filtered.clear();
 | |
|         if (ctx_ggml) {
 | |
|             ggml_free(ctx_ggml);
 | |
|         }
 | |
|         ctx_ggml = nullptr;
 | |
|     }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * process_ctx is used to store the ggml context for pre-post processing the diff vectors
 | |
|  * in short, input => v_diff and output => v_final
 | |
|  */
 | |
| struct train_context {
 | |
|     ggml_context * ctx_ggml;
 | |
|     int n_embd;
 | |
|     int n_layers;
 | |
| 
 | |
|     /* pair of prompts to be used for generating final vector */
 | |
|     std::vector<std::string> positive_entries;
 | |
|     std::vector<std::string> negative_entries;
 | |
| 
 | |
|     // each element of the vector correspond to one layer
 | |
|     // NOTE: the last layer is discard. therefore, we will have (n_layers - 1) elements here
 | |
|     // NOTE (2): v_diff is transposed from v_diff_tmp
 | |
|     std::vector<struct ggml_tensor *> v_diff;  // vector of matrices of size [m, n_embd] where m ~ n_tokens * n_completions (v_diff contains no zero-rows)
 | |
|     std::vector<struct ggml_tensor *> v_final; // vector of vectors of size [n_embd] to be written to file
 | |
| 
 | |
|     // to easily re-alloc when concat v_diff, we temporary store v_diff in a vector instead of a tensor
 | |
|     // v_diff_tmp will get converted unto v_diff later on
 | |
|     std::vector<std::vector<uint8_t>> v_diff_tmp;
 | |
| 
 | |
|     train_context(int n_embd_, int n_layers_) {
 | |
|         n_embd = n_embd_;
 | |
|         n_layers = n_layers_;
 | |
|         struct ggml_init_params params_ggml = {
 | |
|             /*.mem_size   =*/ ggml_tensor_overhead() * (n_layers - 1) * 2u,
 | |
|             /*.mem_buffer =*/ NULL,
 | |
|             /*.no_alloc   =*/ true,
 | |
|         };
 | |
|         ctx_ggml = ggml_init(params_ggml);
 | |
|         for (int il = 0; il < n_layers - 1; il++) {
 | |
|             std::vector<uint8_t> empty;
 | |
|             v_diff_tmp.push_back(empty);
 | |
|             auto t = ggml_new_tensor_1d(ctx_ggml, GGML_TYPE_F32, n_embd);
 | |
|             t->data = malloc(ggml_nbytes(t)); // TODO: get rid of malloc if possible
 | |
|             v_final.push_back(t);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // add new rows into existing tensor in v_diff_tmp
 | |
|     void concat_diff_tmp(const std::vector<struct ggml_tensor *> & diff_filtered) {
 | |
|         GGML_ASSERT((int) diff_filtered.size() == n_layers - 1);
 | |
|         for (int il = 0; il < n_layers - 1; il++) {
 | |
|             auto t = diff_filtered[il];
 | |
|             auto & diff_tmp = v_diff_tmp[il];
 | |
|             size_t curr_size = diff_tmp.size();
 | |
|             diff_tmp.resize(curr_size + ggml_nbytes(t));
 | |
|             memcpy(diff_tmp.data() + curr_size, t->data, ggml_nbytes(t));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // build the v_diff tensors from v_diff_tmp (v_diff need to be transposed)
 | |
|     // TODO @ngxson : maybe add option NOT to transpose v_diff; will be useful for "mean" method
 | |
|     void build_v_diff(bool transpose) {
 | |
|         printf("build_v_diff\n");
 | |
|         for (int il = 0; il < n_layers - 1; il++) {
 | |
|             auto & diff_tmp = v_diff_tmp[il];
 | |
|             int n_elem = diff_tmp.size() / sizeof(float);
 | |
|             GGML_ASSERT(n_elem % n_embd == 0);
 | |
|             int n_rows = n_elem / n_embd;
 | |
|             struct ggml_tensor * diff = transpose
 | |
|                 ? ggml_new_tensor_2d(ctx_ggml, GGML_TYPE_F32, n_rows, n_embd)
 | |
|                 : ggml_new_tensor_2d(ctx_ggml, GGML_TYPE_F32, n_embd, n_rows);
 | |
|             ggml_set_name(diff, (std::string("diff_") + std::to_string(il)).c_str());
 | |
|             diff->data = malloc(ggml_nbytes(diff)); // TODO: get rid of this malloc if possible
 | |
|             if (transpose) {
 | |
|                 // copy data & transpose
 | |
|                 float * arr = (float *) diff_tmp.data();
 | |
|                 for (int ir = 0; ir < n_rows; ++ir) {
 | |
|                     for (int ic = 0; ic < n_embd; ++ic) {
 | |
|                         float f = arr[ir*n_embd + ic];
 | |
|                         ggml_set_f32_nd(diff, ir, ic, 0, 0, f);
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 // only copy
 | |
|                 memcpy(diff->data, diff_tmp.data(), ggml_nbytes(diff));
 | |
|             }
 | |
|             v_diff.push_back(diff);
 | |
|             print_debug_tensor(diff);
 | |
|             // free memory of diff_tmp
 | |
|             diff_tmp.resize(0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ~train_context() {
 | |
|         for (auto ptr : v_final) free(ptr->data);
 | |
|         for (auto ptr : v_diff) free(ptr->data);
 | |
|         // no need to free v_diff_tmp, since we didn't use malloc
 | |
|         ggml_free(ctx_ggml);
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct tokenized_prompt {
 | |
|     std::vector<llama_token> tokens_pos;
 | |
|     std::vector<llama_token> tokens_neg;
 | |
|     size_t max_seq_len;
 | |
| 
 | |
|     tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) {
 | |
|         const llama_model * model = llama_get_model(ctx);
 | |
|         const llama_vocab * vocab = llama_model_get_vocab(model);
 | |
|         const bool add_bos = llama_vocab_get_add_bos(vocab);
 | |
|         tokens_pos = common_tokenize(ctx, pos, add_bos, true);
 | |
|         tokens_neg = common_tokenize(ctx, neg, add_bos, true);
 | |
|         max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
 | |
|         padding_seq(ctx, tokens_pos, max_seq_len);
 | |
|         padding_seq(ctx, tokens_neg, max_seq_len);
 | |
|     }
 | |
| 
 | |
|     void padding_seq(llama_context * ctx, std::vector<llama_token> & tokens, size_t len) {
 | |
|         // TODO: customize padding token
 | |
|         std::vector<llama_token> pad_tokens = common_tokenize(ctx, " ", false);
 | |
|         llama_token pad_tok = pad_tokens.back();
 | |
|         while (tokens.size() < len) {
 | |
|             tokens.push_back(pad_tok);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| //////////////////////////////////////////////////
 | |
| 
 | |
| template <typename T>
 | |
| static std::string to_string(const T & val) {
 | |
|     std::stringstream ss;
 | |
|     ss << val;
 | |
|     return ss.str();
 | |
| }
 | |
| 
 | |
| static std::vector<std::string> ctrlvec_load_prompt_file(std::string path, bool skip_empty_lines) {
 | |
|     std::vector<std::string> output;
 | |
|     std::ifstream file(path);
 | |
|     if (!file.is_open()) {
 | |
|         fprintf(stderr, "error: unable to open file: %s\n", path.c_str());
 | |
|         exit(1);
 | |
|     }
 | |
|     std::string line;
 | |
|     while (std::getline(file, line)) {
 | |
|         bool is_skip = skip_empty_lines && line.empty();
 | |
|         if (!is_skip) {
 | |
|             string_process_escapes(line);
 | |
|             output.push_back(line);
 | |
|         }
 | |
|     }
 | |
|     file.close();
 | |
|     return output;
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////
 | |
| 
 | |
| static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
 | |
|     auto * cb_data = (callback_data *) user_data;
 | |
|     static const char * l_out_name = "l_out";
 | |
|     const bool is_l_out = strncmp(t->name, l_out_name, strlen(l_out_name)) == 0;
 | |
| 
 | |
|     if (ask) {
 | |
|         return is_l_out;
 | |
|     }
 | |
| 
 | |
|     if (!is_l_out || t->ne[1] != cb_data->n_tokens) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // save the tensor to current context
 | |
|     cb_data->save_tensor_for_layer(t);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
 | |
|     llama_memory_clear(llama_get_memory(ctx), true);
 | |
|     if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
 | |
|         fprintf(stderr, "%s : failed to eval\n", __func__);
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static void export_gguf(const std::vector<struct ggml_tensor *> & v_ctrl, const std::string fname, const std::string model_hint) {
 | |
|     struct gguf_context * ctx = gguf_init_empty();
 | |
| 
 | |
|     const std::string arch = "controlvector";
 | |
|     gguf_set_val_str(ctx, "general.architecture", arch.c_str());
 | |
|     gguf_set_val_str(ctx, (arch + ".model_hint").c_str(), model_hint.c_str());
 | |
|     gguf_set_val_i32(ctx, (arch + ".layer_count").c_str(), v_ctrl.size());
 | |
| 
 | |
|     for (size_t i = 0; i < v_ctrl.size(); ++i) {
 | |
|         gguf_add_tensor(ctx, v_ctrl[i]);
 | |
|         print_debug_tensor(v_ctrl[i]);
 | |
|         printf("Added tensor: %s\n", v_ctrl[i]->name);
 | |
|     }
 | |
| 
 | |
|     printf("%s: writing file...\n", __func__);
 | |
|     gguf_write_to_file(ctx, fname.c_str(), false);
 | |
|     printf("%s: wrote file '%s'\n", __func__, fname.c_str());
 | |
|     gguf_free(ctx);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Load prompt files and completion file.
 | |
|  * Then format each pair of prompt + completion to make an entry.
 | |
|  */
 | |
| static int prepare_entries(common_params & params, train_context & ctx_train) {
 | |
|     // load prompts
 | |
|     std::vector<std::string> positive_prompts = ctrlvec_load_prompt_file(params.cvector_positive_file, true);
 | |
|     std::vector<std::string> negative_prompts = ctrlvec_load_prompt_file(params.cvector_negative_file, true);
 | |
|     if (positive_prompts.size() != negative_prompts.size()) {
 | |
|         fprintf(stderr, "number of positive and negative prompts must be equal\n");
 | |
|         return 1;
 | |
|     }
 | |
|     if (positive_prompts.empty()) {
 | |
|         fprintf(stderr, "must provide at least one prompt pair\n");
 | |
|         return 1;
 | |
|     }
 | |
|     ctx_train.positive_entries = positive_prompts;
 | |
|     ctx_train.negative_entries = negative_prompts;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     common_params params;
 | |
| 
 | |
|     params.out_file = "control_vector.gguf";
 | |
| 
 | |
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (params.n_pca_iterations % params.n_pca_batch != 0) {
 | |
|         fprintf(stderr, "PCA iterations must by multiply of PCA batch size\n");
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     callback_data cb_data;
 | |
| 
 | |
|     // pass the callback to the backend scheduler
 | |
|     // it will be executed for each node during the graph computation
 | |
|     params.cb_eval = cb_eval;
 | |
|     params.cb_eval_user_data = &cb_data;
 | |
|     params.warmup = false;
 | |
| 
 | |
|     print_build_info();
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     // load the model to get hparams
 | |
|     common_init_result llama_init = common_init_from_params(params);
 | |
| 
 | |
|     llama_model * model = llama_init.model.get();
 | |
|     llama_context * ctx = llama_init.context.get();
 | |
| 
 | |
|     // int n_ctx = llama_n_ctx(ctx);
 | |
|     int n_layers = llama_model_n_layer(model);
 | |
|     int n_embd = llama_model_n_embd(model);
 | |
| 
 | |
|     // get model hint param (a.k.a model arch name)
 | |
|     char model_hint[128];
 | |
|     llama_model_meta_val_str(model, "general.architecture", model_hint, 128);
 | |
| 
 | |
|     // init train_context
 | |
|     train_context ctx_train(n_embd, n_layers);
 | |
| 
 | |
|     // load and prepare entries for training
 | |
|     prepare_entries(params, ctx_train);
 | |
| 
 | |
|     // we have to pretokenize everything because otherwise we don't know how much overhead to allocate ctx_diffs_wrapped
 | |
|     std::vector<tokenized_prompt> tokenized_prompts;
 | |
|     size_t n_total_tokens = 0;
 | |
|     for (size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
 | |
|         tokenized_prompt t(ctx, ctx_train.positive_entries[i], ctx_train.negative_entries[i]);
 | |
|         n_total_tokens += 2 * t.max_seq_len;
 | |
|         tokenized_prompts.push_back(std::move(t));
 | |
|     }
 | |
| 
 | |
|     std::cout << "n_total_tokens: " << n_total_tokens << std::endl;
 | |
| 
 | |
|     for(size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
 | |
|         bool success = false;
 | |
|         tokenized_prompt t = tokenized_prompts[i];
 | |
|         cb_data.n_layers = n_layers;
 | |
|         cb_data.n_tokens = t.max_seq_len;
 | |
| 
 | |
|         printf("Evaluating prompt[%d/%d]: \"%s\" - \"%s\" (%d tokens)\n",
 | |
|             (int) i+1, (int) ctx_train.positive_entries.size(),
 | |
|             tokens_to_str(ctx, t.tokens_pos.cbegin(), t.tokens_pos.cend()).c_str(),
 | |
|             tokens_to_str(ctx, t.tokens_neg.cbegin(), t.tokens_neg.cend()).c_str(),
 | |
|             (int) t.max_seq_len);
 | |
| 
 | |
|         cb_data.is_eval_pos = true;
 | |
|         success = get_hidden_layers(ctx, t.tokens_pos);
 | |
|         if (!success) break;
 | |
| 
 | |
|         cb_data.is_eval_pos = false;
 | |
|         success = get_hidden_layers(ctx, t.tokens_neg);
 | |
|         if (!success) break;
 | |
| 
 | |
|         // calculate diff and remove all zero rows
 | |
|         auto v_diff_filtered = cb_data.calc_diff();
 | |
| 
 | |
|         // save & concat the filtered v_diff to ctx_train
 | |
|         ctx_train.concat_diff_tmp(v_diff_filtered);
 | |
| 
 | |
|         // reset for next iteration
 | |
|         cb_data.reset();
 | |
|     }
 | |
| 
 | |
|     // done with the model, we can now free it to make gain some memory
 | |
|     printf("Done evaluate prompts, unload model...\n");
 | |
| 
 | |
|     bool use_pca = params.cvector_dimre_method == DIMRE_METHOD_PCA;
 | |
| 
 | |
|     // prepare ctx_train for PCA
 | |
|     ctx_train.build_v_diff(use_pca);
 | |
| 
 | |
|     if (use_pca) {
 | |
|         // run PCA
 | |
|         PCA::pca_params pca_params;
 | |
|         pca_params.n_threads    = params.cpuparams.n_threads;
 | |
|         pca_params.n_batch      = params.n_pca_batch;
 | |
|         pca_params.n_iterations = params.n_pca_iterations;
 | |
|         PCA::run_pca(pca_params, ctx_train.v_diff, ctx_train.v_final);
 | |
|     } else {
 | |
|         // run mean
 | |
|         mean::run(ctx_train.v_diff, ctx_train.v_final);
 | |
|     }
 | |
| 
 | |
|     // write output vectors to gguf
 | |
|     export_gguf(ctx_train.v_final, params.out_file, model_hint);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 |