mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-28 08:31:25 +00:00
* metal : optmize FA vec for large heads and sequences * metal : adjust small-batch mul mv kernels ggml-ci * batched-bench : fix total speed computation ggml-ci * cont : add comments ggml-ci
6887 lines
358 KiB
Objective-C
6887 lines
358 KiB
Objective-C
#import "ggml-metal.h"
|
|
|
|
#import "ggml-impl.h"
|
|
#import "ggml-backend-impl.h"
|
|
#import "ggml-metal-impl.h"
|
|
|
|
#import <Foundation/Foundation.h>
|
|
|
|
#import <Metal/Metal.h>
|
|
|
|
#undef MIN
|
|
#undef MAX
|
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
|
|
// max memory buffers that can be mapped to the device
|
|
#define GGML_METAL_MAX_BUFFERS 64
|
|
|
|
// max number of MTLCommandBuffer used to submit a graph for processing
|
|
#define GGML_METAL_MAX_COMMAND_BUFFERS 8
|
|
|
|
#ifndef TARGET_OS_VISION
|
|
#define TARGET_OS_VISION 0
|
|
#endif
|
|
|
|
// create residency sets only on macOS >= 15.0
|
|
#if !TARGET_CPU_X86_64 && TARGET_OS_OSX && __MAC_OS_X_VERSION_MAX_ALLOWED >= 150000 || \
|
|
TARGET_OS_IOS && __IPHONE_OS_VERSION_MAX_ALLOWED >= 180000 || \
|
|
TARGET_OS_TV && __TV_OS_VERSION_MAX_ALLOWED >= 180000 || \
|
|
TARGET_OS_VISION && __VISION_OS_VERSION_MAX_ALLOWED >= 200000
|
|
#define GGML_METAL_HAS_RESIDENCY_SETS 1
|
|
#endif
|
|
|
|
// globals
|
|
|
|
// overload of MTLGPUFamilyMetal3 (not available in some environments)
|
|
static const NSInteger MTLGPUFamilyMetal3_GGML = 5001;
|
|
|
|
// initialized in ggml_backend_metal_reg
|
|
static struct ggml_backend_reg g_ggml_backend_metal_reg;
|
|
static struct ggml_backend_device g_ggml_backend_metal_device;
|
|
|
|
// information about a Metal device
|
|
// note: assumes single GPU device - the default one
|
|
// TODO: support multiple GPU devices
|
|
static struct ggml_backend_metal_device_context {
|
|
id<MTLDevice> mtl_device;
|
|
int mtl_device_ref_count;
|
|
id<MTLLibrary> mtl_library;
|
|
|
|
NSLock * mtl_lock;
|
|
|
|
bool has_simdgroup_reduction;
|
|
bool has_simdgroup_mm;
|
|
bool has_residency_sets;
|
|
bool has_bfloat;
|
|
bool use_bfloat;
|
|
bool use_fusion;
|
|
|
|
int debug_fusion;
|
|
|
|
// how many times a given op was fused
|
|
uint64_t fuse_cnt[GGML_OP_COUNT];
|
|
|
|
size_t max_size;
|
|
|
|
char name[128];
|
|
} g_ggml_ctx_dev_main = {
|
|
/*.mtl_device =*/ nil,
|
|
/*.mtl_device_ref_count =*/ 0,
|
|
/*.mtl_library =*/ nil,
|
|
/*.mtl_lock =*/ nil,
|
|
/*.has_simdgroup_reduction =*/ false,
|
|
/*.has_simdgroup_mm =*/ false,
|
|
/*.has_residency_sets =*/ false,
|
|
/*.has_bfloat =*/ false,
|
|
/*.use_bfloat =*/ false,
|
|
/*.use_fusion =*/ true,
|
|
/*.debug_fusion =*/ 0,
|
|
/*.fuse_cnt =*/ { 0 },
|
|
/*.max_size =*/ 0,
|
|
/*.name =*/ "",
|
|
};
|
|
|
|
// acquire
|
|
static id<MTLDevice> ggml_backend_metal_device_acq(struct ggml_backend_metal_device_context * ctx) {
|
|
assert(ctx != NULL);
|
|
|
|
if (ctx->mtl_lock == nil) {
|
|
ctx->mtl_lock = [[NSLock alloc] init];
|
|
}
|
|
|
|
if (ctx->mtl_device == nil) {
|
|
ctx->mtl_device = MTLCreateSystemDefaultDevice();
|
|
|
|
if (ctx->mtl_device) {
|
|
ctx->has_simdgroup_reduction = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7];
|
|
ctx->has_simdgroup_reduction |= [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
|
|
|
|
ctx->has_simdgroup_mm = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7];
|
|
|
|
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
|
|
ctx->has_residency_sets = getenv("GGML_METAL_NO_RESIDENCY") == nil;
|
|
#endif
|
|
|
|
ctx->has_bfloat = [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
|
|
ctx->has_bfloat |= [ctx->mtl_device supportsFamily:MTLGPUFamilyApple6];
|
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
|
ctx->use_bfloat = ctx->has_bfloat;
|
|
#else
|
|
ctx->use_bfloat = false;
|
|
#endif
|
|
ctx->use_fusion = getenv("GGML_METAL_FUSION_DISABLE") == nil;
|
|
|
|
{
|
|
const char * val = getenv("GGML_METAL_FUSION_DEBUG");
|
|
ctx->debug_fusion = val ? atoi(val) : 0;
|
|
}
|
|
|
|
memset(ctx->fuse_cnt, 0, sizeof(ctx->fuse_cnt));
|
|
|
|
ctx->max_size = ctx->mtl_device.maxBufferLength;
|
|
|
|
strncpy(ctx->name, [[ctx->mtl_device name] UTF8String], sizeof(ctx->name) - 1);
|
|
}
|
|
}
|
|
|
|
ctx->mtl_device_ref_count++;
|
|
|
|
return ctx->mtl_device;
|
|
}
|
|
|
|
// release
|
|
static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_context * ctx) {
|
|
assert(ctx != NULL);
|
|
assert(ctx->mtl_device_ref_count > 0);
|
|
|
|
ctx->mtl_device_ref_count--;
|
|
|
|
if (ctx->mtl_device_ref_count == 0) {
|
|
if (ctx->debug_fusion > 0) {
|
|
fprintf(stderr, "%s: fusion stats:\n", __func__);
|
|
for (int i = 0; i < GGML_OP_COUNT; i++) {
|
|
if (ctx->fuse_cnt[i] == 0) {
|
|
continue;
|
|
}
|
|
|
|
// note: cannot use ggml_log here
|
|
fprintf(stderr, "%s: - %s: %" PRIu64 "\n", __func__, ggml_op_name((enum ggml_op) i), ctx->fuse_cnt[i]);
|
|
}
|
|
}
|
|
|
|
if (ctx->mtl_lock) {
|
|
[ctx->mtl_lock release];
|
|
ctx->mtl_lock = nil;
|
|
}
|
|
|
|
if (ctx->mtl_library) {
|
|
[ctx->mtl_library release];
|
|
ctx->mtl_library = nil;
|
|
}
|
|
|
|
if (ctx->mtl_device) {
|
|
[ctx->mtl_device release];
|
|
ctx->mtl_device = nil;
|
|
}
|
|
}
|
|
}
|
|
|
|
// kernels
|
|
|
|
struct ggml_metal_kernel {
|
|
id<MTLComputePipelineState> pipeline;
|
|
};
|
|
|
|
enum ggml_metal_kernel_type {
|
|
GGML_METAL_KERNEL_TYPE_ADD,
|
|
GGML_METAL_KERNEL_TYPE_ADD_FUSE_2,
|
|
GGML_METAL_KERNEL_TYPE_ADD_FUSE_3,
|
|
GGML_METAL_KERNEL_TYPE_ADD_FUSE_4,
|
|
GGML_METAL_KERNEL_TYPE_ADD_FUSE_5,
|
|
GGML_METAL_KERNEL_TYPE_ADD_FUSE_6,
|
|
GGML_METAL_KERNEL_TYPE_ADD_FUSE_7,
|
|
GGML_METAL_KERNEL_TYPE_ADD_FUSE_8,
|
|
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4,
|
|
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_2,
|
|
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_3,
|
|
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_4,
|
|
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_5,
|
|
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_6,
|
|
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_7,
|
|
GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_8,
|
|
GGML_METAL_KERNEL_TYPE_SUB,
|
|
GGML_METAL_KERNEL_TYPE_SUB_ROW_C4,
|
|
GGML_METAL_KERNEL_TYPE_MUL,
|
|
GGML_METAL_KERNEL_TYPE_MUL_ROW_C4,
|
|
GGML_METAL_KERNEL_TYPE_DIV,
|
|
GGML_METAL_KERNEL_TYPE_DIV_ROW_C4,
|
|
GGML_METAL_KERNEL_TYPE_ADD_ID,
|
|
GGML_METAL_KERNEL_TYPE_REPEAT_F32,
|
|
GGML_METAL_KERNEL_TYPE_REPEAT_F16,
|
|
GGML_METAL_KERNEL_TYPE_REPEAT_I32,
|
|
GGML_METAL_KERNEL_TYPE_REPEAT_I16,
|
|
GGML_METAL_KERNEL_TYPE_SCALE,
|
|
GGML_METAL_KERNEL_TYPE_SCALE_4,
|
|
GGML_METAL_KERNEL_TYPE_CLAMP,
|
|
GGML_METAL_KERNEL_TYPE_TANH,
|
|
GGML_METAL_KERNEL_TYPE_RELU,
|
|
GGML_METAL_KERNEL_TYPE_SIGMOID,
|
|
GGML_METAL_KERNEL_TYPE_GELU,
|
|
GGML_METAL_KERNEL_TYPE_GELU_4,
|
|
GGML_METAL_KERNEL_TYPE_GELU_ERF,
|
|
GGML_METAL_KERNEL_TYPE_GELU_ERF_4,
|
|
GGML_METAL_KERNEL_TYPE_GELU_QUICK,
|
|
GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,
|
|
GGML_METAL_KERNEL_TYPE_SILU,
|
|
GGML_METAL_KERNEL_TYPE_SILU_4,
|
|
GGML_METAL_KERNEL_TYPE_ELU,
|
|
GGML_METAL_KERNEL_TYPE_ABS,
|
|
GGML_METAL_KERNEL_TYPE_SGN,
|
|
GGML_METAL_KERNEL_TYPE_STEP,
|
|
GGML_METAL_KERNEL_TYPE_HARDSWISH,
|
|
GGML_METAL_KERNEL_TYPE_HARDSIGMOID,
|
|
GGML_METAL_KERNEL_TYPE_EXP,
|
|
GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16,
|
|
GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4,
|
|
GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32,
|
|
GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4,
|
|
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,
|
|
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_F32,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_F16,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_BF16,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_MXFP4,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS,
|
|
GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
|
|
GGML_METAL_KERNEL_TYPE_SET_ROWS_F32,
|
|
GGML_METAL_KERNEL_TYPE_SET_ROWS_F16,
|
|
GGML_METAL_KERNEL_TYPE_SET_ROWS_BF16,
|
|
GGML_METAL_KERNEL_TYPE_SET_ROWS_Q8_0,
|
|
GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_0,
|
|
GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_1,
|
|
GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_0,
|
|
GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_1,
|
|
GGML_METAL_KERNEL_TYPE_SET_ROWS_IQ4_NL,
|
|
GGML_METAL_KERNEL_TYPE_RMS_NORM,
|
|
GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL,
|
|
GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL_ADD,
|
|
GGML_METAL_KERNEL_TYPE_L2_NORM,
|
|
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
|
|
GGML_METAL_KERNEL_TYPE_NORM,
|
|
GGML_METAL_KERNEL_TYPE_SSM_CONV_F32,
|
|
GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32,
|
|
GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32_GROUP,
|
|
GGML_METAL_KERNEL_TYPE_RWKV_WKV6_F32,
|
|
GGML_METAL_KERNEL_TYPE_RWKV_WKV7_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32_C4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_C4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_C4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_1ROW,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_L4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_BF16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_2,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_3,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_5,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_3,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_5,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_2,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_3,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_5,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_2,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_3,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_5,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_2,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_3,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_5,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_2,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_3,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_5,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_2,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_3,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_5,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_2,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_3,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_5,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_2,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_3,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_5,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_2,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_3,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_5,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_2,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_3,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_5,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_2,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_3,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_5,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,
|
|
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW,
|
|
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4,
|
|
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_BF16_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_1,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_2,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16,
|
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16,
|
|
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32,
|
|
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16,
|
|
GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32,
|
|
GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16,
|
|
GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32,
|
|
GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16,
|
|
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32,
|
|
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16,
|
|
GGML_METAL_KERNEL_TYPE_IM2COL_F16,
|
|
GGML_METAL_KERNEL_TYPE_IM2COL_F32,
|
|
GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F16,
|
|
GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F32,
|
|
GGML_METAL_KERNEL_TYPE_CONV_TRANSPOSE_1D_F32_F32,
|
|
GGML_METAL_KERNEL_TYPE_CONV_TRANSPOSE_1D_F16_F32,
|
|
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
|
|
GGML_METAL_KERNEL_TYPE_PAD_F32,
|
|
GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32,
|
|
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
|
|
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
|
|
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
|
|
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC,
|
|
GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H40,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H192,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK192_HV128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK576_HV512,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H40,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H80,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H96,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H112,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H192,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK192_HV128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H256,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK576_HV512,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H40,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H112,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H192,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK192_HV128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H256,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK576_HV512,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H40,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H64,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H80,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H96,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H112,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H192,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK192_HV128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H256,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK576_HV512,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H40,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H64,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H80,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H96,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H112,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H192,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK192_HV128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H256,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK576_HV512,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H40,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H64,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H80,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H96,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H112,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H192,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK192_HV128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H256,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK576_HV512,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H40,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H112,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H192,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H40,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H40,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H40,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H40,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H40,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H40,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H40,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H64,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H64,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H64,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H64,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H64,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H64,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H64,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H96,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H96,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H96,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H96,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H96,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H96,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H96,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H192,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H192,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H192,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H192,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H192,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H192,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H192,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK192_HV128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_HK192_HV128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_HK192_HV128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_HK192_HV128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_HK192_HV128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_HK192_HV128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK192_HV128,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H256,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H256,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H256,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H256,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H256,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK576_HV512,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_HK576_HV512,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_HK576_HV512,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_HK576_HV512,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_HK576_HV512,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_HK576_HV512,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK576_HV512,
|
|
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_REDUCE,
|
|
GGML_METAL_KERNEL_TYPE_SET_I32,
|
|
GGML_METAL_KERNEL_TYPE_SET_F32,
|
|
GGML_METAL_KERNEL_TYPE_CPY_F32_F32,
|
|
GGML_METAL_KERNEL_TYPE_CPY_F32_F16,
|
|
GGML_METAL_KERNEL_TYPE_CPY_F32_BF16,
|
|
GGML_METAL_KERNEL_TYPE_CPY_F16_F16,
|
|
GGML_METAL_KERNEL_TYPE_CPY_F16_F32,
|
|
GGML_METAL_KERNEL_TYPE_CPY_BF16_F32,
|
|
GGML_METAL_KERNEL_TYPE_CPY_BF16_BF16,
|
|
GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
|
|
GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0,
|
|
GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1,
|
|
GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,
|
|
GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,
|
|
GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL,
|
|
GGML_METAL_KERNEL_TYPE_CPY_Q4_0_F32,
|
|
GGML_METAL_KERNEL_TYPE_CPY_Q4_0_F16,
|
|
GGML_METAL_KERNEL_TYPE_CPY_Q4_1_F32,
|
|
GGML_METAL_KERNEL_TYPE_CPY_Q4_1_F16,
|
|
GGML_METAL_KERNEL_TYPE_CPY_Q5_0_F32,
|
|
GGML_METAL_KERNEL_TYPE_CPY_Q5_0_F16,
|
|
GGML_METAL_KERNEL_TYPE_CPY_Q5_1_F32,
|
|
GGML_METAL_KERNEL_TYPE_CPY_Q5_1_F16,
|
|
GGML_METAL_KERNEL_TYPE_CPY_Q8_0_F32,
|
|
GGML_METAL_KERNEL_TYPE_CPY_Q8_0_F16,
|
|
GGML_METAL_KERNEL_TYPE_CONCAT,
|
|
GGML_METAL_KERNEL_TYPE_SQR,
|
|
GGML_METAL_KERNEL_TYPE_SQRT,
|
|
GGML_METAL_KERNEL_TYPE_SIN,
|
|
GGML_METAL_KERNEL_TYPE_COS,
|
|
GGML_METAL_KERNEL_TYPE_NEG,
|
|
GGML_METAL_KERNEL_TYPE_REGLU,
|
|
GGML_METAL_KERNEL_TYPE_GEGLU,
|
|
GGML_METAL_KERNEL_TYPE_SWIGLU,
|
|
GGML_METAL_KERNEL_TYPE_SWIGLU_OAI,
|
|
GGML_METAL_KERNEL_TYPE_GEGLU_ERF,
|
|
GGML_METAL_KERNEL_TYPE_GEGLU_QUICK,
|
|
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
|
|
GGML_METAL_KERNEL_TYPE_MEAN,
|
|
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
|
|
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
|
|
GGML_METAL_KERNEL_TYPE_ARGMAX,
|
|
|
|
GGML_METAL_KERNEL_TYPE_COUNT
|
|
};
|
|
|
|
//
|
|
// ggml_metal_heap
|
|
//
|
|
|
|
struct ggml_metal_heap {
|
|
// number of times the heap was unused
|
|
int n_unused;
|
|
|
|
// total number of buffer allocations in this heap across all computes
|
|
int64_t n_alloc;
|
|
|
|
// current offset in the heap - we reset this after each node in order to reuse the memory
|
|
size_t offs;
|
|
|
|
// the currently allocated MTLBuffer objects in this heap
|
|
id<MTLHeap> obj;
|
|
|
|
NSMutableArray * bufs;
|
|
};
|
|
|
|
static struct ggml_metal_heap * ggml_metal_heap_init(id<MTLDevice> device, size_t size) {
|
|
struct ggml_metal_heap * heap = calloc(1, sizeof(struct ggml_metal_heap));
|
|
|
|
MTLHeapDescriptor * desc = [[MTLHeapDescriptor alloc] init];
|
|
desc.storageMode = MTLStorageModePrivate;
|
|
desc.cpuCacheMode = MTLCPUCacheModeDefaultCache;
|
|
desc.type = MTLHeapTypePlacement;
|
|
desc.size = size;
|
|
|
|
heap->n_unused = 0;
|
|
heap->n_alloc = 0;
|
|
|
|
heap->obj = [device newHeapWithDescriptor:desc];
|
|
if (!heap->obj) {
|
|
GGML_LOG_ERROR("%s: error: failed to create MTLHeap with size %zu\n", __func__, size);
|
|
|
|
free(heap);
|
|
|
|
return false;
|
|
}
|
|
|
|
[desc release];
|
|
|
|
heap->bufs = [[NSMutableArray alloc] init];
|
|
|
|
return heap;
|
|
}
|
|
|
|
static void ggml_metal_heap_reset(struct ggml_metal_heap * heap) {
|
|
heap->offs = 0;
|
|
|
|
// count how many graph computes the heap ended up being unused
|
|
if ([heap->bufs count] > 0) {
|
|
heap->n_unused = 0;
|
|
} else {
|
|
heap->n_unused++;
|
|
}
|
|
|
|
for (id<MTLBuffer> buf in heap->bufs) {
|
|
[buf release];
|
|
}
|
|
[heap->bufs removeAllObjects];
|
|
|
|
// tell the OS that it can reuse this memory if needed
|
|
// ref: https://developer.apple.com/documentation/metal/mtlpurgeablestate?language=objc
|
|
[heap->obj setPurgeableState:MTLPurgeableStateVolatile];
|
|
}
|
|
|
|
static void ggml_metal_heap_free(struct ggml_metal_heap * heap) {
|
|
if (heap == nil) {
|
|
return;
|
|
}
|
|
|
|
ggml_metal_heap_reset(heap);
|
|
|
|
[heap->obj release];
|
|
[heap->bufs release];
|
|
|
|
free(heap);
|
|
}
|
|
|
|
@interface ggml_metal_heap_ptr : NSObject
|
|
|
|
@property (nonatomic, assign) struct ggml_metal_heap * data;
|
|
|
|
@end
|
|
|
|
@implementation ggml_metal_heap_ptr
|
|
@end
|
|
|
|
//
|
|
// ggml_metal_mem_pool
|
|
//
|
|
|
|
struct ggml_metal_mem_pool {
|
|
id<MTLDevice> device;
|
|
|
|
int n_heaps; // total number of heaps ever created (including those that were removed)
|
|
|
|
NSMutableArray * heaps;
|
|
NSMutableArray * heaps_to_remove;
|
|
};
|
|
|
|
static struct ggml_metal_mem_pool * ggml_metal_mem_pool_init(void) {
|
|
struct ggml_metal_mem_pool * mem_pool = calloc(1, sizeof(struct ggml_metal_mem_pool));
|
|
|
|
mem_pool->n_heaps = 0;
|
|
|
|
mem_pool->heaps = [[NSMutableArray alloc] init];
|
|
mem_pool->heaps_to_remove = [[NSMutableArray alloc] init];
|
|
|
|
return mem_pool;
|
|
}
|
|
|
|
static void ggml_metal_mem_pool_free(struct ggml_metal_mem_pool * mem_pool) {
|
|
GGML_LOG_DEBUG("%s: freeing memory pool, num heaps = %zu (total = %d)\n", __func__, [mem_pool->heaps count], mem_pool->n_heaps);
|
|
|
|
size_t size_all = 0;
|
|
size_t size_cur = 0;
|
|
|
|
for (ggml_metal_heap_ptr * ptr in mem_pool->heaps) {
|
|
GGML_LOG_DEBUG("%s: heap: %p\n", __func__, (void *) ptr.data);
|
|
GGML_LOG_DEBUG("%s: n_alloc: %" PRId64 "\n", __func__, ptr.data->n_alloc);
|
|
GGML_LOG_DEBUG("%s: n_unused: %d\n", __func__, ptr.data->n_unused);
|
|
GGML_LOG_DEBUG("%s: size: %.2f MiB\n", __func__, [ptr.data->obj size] / 1024.0 / 1024.0);
|
|
GGML_LOG_DEBUG("%s: bufs: %zu\n", __func__, [ptr.data->bufs count]);
|
|
|
|
if ([ptr.data->bufs count] > 0) {
|
|
size_cur += [ptr.data->obj size];
|
|
}
|
|
size_all += [ptr.data->obj size];
|
|
|
|
ggml_metal_heap_free(ptr.data);
|
|
[ptr release];
|
|
}
|
|
[mem_pool->heaps release];
|
|
[mem_pool->heaps_to_remove release];
|
|
|
|
if (size_all > 0) {
|
|
GGML_LOG_DEBUG("%s: size_all: %.2f MiB\n", __func__, size_all / 1024.0 / 1024.0);
|
|
GGML_LOG_DEBUG("%s: size_cur: %.2f MiB\n", __func__, size_cur / 1024.0 / 1024.0);
|
|
}
|
|
|
|
free(mem_pool);
|
|
}
|
|
|
|
static void ggml_metal_mem_pool_reset(struct ggml_metal_mem_pool * mem_pool) {
|
|
for (NSUInteger i = 0; i < [mem_pool->heaps count]; i++) {
|
|
ggml_metal_heap_ptr * ptr = [mem_pool->heaps objectAtIndex:i];
|
|
|
|
struct ggml_metal_heap * heap = ptr.data;
|
|
ggml_metal_heap_reset(heap);
|
|
|
|
// if the heap hasn't been used for a while, remove it
|
|
if (heap->n_unused >= 128) {
|
|
[mem_pool->heaps_to_remove addObject:@(i)];
|
|
}
|
|
}
|
|
|
|
if (mem_pool->heaps_to_remove.count > 0) {
|
|
// remove in reverse order
|
|
for (NSUInteger i = [mem_pool->heaps_to_remove count] - 1; ; --i) {
|
|
NSUInteger index = [[mem_pool->heaps_to_remove objectAtIndex:i] intValue];
|
|
ggml_metal_heap_ptr * ptr = [mem_pool->heaps objectAtIndex:index];
|
|
|
|
struct ggml_metal_heap * heap = ptr.data;
|
|
ggml_metal_heap_free(heap);
|
|
|
|
[mem_pool->heaps removeObjectAtIndex:index];
|
|
[ptr release];
|
|
|
|
if (i == 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
[mem_pool->heaps_to_remove removeAllObjects];
|
|
}
|
|
}
|
|
|
|
static void ggml_metal_mem_pool_clear(struct ggml_metal_mem_pool * mem_pool) {
|
|
for (ggml_metal_heap_ptr * ptr in mem_pool->heaps) {
|
|
ptr.data->offs = 0;
|
|
}
|
|
}
|
|
|
|
static id<MTLBuffer> ggml_metal_mem_pool_alloc(struct ggml_metal_mem_pool * mem_pool, size_t size) {
|
|
const size_t alignment = 256;
|
|
|
|
const size_t size_aligned = GGML_PAD(size, alignment);
|
|
|
|
// try one of the existing heaps
|
|
for (ggml_metal_heap_ptr * ptr in mem_pool->heaps) {
|
|
struct ggml_metal_heap * heap = ptr.data;
|
|
if (heap->offs + size_aligned <= [heap->obj size]) {
|
|
// if this is the first buffer in the heap for the current command buffer, tell the OS that
|
|
// it cannot free the memory used by the heap
|
|
// ref: https://developer.apple.com/documentation/metal/mtlpurgeablestate?language=objc
|
|
if ([heap->bufs count] == 0) {
|
|
[heap->obj setPurgeableState:MTLPurgeableStateNonVolatile];
|
|
}
|
|
|
|
id<MTLBuffer> buf = [heap->obj newBufferWithLength:size_aligned options:MTLResourceStorageModePrivate offset:heap->offs];
|
|
if (buf == nil) {
|
|
GGML_LOG_ERROR("%s: error: failed to create MTLBuffer with size %zu\n", __func__, size_aligned);
|
|
return nil;
|
|
}
|
|
|
|
heap->n_alloc++;
|
|
heap->offs += size_aligned;
|
|
|
|
[heap->bufs addObject:buf];
|
|
|
|
return buf;
|
|
}
|
|
}
|
|
|
|
// create a new heap that can fit this buffer
|
|
ggml_metal_heap_ptr * heap_ptr = [ggml_metal_heap_ptr new];
|
|
|
|
struct ggml_metal_heap * heap = ggml_metal_heap_init(mem_pool->device, size_aligned);
|
|
if (heap == NULL) {
|
|
GGML_LOG_ERROR("%s: error: failed to create heap of size %zu\n", __func__, size_aligned);
|
|
return NULL;
|
|
}
|
|
|
|
//GGML_LOG_DEBUG("%s: creating new heap of size %zu, got %zu\n", __func__, size_aligned, [heap->obj size]);
|
|
|
|
heap_ptr.data = heap;
|
|
ggml_metal_heap_reset(heap);
|
|
|
|
[heap->obj setPurgeableState:MTLPurgeableStateNonVolatile];
|
|
id<MTLBuffer> buf = [heap->obj newBufferWithLength:size_aligned options:MTLResourceStorageModePrivate offset:heap->offs];
|
|
if (buf == nil) {
|
|
GGML_LOG_ERROR("%s: error: failed to create MTLBuffer with size %zu\n", __func__, size_aligned);
|
|
return NULL;
|
|
}
|
|
|
|
heap->n_alloc++;
|
|
heap->offs += size_aligned;
|
|
|
|
[heap->bufs addObject:buf];
|
|
|
|
[mem_pool->heaps addObject:heap_ptr];
|
|
mem_pool->n_heaps++;
|
|
|
|
return buf;
|
|
}
|
|
|
|
struct ggml_metal_command_buffer {
|
|
id<MTLCommandBuffer> obj;
|
|
|
|
// each command buffer has a memory pool from which it can allocate temporary buffers during the compute
|
|
struct ggml_metal_mem_pool * mem_pool;
|
|
};
|
|
|
|
struct ggml_backend_metal_context {
|
|
id<MTLDevice> device;
|
|
id<MTLCommandQueue> queue;
|
|
|
|
dispatch_queue_t d_queue;
|
|
|
|
struct ggml_metal_kernel kernels[GGML_METAL_KERNEL_TYPE_COUNT];
|
|
|
|
// capture state
|
|
bool capture_next_compute;
|
|
bool capture_started;
|
|
|
|
id<MTLCaptureScope> capture_scope;
|
|
|
|
// command buffer state
|
|
int n_cb; // number of extra threads used to submit the command buffers
|
|
int n_nodes_0; // number of nodes submitted by the main thread
|
|
int n_nodes_1; // remaining number of nodes submitted by the n_cb threads
|
|
int n_nodes_per_cb;
|
|
|
|
struct ggml_cgraph * gf;
|
|
|
|
// the callback given to the thread pool
|
|
void (^encode_async)(size_t ith);
|
|
|
|
// n_cb command buffers + 1 used by the main thread
|
|
struct ggml_metal_command_buffer cmd_bufs[GGML_METAL_MAX_COMMAND_BUFFERS + 1];
|
|
|
|
// abort ggml_metal_graph_compute if callback returns true
|
|
ggml_abort_callback abort_callback;
|
|
void * abort_callback_data;
|
|
};
|
|
|
|
// MSL code
|
|
// TODO: move the contents here when ready
|
|
// for now it is easier to work in a separate file
|
|
// static NSString * const msl_library_source = @"see metal.metal";
|
|
|
|
#if !GGML_METAL_EMBED_LIBRARY
|
|
// Here to assist with NSBundle Path Hack
|
|
@interface GGMLMetalClass : NSObject
|
|
@end
|
|
@implementation GGMLMetalClass
|
|
@end
|
|
#endif
|
|
|
|
static void * ggml_metal_host_malloc(size_t n) {
|
|
void * data = NULL;
|
|
|
|
#if TARGET_OS_OSX
|
|
kern_return_t err = vm_allocate((vm_map_t) mach_task_self(), (void *) &data, n, VM_FLAGS_ANYWHERE);
|
|
if (err != KERN_SUCCESS) {
|
|
GGML_LOG_ERROR("%s: error: vm_allocate failed\n", __func__);
|
|
return NULL;
|
|
}
|
|
#else
|
|
const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
|
|
if (result != 0) {
|
|
GGML_LOG_ERROR("%s: error: posix_memalign failed\n", __func__);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
return data;
|
|
}
|
|
|
|
// load library
|
|
//
|
|
// - first check if the library is embedded
|
|
// - then check if the library is in the bundle
|
|
// - if not found, load the source and compile it
|
|
// - if that fails, return NULL
|
|
static id<MTLLibrary> ggml_metal_load_library(id<MTLDevice> device, bool use_bfloat) {
|
|
id<MTLLibrary> metal_library = nil;
|
|
NSError * error = nil;
|
|
NSString * src = nil;
|
|
|
|
#if GGML_METAL_EMBED_LIBRARY
|
|
GGML_LOG_INFO("%s: using embedded metal library\n", __func__);
|
|
|
|
extern const char ggml_metallib_start[];
|
|
extern const char ggml_metallib_end[];
|
|
|
|
src = [[NSString alloc] initWithBytes:ggml_metallib_start length:(ggml_metallib_end-ggml_metallib_start) encoding:NSUTF8StringEncoding];
|
|
|
|
#else
|
|
|
|
#ifdef SWIFT_PACKAGE
|
|
NSBundle * bundle = SWIFTPM_MODULE_BUNDLE;
|
|
#else
|
|
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
|
|
#endif
|
|
|
|
NSString * path_lib = [bundle pathForResource:@"default" ofType:@"metallib"];
|
|
if (path_lib == nil) {
|
|
// Try to find the resource in the directory where the current binary located.
|
|
NSString * current_binary = [[NSProcessInfo processInfo] arguments][0];
|
|
NSString * bin_dir = [current_binary stringByDeletingLastPathComponent];
|
|
NSString * default_metallib_path = [NSString pathWithComponents:@[bin_dir, @"default.metallib"]];
|
|
if ([[NSFileManager defaultManager] isReadableFileAtPath:default_metallib_path]) {
|
|
GGML_LOG_INFO("%s: found '%s'\n", __func__, [default_metallib_path UTF8String]);
|
|
NSDictionary * atts = [[NSFileManager defaultManager] attributesOfItemAtPath:default_metallib_path error:&error];
|
|
if (atts && atts[NSFileType] == NSFileTypeSymbolicLink) {
|
|
// Optionally, if this is a symlink, try to resolve it.
|
|
default_metallib_path = [[NSFileManager defaultManager] destinationOfSymbolicLinkAtPath:default_metallib_path error:&error];
|
|
if (default_metallib_path && [default_metallib_path length] > 0 && ![[default_metallib_path substringToIndex:1] isEqualToString:@"/"]) {
|
|
// It is a relative path, adding the binary directory as directory prefix.
|
|
default_metallib_path = [NSString pathWithComponents:@[bin_dir, default_metallib_path]];
|
|
}
|
|
if (!default_metallib_path || ![[NSFileManager defaultManager] isReadableFileAtPath:default_metallib_path]) {
|
|
// Link to the resource could not be resolved.
|
|
default_metallib_path = nil;
|
|
} else {
|
|
GGML_LOG_INFO("%s: symlink resolved '%s'\n", __func__, [default_metallib_path UTF8String]);
|
|
}
|
|
}
|
|
} else {
|
|
// The resource couldn't be found in the binary's directory.
|
|
default_metallib_path = nil;
|
|
}
|
|
path_lib = default_metallib_path;
|
|
}
|
|
|
|
if (path_lib != nil) {
|
|
// pre-compiled library found
|
|
NSURL * libURL = [NSURL fileURLWithPath:path_lib];
|
|
GGML_LOG_INFO("%s: loading '%s'\n", __func__, [path_lib UTF8String]);
|
|
|
|
metal_library = [device newLibraryWithURL:libURL error:&error];
|
|
if (error) {
|
|
GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
|
return NULL;
|
|
}
|
|
} else {
|
|
GGML_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
|
|
|
|
NSString * path_source;
|
|
NSString * path_resource = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
|
|
|
|
GGML_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, path_resource ? [path_resource UTF8String] : "nil");
|
|
|
|
if (path_resource) {
|
|
path_source = [path_resource stringByAppendingPathComponent:@"ggml-metal.metal"];
|
|
} else {
|
|
path_source = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
|
|
}
|
|
|
|
if (path_source == nil) {
|
|
GGML_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
|
|
path_source = @"ggml-metal.metal";
|
|
}
|
|
|
|
GGML_LOG_INFO("%s: loading '%s'\n", __func__, [path_source UTF8String]);
|
|
|
|
src = [NSString stringWithContentsOfFile:path_source encoding:NSUTF8StringEncoding error:&error];
|
|
if (error) {
|
|
GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
|
return NULL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (!metal_library) {
|
|
@autoreleasepool {
|
|
// dictionary of preprocessor macros
|
|
NSMutableDictionary * prep = [NSMutableDictionary dictionary];
|
|
|
|
if (use_bfloat) {
|
|
[prep setObject:@"1" forKey:@"GGML_METAL_USE_BF16"];
|
|
}
|
|
|
|
#if GGML_METAL_EMBED_LIBRARY
|
|
[prep setObject:@"1" forKey:@"GGML_METAL_EMBED_LIBRARY"];
|
|
#endif
|
|
|
|
MTLCompileOptions * options = [MTLCompileOptions new];
|
|
options.preprocessorMacros = prep;
|
|
|
|
//[options setFastMathEnabled:false];
|
|
|
|
metal_library = [device newLibraryWithSource:src options:options error:&error];
|
|
if (error) {
|
|
GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
|
return NULL;
|
|
}
|
|
|
|
#if !__has_feature(objc_arc)
|
|
[options release];
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if GGML_METAL_EMBED_LIBRARY
|
|
[src release];
|
|
#endif // GGML_METAL_EMBED_LIBRARY
|
|
|
|
return metal_library;
|
|
}
|
|
|
|
static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t dev) {
|
|
GGML_LOG_INFO("%s: allocating\n", __func__);
|
|
|
|
#if TARGET_OS_OSX && !GGML_METAL_NDEBUG
|
|
// Show all the Metal device instances in the system
|
|
NSArray * devices = MTLCopyAllDevices();
|
|
for (id<MTLDevice> device in devices) {
|
|
GGML_LOG_INFO("%s: found device: %s\n", __func__, [[device name] UTF8String]);
|
|
}
|
|
[devices release]; // since it was created by a *Copy* C method
|
|
#endif
|
|
|
|
// init context
|
|
struct ggml_backend_metal_context * ctx = calloc(1, sizeof(struct ggml_backend_metal_context));
|
|
struct ggml_backend_metal_device_context * ctx_dev = dev->context;
|
|
|
|
id<MTLDevice> device = ctx_dev->mtl_device;
|
|
|
|
GGML_LOG_INFO("%s: picking default device: %s\n", __func__, [[device name] UTF8String]);
|
|
|
|
ctx->device = device;
|
|
ctx->queue = [device newCommandQueue];
|
|
if (ctx->queue == nil) {
|
|
GGML_LOG_ERROR("%s: error: failed to create command queue\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
|
|
|
|
// load library
|
|
{
|
|
[ctx_dev->mtl_lock lock];
|
|
|
|
if (ctx_dev->mtl_library == nil) {
|
|
ctx_dev->mtl_library = ggml_metal_load_library(device, ctx_dev->use_bfloat);
|
|
}
|
|
|
|
[ctx_dev->mtl_lock unlock];
|
|
}
|
|
|
|
id<MTLLibrary> metal_library = ctx_dev->mtl_library;
|
|
if (metal_library == nil) {
|
|
GGML_LOG_ERROR("%s: error: metal library is nil\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
// print MTL GPU family:
|
|
GGML_LOG_INFO("%s: GPU name: %s\n", __func__, [[device name] UTF8String]);
|
|
|
|
// determine max supported GPU family
|
|
// https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
|
|
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
|
{
|
|
for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
|
|
if ([device supportsFamily:i]) {
|
|
GGML_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (int i = MTLGPUFamilyCommon1 + 5; i >= MTLGPUFamilyCommon1; --i) {
|
|
if ([device supportsFamily:i]) {
|
|
GGML_LOG_INFO("%s: GPU family: MTLGPUFamilyCommon%d (%d)\n", __func__, i - (int) MTLGPUFamilyCommon1 + 1, i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (int i = MTLGPUFamilyMetal3_GGML + 5; i >= MTLGPUFamilyMetal3_GGML; --i) {
|
|
if ([device supportsFamily:i]) {
|
|
GGML_LOG_INFO("%s: GPU family: MTLGPUFamilyMetal%d (%d)\n", __func__, i - (int) MTLGPUFamilyMetal3_GGML + 3, i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
GGML_LOG_INFO("%s: simdgroup reduction = %s\n", __func__, ctx_dev->has_simdgroup_reduction ? "true" : "false");
|
|
GGML_LOG_INFO("%s: simdgroup matrix mul. = %s\n", __func__, ctx_dev->has_simdgroup_mm ? "true" : "false");
|
|
GGML_LOG_INFO("%s: has residency sets = %s\n", __func__, ctx_dev->has_residency_sets ? "true" : "false");
|
|
GGML_LOG_INFO("%s: has bfloat = %s\n", __func__, ctx_dev->has_bfloat ? "true" : "false");
|
|
GGML_LOG_INFO("%s: use bfloat = %s\n", __func__, ctx_dev->use_bfloat ? "true" : "false");
|
|
GGML_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx_dev->mtl_device.hasUnifiedMemory ? "true" : "false");
|
|
|
|
ctx->capture_next_compute = false;
|
|
ctx->capture_started = false;
|
|
ctx->capture_scope = nil;
|
|
|
|
ctx->gf = nil;
|
|
ctx->encode_async = nil;
|
|
for (int i = 0; i < GGML_METAL_MAX_COMMAND_BUFFERS; ++i) {
|
|
ctx->cmd_bufs[i].obj = nil;
|
|
|
|
ctx->cmd_bufs[i].mem_pool = ggml_metal_mem_pool_init();
|
|
ctx->cmd_bufs[i].mem_pool->device = device;
|
|
}
|
|
|
|
#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
|
|
if (@available(macOS 10.12, iOS 16.0, *)) {
|
|
GGML_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, device.recommendedMaxWorkingSetSize / 1e6);
|
|
}
|
|
#endif
|
|
|
|
// load kernels
|
|
{
|
|
NSError * error = nil;
|
|
|
|
for (int i = 0; i < GGML_METAL_KERNEL_TYPE_COUNT; ++i) {
|
|
ctx->kernels[i].pipeline = nil;
|
|
}
|
|
|
|
#define GGML_METAL_ADD_KERNEL(e, name, supported) \
|
|
if (supported) { \
|
|
struct ggml_metal_kernel * kernel = &ctx->kernels[e]; \
|
|
id<MTLFunction> metal_function = [metal_library newFunctionWithName:@"kernel_"#name]; \
|
|
kernel->pipeline = [device newComputePipelineStateWithFunction:metal_function error:&error]; \
|
|
GGML_LOG_DEBUG("%s: loaded %-40s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) kernel->pipeline, \
|
|
(int) kernel->pipeline.maxTotalThreadsPerThreadgroup, \
|
|
(int) kernel->pipeline.threadExecutionWidth); \
|
|
[metal_function release]; \
|
|
if (error) { \
|
|
GGML_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
|
|
return NULL; \
|
|
} \
|
|
} else { \
|
|
GGML_LOG_WARN("%s: skipping %-40s (not supported)\n", __func__, "kernel_"#name); \
|
|
}
|
|
|
|
const bool has_simdgroup_mm = ctx_dev->has_simdgroup_mm;
|
|
const bool has_simdgroup_reduction = ctx_dev->has_simdgroup_reduction;
|
|
const bool use_bfloat = ctx_dev->use_bfloat;
|
|
|
|
// simd_sum and simd_max requires MTLGPUFamilyApple7
|
|
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_2, add_fuse_2, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_3, add_fuse_3, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_4, add_fuse_4, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_5, add_fuse_5, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_6, add_fuse_6, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_7, add_fuse_7, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_FUSE_8, add_fuse_8, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4, add_row_c4, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_2, add_row_c4_fuse_2, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_3, add_row_c4_fuse_3, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_4, add_row_c4_fuse_4, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_5, add_row_c4_fuse_5, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_6, add_row_c4_fuse_6, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_7, add_row_c4_fuse_7, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_8, add_row_c4_fuse_8, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUB, sub, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUB_ROW_C4, sub_row_c4, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW_C4, mul_row_c4, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW_C4, div_row_c4, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ID, add_id, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F32, repeat_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F16, repeat_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I32, repeat_i32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I16, repeat_i16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIGMOID, sigmoid, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_ERF, gelu_erf, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_ERF_4, gelu_erf_4, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ELU, elu, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ABS, abs, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SGN, sgn, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_STEP, step, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_HARDSWISH, hardswish, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_HARDSIGMOID, hardsigmoid, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_EXP, exp, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16, soft_max_f16, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4, soft_max_f16_4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32, soft_max_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4, soft_max_f32_4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, diag_mask_inf_8, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, get_rows_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, get_rows_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_BF16, get_rows_bf16, use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, get_rows_q4_0, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, get_rows_q4_1, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, get_rows_q5_1, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, get_rows_q8_0, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_MXFP4, get_rows_mxfp4, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, get_rows_q2_K, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, get_rows_q3_K, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, get_rows_q4_K, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K, get_rows_q5_K, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, get_rows_iq3_s, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, get_rows_iq2_s, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M, get_rows_iq1_m, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_F32, set_rows_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_F16, set_rows_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_BF16, set_rows_bf16, use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q8_0, set_rows_q8_0, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_0, set_rows_q4_0, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_1, set_rows_q4_1, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_0, set_rows_q5_0, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_1, set_rows_q5_1, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_ROWS_IQ4_NL, set_rows_iq4_nl, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL, rms_norm_mul, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL_ADD, rms_norm_mul_add, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_L2_NORM, l2_norm, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_CONV_F32, ssm_conv_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32, ssm_scan_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32_GROUP, ssm_scan_f32_group, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RWKV_WKV6_F32, rwkv_wkv6_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RWKV_WKV7_F32, rwkv_wkv7_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32_C4, mul_mv_f32_f32_c4, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32, mul_mv_bf16_f32, has_simdgroup_reduction && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_C4, mul_mv_bf16_f32_c4, use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_1ROW, mul_mv_bf16_f32_1row, has_simdgroup_reduction && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_L4, mul_mv_bf16_f32_l4, has_simdgroup_reduction && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_BF16, mul_mv_bf16_bf16, has_simdgroup_reduction && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_C4, mul_mv_f16_f32_c4, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, mul_mv_f16_f32_1row, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, mul_mv_f16_f32_l4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, mul_mv_q4_0_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, mul_mv_q4_1_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32, mul_mv_mxfp4_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_2, mul_mv_ext_f32_f32_r1_2, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_3, mul_mv_ext_f32_f32_r1_3, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_4, mul_mv_ext_f32_f32_r1_4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_5, mul_mv_ext_f32_f32_r1_5, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2, mul_mv_ext_f16_f32_r1_2, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_3, mul_mv_ext_f16_f32_r1_3, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_4, mul_mv_ext_f16_f32_r1_4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_5, mul_mv_ext_f16_f32_r1_5, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_2, mul_mv_ext_q4_0_f32_r1_2, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_3, mul_mv_ext_q4_0_f32_r1_3, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_4, mul_mv_ext_q4_0_f32_r1_4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_5, mul_mv_ext_q4_0_f32_r1_5, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_2, mul_mv_ext_q4_1_f32_r1_2, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_3, mul_mv_ext_q4_1_f32_r1_3, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_4, mul_mv_ext_q4_1_f32_r1_4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_5, mul_mv_ext_q4_1_f32_r1_5, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_2, mul_mv_ext_q5_0_f32_r1_2, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_3, mul_mv_ext_q5_0_f32_r1_3, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_4, mul_mv_ext_q5_0_f32_r1_4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_5, mul_mv_ext_q5_0_f32_r1_5, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_2, mul_mv_ext_q5_1_f32_r1_2, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_3, mul_mv_ext_q5_1_f32_r1_3, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_4, mul_mv_ext_q5_1_f32_r1_4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_5, mul_mv_ext_q5_1_f32_r1_5, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_2, mul_mv_ext_q8_0_f32_r1_2, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_3, mul_mv_ext_q8_0_f32_r1_3, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_4, mul_mv_ext_q8_0_f32_r1_4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_5, mul_mv_ext_q8_0_f32_r1_5, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_2, mul_mv_ext_mxfp4_f32_r1_2, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_3, mul_mv_ext_mxfp4_f32_r1_3, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_4, mul_mv_ext_mxfp4_f32_r1_4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_5, mul_mv_ext_mxfp4_f32_r1_5, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_2, mul_mv_ext_q4_K_f32_r1_2, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_3, mul_mv_ext_q4_K_f32_r1_3, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_4, mul_mv_ext_q4_K_f32_r1_4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_5, mul_mv_ext_q4_K_f32_r1_5, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_2, mul_mv_ext_q5_K_f32_r1_2, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_3, mul_mv_ext_q5_K_f32_r1_3, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_4, mul_mv_ext_q5_K_f32_r1_4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_5, mul_mv_ext_q5_K_f32_r1_5, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_2, mul_mv_ext_q6_K_f32_r1_2, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_3, mul_mv_ext_q6_K_f32_r1_3, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_4, mul_mv_ext_q6_K_f32_r1_4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_5, mul_mv_ext_q6_K_f32_r1_5, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_2, mul_mv_ext_iq4_nl_f32_r1_2, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_3, mul_mv_ext_iq4_nl_f32_r1_3, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_4, mul_mv_ext_iq4_nl_f32_r1_4, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_5, mul_mv_ext_iq4_nl_f32_r1_5, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, mul_mv_q5_K_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, mul_mv_iq1_m_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, has_simdgroup_reduction);
|
|
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, mul_mv_id_f16_f32_1row, has_simdgroup_reduction);
|
|
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, mul_mv_id_f16_f32_l4, has_simdgroup_reduction);
|
|
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_BF16_F32, mul_mv_id_bf16_f32, has_simdgroup_reduction && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, mul_mv_id_q4_0_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, mul_mv_id_q4_1_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32, mul_mv_id_mxfp4_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, mul_mv_id_q5_K_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, mul_mv_id_iq1_m_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32, mul_mm_bf16_f32, has_simdgroup_mm && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, mul_mm_q4_1_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32, mul_mm_mxfp4_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32, mul_mm_mxfp4_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, mul_mm_q5_K_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_1, mul_mm_id_map0_f16_ne20_1, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_2, mul_mm_id_map0_f16_ne20_2, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4, mul_mm_id_map0_f16_ne20_4, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6, mul_mm_id_map0_f16_ne20_6, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8, mul_mm_id_map0_f16_ne20_8, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16, mul_mm_id_map0_f16_ne20_16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16, mul_mm_id_f32_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16, mul_mm_id_f16_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16, mul_mm_id_bf16_f16, has_simdgroup_mm && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F16, mul_mm_id_q4_0_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F16, mul_mm_id_q4_1_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16, mul_mm_id_q5_0_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16, mul_mm_id_q5_1_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16, mul_mm_id_q8_0_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16, mul_mm_id_mxfp4_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16, mul_mm_id_q2_K_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16, mul_mm_id_q3_K_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16, mul_mm_id_q4_K_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F16, mul_mm_id_q5_K_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F16, mul_mm_id_q6_K_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F16, mul_mm_id_iq2_xxs_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F16, mul_mm_id_iq2_xs_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F16, mul_mm_id_iq3_xxs_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F16, mul_mm_id_iq3_s_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F16, mul_mm_id_iq2_s_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F16, mul_mm_id_iq1_s_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16, mul_mm_id_iq1_m_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16, mul_mm_id_iq4_nl_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16, mul_mm_id_iq4_xs_f16, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32, rope_multi_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16, rope_multi_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32, rope_vision_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16, rope_vision_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16, rope_neox_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F16, im2col_ext_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F32, im2col_ext_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONV_TRANSPOSE_1D_F32_F32, conv_transpose_1d_f32_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONV_TRANSPOSE_1D_F16_F32, conv_transpose_1d_f16_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32, pad_reflect_1d_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H40, flash_attn_ext_f16_h40, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, flash_attn_ext_f16_h64, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, flash_attn_ext_f16_h80, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H192, flash_attn_ext_f16_h192, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK192_HV128, flash_attn_ext_f16_hk192_hv128, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK576_HV512, flash_attn_ext_f16_hk576_hv512, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H40, flash_attn_ext_bf16_h40, has_simdgroup_mm && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64, flash_attn_ext_bf16_h64, has_simdgroup_mm && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H80, flash_attn_ext_bf16_h80, has_simdgroup_mm && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H96, flash_attn_ext_bf16_h96, has_simdgroup_mm && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H112, flash_attn_ext_bf16_h112, has_simdgroup_mm && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H128, flash_attn_ext_bf16_h128, has_simdgroup_mm && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H192, flash_attn_ext_bf16_h192, has_simdgroup_mm && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK192_HV128, flash_attn_ext_bf16_hk192_hv128, has_simdgroup_mm && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H256, flash_attn_ext_bf16_h256, has_simdgroup_mm && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK576_HV512, flash_attn_ext_bf16_hk576_hv512, has_simdgroup_mm && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H40, flash_attn_ext_q4_0_h40, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64, flash_attn_ext_q4_0_h64, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80, flash_attn_ext_q4_0_h80, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96, flash_attn_ext_q4_0_h96, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H112, flash_attn_ext_q4_0_h112, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H128, flash_attn_ext_q4_0_h128, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H192, flash_attn_ext_q4_0_h192, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK192_HV128, flash_attn_ext_q4_0_hk192_hv128, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H256, flash_attn_ext_q4_0_h256, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK576_HV512, flash_attn_ext_q4_0_hk576_hv512, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H40, flash_attn_ext_q4_1_h40, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H64, flash_attn_ext_q4_1_h64, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H80, flash_attn_ext_q4_1_h80, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H96, flash_attn_ext_q4_1_h96, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H112, flash_attn_ext_q4_1_h112, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H128, flash_attn_ext_q4_1_h128, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H192, flash_attn_ext_q4_1_h192, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK192_HV128, flash_attn_ext_q4_1_hk192_hv128, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H256, flash_attn_ext_q4_1_h256, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK576_HV512, flash_attn_ext_q4_1_hk576_hv512, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H40, flash_attn_ext_q5_0_h40, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H64, flash_attn_ext_q5_0_h64, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H80, flash_attn_ext_q5_0_h80, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H96, flash_attn_ext_q5_0_h96, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H112, flash_attn_ext_q5_0_h112, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H128, flash_attn_ext_q5_0_h128, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H192, flash_attn_ext_q5_0_h192, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK192_HV128, flash_attn_ext_q5_0_hk192_hv128, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H256, flash_attn_ext_q5_0_h256, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK576_HV512, flash_attn_ext_q5_0_hk576_hv512, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H40, flash_attn_ext_q5_1_h40, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H64, flash_attn_ext_q5_1_h64, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H80, flash_attn_ext_q5_1_h80, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H96, flash_attn_ext_q5_1_h96, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H112, flash_attn_ext_q5_1_h112, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H128, flash_attn_ext_q5_1_h128, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H192, flash_attn_ext_q5_1_h192, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK192_HV128, flash_attn_ext_q5_1_hk192_hv128, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H256, flash_attn_ext_q5_1_h256, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK576_HV512, flash_attn_ext_q5_1_hk576_hv512, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H40, flash_attn_ext_q8_0_h40, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64, flash_attn_ext_q8_0_h64, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80, flash_attn_ext_q8_0_h80, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96, flash_attn_ext_q8_0_h96, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H112, flash_attn_ext_q8_0_h112, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H128, flash_attn_ext_q8_0_h128, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H192, flash_attn_ext_q8_0_h192, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128, flash_attn_ext_q8_0_hk192_hv128, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256, flash_attn_ext_q8_0_h256, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512, flash_attn_ext_q8_0_hk576_hv512, has_simdgroup_mm);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H40, flash_attn_ext_vec_f16_h40, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H40, flash_attn_ext_vec_bf16_h40, has_simdgroup_reduction && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H40, flash_attn_ext_vec_q4_0_h40, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H40, flash_attn_ext_vec_q4_1_h40, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H40, flash_attn_ext_vec_q5_0_h40, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H40, flash_attn_ext_vec_q5_1_h40, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H40, flash_attn_ext_vec_q8_0_h40, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H64, flash_attn_ext_vec_f16_h64, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H64, flash_attn_ext_vec_bf16_h64, has_simdgroup_reduction && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H64, flash_attn_ext_vec_q4_0_h64, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H64, flash_attn_ext_vec_q4_1_h64, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H64, flash_attn_ext_vec_q5_0_h64, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H64, flash_attn_ext_vec_q5_1_h64, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H64, flash_attn_ext_vec_q8_0_h64, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H96, flash_attn_ext_vec_f16_h96, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H96, flash_attn_ext_vec_bf16_h96, has_simdgroup_reduction && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H96, flash_attn_ext_vec_q4_0_h96, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H96, flash_attn_ext_vec_q4_1_h96, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H96, flash_attn_ext_vec_q5_0_h96, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H96, flash_attn_ext_vec_q5_1_h96, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H96, flash_attn_ext_vec_q8_0_h96, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H128, flash_attn_ext_vec_bf16_h128, has_simdgroup_reduction && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128, flash_attn_ext_vec_q4_0_h128, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H128, flash_attn_ext_vec_q4_1_h128, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H128, flash_attn_ext_vec_q5_0_h128, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H128, flash_attn_ext_vec_q5_1_h128, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H128, flash_attn_ext_vec_q8_0_h128, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H192, flash_attn_ext_vec_f16_h192, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H192, flash_attn_ext_vec_bf16_h192, has_simdgroup_reduction && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H192, flash_attn_ext_vec_q4_0_h192, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H192, flash_attn_ext_vec_q4_1_h192, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H192, flash_attn_ext_vec_q5_0_h192, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H192, flash_attn_ext_vec_q5_1_h192, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H192, flash_attn_ext_vec_q8_0_h192, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK192_HV128, flash_attn_ext_vec_f16_hk192_hv128, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_HK192_HV128, flash_attn_ext_vec_bf16_hk192_hv128, has_simdgroup_reduction && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_HK192_HV128, flash_attn_ext_vec_q4_0_hk192_hv128, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_HK192_HV128, flash_attn_ext_vec_q4_1_hk192_hv128, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_HK192_HV128, flash_attn_ext_vec_q5_0_hk192_hv128, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_HK192_HV128, flash_attn_ext_vec_q5_1_hk192_hv128, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK192_HV128, flash_attn_ext_vec_q8_0_hk192_hv128, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H256, flash_attn_ext_vec_bf16_h256, has_simdgroup_reduction && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H256, flash_attn_ext_vec_q4_0_h256, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H256, flash_attn_ext_vec_q4_1_h256, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H256, flash_attn_ext_vec_q5_0_h256, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H256, flash_attn_ext_vec_q5_1_h256, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256, flash_attn_ext_vec_q8_0_h256, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK576_HV512, flash_attn_ext_vec_f16_hk576_hv512, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_HK576_HV512, flash_attn_ext_vec_bf16_hk576_hv512, has_simdgroup_reduction && use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_HK576_HV512, flash_attn_ext_vec_q4_0_hk576_hv512, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_HK576_HV512, flash_attn_ext_vec_q4_1_hk576_hv512, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_HK576_HV512, flash_attn_ext_vec_q5_0_hk576_hv512, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_HK576_HV512, flash_attn_ext_vec_q5_1_hk576_hv512, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK576_HV512, flash_attn_ext_vec_q8_0_hk576_hv512, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_REDUCE, flash_attn_ext_reduce, has_simdgroup_reduction);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_F32, set_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SET_I32, set_i32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_BF16, cpy_f32_bf16, use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_BF16_F32, cpy_bf16_f32, use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_BF16_BF16, cpy_bf16_bf16, use_bfloat);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, cpy_f32_iq4_nl, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q4_0_F32, cpy_q4_0_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q4_0_F16, cpy_q4_0_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q4_1_F32, cpy_q4_1_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q4_1_F16, cpy_q4_1_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q5_0_F32, cpy_q5_0_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q5_0_F16, cpy_q5_0_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q5_1_F32, cpy_q5_1_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q5_1_F16, cpy_q5_1_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q8_0_F32, cpy_q8_0_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_Q8_0_F16, cpy_q8_0_f16, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REGLU, reglu, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU, geglu, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SWIGLU, swiglu, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SWIGLU_OAI, swiglu_oai, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU_ERF, geglu_erf, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU_QUICK, geglu_quick, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MEAN, mean, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
|
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32, pool_2d_max_f32, true);
|
|
}
|
|
|
|
return ctx;
|
|
}
|
|
|
|
static void ggml_metal_free(struct ggml_backend_metal_context * ctx) {
|
|
GGML_LOG_INFO("%s: deallocating\n", __func__);
|
|
|
|
for (int i = 0; i < GGML_METAL_KERNEL_TYPE_COUNT; ++i) {
|
|
[ctx->kernels[i].pipeline release];
|
|
}
|
|
|
|
Block_release(ctx->encode_async);
|
|
|
|
[ctx->queue release];
|
|
|
|
for (int i = 0; i < GGML_METAL_MAX_COMMAND_BUFFERS; ++i) {
|
|
// ctx->cmd_bufs[i].obj is auto released
|
|
|
|
ggml_metal_mem_pool_free(ctx->cmd_bufs[i].mem_pool);
|
|
}
|
|
|
|
dispatch_release(ctx->d_queue);
|
|
|
|
free(ctx);
|
|
}
|
|
|
|
// temporarily defined here for compatibility between ggml-backend and the old API
|
|
|
|
struct ggml_backend_metal_buffer {
|
|
void * data;
|
|
size_t size;
|
|
|
|
id<MTLBuffer> metal;
|
|
};
|
|
|
|
struct ggml_backend_metal_buffer_context {
|
|
void * all_data;
|
|
size_t all_size;
|
|
bool owned;
|
|
|
|
// multiple buffers are used only to avoid the maximum buffer size limitation when using mmap
|
|
int n_buffers;
|
|
struct ggml_backend_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
|
|
|
|
// optional MTLResidencySet
|
|
id rset;
|
|
};
|
|
|
|
// rset init
|
|
static bool ggml_backend_metal_buffer_rset_init(
|
|
struct ggml_backend_metal_buffer_context * ctx,
|
|
struct ggml_backend_metal_device_context * ctx_dev,
|
|
id<MTLDevice> device) {
|
|
ctx->rset = nil;
|
|
|
|
if (!ctx_dev->has_residency_sets) {
|
|
return true;
|
|
}
|
|
|
|
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
|
|
if (@available(macOS 15.0, iOS 18.0, tvOS 18.0, visionOS 2.0, *)) {
|
|
MTLResidencySetDescriptor * desc = [[MTLResidencySetDescriptor alloc] init];
|
|
desc.label = @"ggml_backend_metal";
|
|
desc.initialCapacity = ctx->n_buffers;
|
|
|
|
NSError * error;
|
|
ctx->rset = [device newResidencySetWithDescriptor:desc error:&error];
|
|
if (error) {
|
|
GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
|
[desc release];
|
|
return false;
|
|
}
|
|
|
|
[desc release];
|
|
|
|
for (int i = 0; i < ctx->n_buffers; i++) {
|
|
[ctx->rset addAllocation:ctx->buffers[i].metal];
|
|
}
|
|
|
|
[ctx->rset commit];
|
|
[ctx->rset requestResidency];
|
|
|
|
return true;
|
|
}
|
|
#else
|
|
GGML_UNUSED(ctx_dev);
|
|
GGML_UNUSED(device);
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
// rset free
|
|
static void ggml_backend_metal_buffer_rset_free(struct ggml_backend_metal_buffer_context * ctx) {
|
|
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
|
|
if (@available(macOS 15.0, iOS 18.0, tvOS 18.0, visionOS 2.0, *)) {
|
|
if (ctx->rset) {
|
|
[ctx->rset endResidency];
|
|
[ctx->rset removeAllAllocations];
|
|
[ctx->rset release];
|
|
}
|
|
}
|
|
#else
|
|
GGML_UNUSED(ctx);
|
|
#endif
|
|
}
|
|
|
|
// finds the Metal buffer that contains the tensor data on the GPU device
|
|
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
|
|
// Metal buffer based on the host memory pointer
|
|
//
|
|
static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_tensor * t, size_t * offs) {
|
|
//GGML_LOG_INFO("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
|
|
|
|
const int64_t tsize = ggml_nbytes(t);
|
|
|
|
ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
|
|
|
|
struct ggml_backend_metal_buffer_context * buf_ctx = (struct ggml_backend_metal_buffer_context *) buffer->context;
|
|
|
|
// find the view that contains the tensor fully
|
|
for (int i = 0; i < buf_ctx->n_buffers; ++i) {
|
|
const int64_t ioffs = (int64_t) t->data - (int64_t) buf_ctx->buffers[i].data;
|
|
|
|
//GGML_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, buf_ctx->buffers[%d].size = %10ld\n", ioffs, tsize, ioffs + tsize, i, buf_ctx->buffers[i].size);
|
|
if (ioffs >= 0 && ioffs + tsize <= (int64_t) buf_ctx->buffers[i].size) {
|
|
*offs = (size_t) ioffs;
|
|
|
|
//GGML_LOG_INFO("%s: tensor '%16s', offs = %8ld\n", __func__, t->name, *offs);
|
|
|
|
return buf_ctx->buffers[i].metal;
|
|
}
|
|
}
|
|
|
|
GGML_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name);
|
|
|
|
return nil;
|
|
}
|
|
|
|
static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_context * ctx_dev, const struct ggml_tensor * op) {
|
|
const bool has_simdgroup_mm = ctx_dev->has_simdgroup_mm;
|
|
const bool has_simdgroup_reduction = ctx_dev->has_simdgroup_reduction;
|
|
const bool use_bfloat = ctx_dev->use_bfloat;
|
|
|
|
if (!use_bfloat) {
|
|
if (op->type == GGML_TYPE_BF16) {
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0, n = 3; i < n; ++i) {
|
|
if (op->src[i] != NULL && op->src[i]->type == GGML_TYPE_BF16) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (op->op) {
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(op)) {
|
|
case GGML_UNARY_OP_TANH:
|
|
case GGML_UNARY_OP_RELU:
|
|
case GGML_UNARY_OP_SIGMOID:
|
|
case GGML_UNARY_OP_GELU:
|
|
case GGML_UNARY_OP_GELU_ERF:
|
|
case GGML_UNARY_OP_GELU_QUICK:
|
|
case GGML_UNARY_OP_SILU:
|
|
case GGML_UNARY_OP_ELU:
|
|
case GGML_UNARY_OP_NEG:
|
|
case GGML_UNARY_OP_ABS:
|
|
case GGML_UNARY_OP_SGN:
|
|
case GGML_UNARY_OP_STEP:
|
|
case GGML_UNARY_OP_HARDSWISH:
|
|
case GGML_UNARY_OP_HARDSIGMOID:
|
|
case GGML_UNARY_OP_EXP:
|
|
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
|
|
default:
|
|
return false;
|
|
}
|
|
case GGML_OP_GLU:
|
|
switch (ggml_get_glu_op(op)) {
|
|
case GGML_GLU_OP_REGLU:
|
|
case GGML_GLU_OP_GEGLU:
|
|
case GGML_GLU_OP_SWIGLU:
|
|
case GGML_GLU_OP_SWIGLU_OAI:
|
|
case GGML_GLU_OP_GEGLU_ERF:
|
|
case GGML_GLU_OP_GEGLU_QUICK:
|
|
return ggml_is_contiguous_1(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
|
|
default:
|
|
return false;
|
|
}
|
|
case GGML_OP_NONE:
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_TRANSPOSE:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_CONCAT:
|
|
return true;
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_SUB:
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_DIV:
|
|
case GGML_OP_ADD_ID:
|
|
return op->src[0]->type == GGML_TYPE_F32;
|
|
case GGML_OP_ACC:
|
|
case GGML_OP_REPEAT:
|
|
case GGML_OP_SCALE:
|
|
case GGML_OP_CONV_TRANSPOSE_1D:
|
|
return true;
|
|
case GGML_OP_CLAMP:
|
|
return op->src[0]->type == GGML_TYPE_F32;
|
|
case GGML_OP_SQR:
|
|
case GGML_OP_SQRT:
|
|
case GGML_OP_SIN:
|
|
case GGML_OP_COS:
|
|
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
|
|
case GGML_OP_LOG:
|
|
return false; // TODO: implement
|
|
case GGML_OP_SUM_ROWS:
|
|
case GGML_OP_MEAN:
|
|
case GGML_OP_SOFT_MAX:
|
|
case GGML_OP_GROUP_NORM:
|
|
return has_simdgroup_reduction && ggml_is_contiguous_rows(op->src[0]);
|
|
case GGML_OP_RMS_NORM:
|
|
case GGML_OP_L2_NORM:
|
|
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
|
|
case GGML_OP_ARGMAX:
|
|
return true;
|
|
case GGML_OP_NORM:
|
|
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
|
|
case GGML_OP_ROPE:
|
|
return true;
|
|
case GGML_OP_IM2COL:
|
|
return ggml_is_contiguous(op->src[1]) && op->src[1]->type == GGML_TYPE_F32 && (op->type == GGML_TYPE_F16 || op->type == GGML_TYPE_F32);
|
|
case GGML_OP_POOL_1D:
|
|
return false;
|
|
case GGML_OP_UPSCALE:
|
|
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
|
|
case GGML_OP_POOL_2D:
|
|
case GGML_OP_PAD:
|
|
case GGML_OP_PAD_REFLECT_1D:
|
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
|
case GGML_OP_ARGSORT:
|
|
case GGML_OP_LEAKY_RELU:
|
|
return op->src[0]->type == GGML_TYPE_F32;
|
|
case GGML_OP_ARANGE:
|
|
return true;
|
|
case GGML_OP_FLASH_ATTN_EXT:
|
|
if (op->src[0]->ne[0] == 32) {
|
|
// head size == 32 (e.g. bert-bge-small)
|
|
// TODO: not sure if it is worth adding kernels for this size
|
|
return false;
|
|
}
|
|
if (op->src[0]->ne[0] == 576) {
|
|
// DeepSeek sizes
|
|
// TODO: disabled for now, until optmized
|
|
return false;
|
|
}
|
|
if (op->src[1]->type != op->src[2]->type) {
|
|
return false;
|
|
}
|
|
return has_simdgroup_mm; // TODO: over-restricted for vec-kernels
|
|
case GGML_OP_SSM_CONV:
|
|
case GGML_OP_SSM_SCAN:
|
|
case GGML_OP_RWKV_WKV6:
|
|
case GGML_OP_RWKV_WKV7:
|
|
return true;
|
|
case GGML_OP_MUL_MAT:
|
|
case GGML_OP_MUL_MAT_ID:
|
|
return has_simdgroup_reduction &&
|
|
(op->src[0]->type != GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F32);
|
|
case GGML_OP_CPY:
|
|
case GGML_OP_DUP:
|
|
case GGML_OP_CONT:
|
|
{
|
|
switch (op->src[0]->type) {
|
|
case GGML_TYPE_F32:
|
|
switch (op->type) {
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_BF16:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_IQ4_NL:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
case GGML_TYPE_F16:
|
|
switch (op->type) {
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_F16:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
case GGML_TYPE_BF16:
|
|
switch (op->type) {
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_BF16:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
switch (op->type) {
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_F16:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
default:
|
|
return false;
|
|
};
|
|
}
|
|
case GGML_OP_SET:
|
|
{
|
|
switch (op->src[0]->type) {
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_I32:
|
|
return true;
|
|
default:
|
|
return false;
|
|
};
|
|
}
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
case GGML_OP_GET_ROWS:
|
|
{
|
|
return op->ne[3] == 1;
|
|
}
|
|
case GGML_OP_SET_ROWS:
|
|
{
|
|
if (op->src[0]->type != GGML_TYPE_F32) {
|
|
return false;
|
|
}
|
|
|
|
switch (op->type) {
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_BF16:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_IQ4_NL:
|
|
return true;
|
|
default:
|
|
return false;
|
|
};
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static int ggml_metal_encode_node(
|
|
ggml_backend_t backend,
|
|
int idx,
|
|
int idx_end,
|
|
id<MTLComputeCommandEncoder> encoder,
|
|
struct ggml_metal_mem_pool * mem_pool) {
|
|
struct ggml_backend_metal_context * ctx = backend->context;
|
|
struct ggml_backend_metal_device_context * ctx_dev = backend->device->context;
|
|
|
|
struct ggml_cgraph * gf = ctx->gf;
|
|
|
|
enum ggml_op ops[8];
|
|
|
|
struct ggml_tensor ** nodes = ggml_graph_nodes(gf) + idx;
|
|
struct ggml_tensor * node = nodes[0];
|
|
|
|
//GGML_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, idx, ggml_op_name(node->op));
|
|
|
|
struct ggml_tensor * src0 = node->src[0];
|
|
struct ggml_tensor * src1 = node->src[1];
|
|
struct ggml_tensor * src2 = node->src[2];
|
|
struct ggml_tensor * dst = node;
|
|
|
|
if (ggml_is_empty(dst)) {
|
|
return 1;
|
|
}
|
|
|
|
switch (dst->op) {
|
|
case GGML_OP_NONE:
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_TRANSPOSE:
|
|
case GGML_OP_PERMUTE:
|
|
{
|
|
// noop -> next node
|
|
} return 1;
|
|
default:
|
|
{
|
|
} break;
|
|
}
|
|
|
|
if (!ggml_metal_supports_op(ctx_dev, dst)) {
|
|
GGML_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
|
|
GGML_ABORT("unsupported op");
|
|
}
|
|
|
|
ggml_metal_mem_pool_clear(mem_pool);
|
|
|
|
const int64_t ne00 = src0 ? src0->ne[0] : 0;
|
|
const int64_t ne01 = src0 ? src0->ne[1] : 0;
|
|
const int64_t ne02 = src0 ? src0->ne[2] : 0;
|
|
const int64_t ne03 = src0 ? src0->ne[3] : 0;
|
|
|
|
const uint64_t nb00 = src0 ? src0->nb[0] : 0;
|
|
const uint64_t nb01 = src0 ? src0->nb[1] : 0;
|
|
const uint64_t nb02 = src0 ? src0->nb[2] : 0;
|
|
const uint64_t nb03 = src0 ? src0->nb[3] : 0;
|
|
|
|
const int64_t ne10 = src1 ? src1->ne[0] : 0;
|
|
const int64_t ne11 = src1 ? src1->ne[1] : 0;
|
|
const int64_t ne12 = src1 ? src1->ne[2] : 0;
|
|
const int64_t ne13 = src1 ? src1->ne[3] : 0;
|
|
|
|
const uint64_t nb10 = src1 ? src1->nb[0] : 0;
|
|
const uint64_t nb11 = src1 ? src1->nb[1] : 0;
|
|
const uint64_t nb12 = src1 ? src1->nb[2] : 0;
|
|
const uint64_t nb13 = src1 ? src1->nb[3] : 0;
|
|
|
|
const int64_t ne20 = src2 ? src2->ne[0] : 0;
|
|
const int64_t ne21 = src2 ? src2->ne[1] : 0;
|
|
const int64_t ne22 = src2 ? src2->ne[2] : 0; GGML_UNUSED(ne22);
|
|
const int64_t ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23);
|
|
|
|
const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20);
|
|
const uint64_t nb21 = src2 ? src2->nb[1] : 0;
|
|
const uint64_t nb22 = src2 ? src2->nb[2] : 0;
|
|
const uint64_t nb23 = src2 ? src2->nb[3] : 0; GGML_UNUSED(nb23);
|
|
|
|
const int64_t ne0 = dst ? dst->ne[0] : 0;
|
|
const int64_t ne1 = dst ? dst->ne[1] : 0;
|
|
const int64_t ne2 = dst ? dst->ne[2] : 0;
|
|
const int64_t ne3 = dst ? dst->ne[3] : 0;
|
|
|
|
const uint64_t nb0 = dst ? dst->nb[0] : 0;
|
|
const uint64_t nb1 = dst ? dst->nb[1] : 0;
|
|
const uint64_t nb2 = dst ? dst->nb[2] : 0;
|
|
const uint64_t nb3 = dst ? dst->nb[3] : 0;
|
|
|
|
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
|
|
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
|
|
const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT;
|
|
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
|
|
|
|
size_t offs_src0 = 0;
|
|
size_t offs_src1 = 0;
|
|
size_t offs_src2 = 0;
|
|
size_t offs_dst = 0;
|
|
|
|
id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(src0, &offs_src0) : nil;
|
|
id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(src1, &offs_src1) : nil;
|
|
id<MTLBuffer> id_src2 = src2 ? ggml_metal_get_buffer(src2, &offs_src2) : nil;
|
|
id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(dst, &offs_dst) : nil;
|
|
|
|
int n_fuse = 1;
|
|
|
|
#if 0
|
|
GGML_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op));
|
|
if (src0) {
|
|
GGML_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld, %5lld] [%5lld, %5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03,
|
|
ggml_is_contiguous(src0), src0->name);
|
|
}
|
|
if (src1) {
|
|
GGML_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld, %5lld] [%5lld, %5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, ne13, nb10, nb11, nb12, nb13,
|
|
ggml_is_contiguous(src1), src1->name);
|
|
}
|
|
if (dst) {
|
|
GGML_LOG_INFO("%s: dst - %4s [%5lld, %5lld, %5lld, %5lld] [%5lld, %5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, ne3, nb0, nb1, nb2, nb3,
|
|
dst->name);
|
|
}
|
|
#endif
|
|
|
|
id<MTLDevice> device = ctx_dev->mtl_device;
|
|
|
|
switch (dst->op) {
|
|
case GGML_OP_CONCAT:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline;
|
|
|
|
const int32_t dim = ((const int32_t *) dst->op_params)[0];
|
|
|
|
ggml_metal_kargs_concat args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.ne03 =*/ ne03,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne10 =*/ ne10,
|
|
/*.ne11 =*/ ne11,
|
|
/*.ne12 =*/ ne12,
|
|
/*.ne13 =*/ ne13,
|
|
/*.nb10 =*/ nb10,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb12 =*/ nb12,
|
|
/*.nb13 =*/ nb13,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.ne2 =*/ ne2,
|
|
/*.ne3 =*/ ne3,
|
|
/*.nb0 =*/ nb0,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
/*.nb3 =*/ nb3,
|
|
/*.dim =*/ dim,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
|
|
|
const int nth = MIN(1024, ne0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_SUB:
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_DIV:
|
|
{
|
|
GGML_ASSERT(src0t == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(ggml_is_contiguous_rows(src0));
|
|
GGML_ASSERT(ggml_is_contiguous_rows(src1));
|
|
|
|
const size_t offs = 0;
|
|
|
|
bool bcast_row = false;
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
ggml_metal_kargs_bin args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.ne03 =*/ ne03,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne10 =*/ ne10,
|
|
/*.ne11 =*/ ne11,
|
|
/*.ne12 =*/ ne12,
|
|
/*.ne13 =*/ ne13,
|
|
/*.nb10 =*/ nb10,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb12 =*/ nb12,
|
|
/*.nb13 =*/ nb13,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.ne2 =*/ ne2,
|
|
/*.ne3 =*/ ne3,
|
|
/*.nb0 =*/ nb0,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
/*.nb3 =*/ nb3,
|
|
/*.offs =*/ offs,
|
|
/*.o1 =*/ { offs_src1 },
|
|
};
|
|
|
|
// c[0] = add(a, b[0])
|
|
// c[1] = add(c[0], b[1])
|
|
// c[2] = add(c[1], b[2])
|
|
// ...
|
|
if (ctx_dev->use_fusion) {
|
|
ops[0] = GGML_OP_ADD;
|
|
ops[1] = GGML_OP_ADD;
|
|
ops[2] = GGML_OP_ADD;
|
|
ops[3] = GGML_OP_ADD;
|
|
ops[4] = GGML_OP_ADD;
|
|
ops[5] = GGML_OP_ADD;
|
|
ops[6] = GGML_OP_ADD;
|
|
ops[7] = GGML_OP_ADD;
|
|
|
|
size_t offs_fuse;
|
|
id<MTLBuffer> id_fuse;
|
|
|
|
// note: in metal, we sometimes encode the graph in parallel so we have to avoid fusing nodes
|
|
// across splits. idx_end indicates the last node in the current split
|
|
for (n_fuse = 0; n_fuse <= 6 && idx + n_fuse + 1 < idx_end; ++n_fuse) {
|
|
if (!ggml_can_fuse(gf, idx + n_fuse, ops + n_fuse, 2)) {
|
|
break;
|
|
}
|
|
|
|
if (nodes[n_fuse] != nodes[n_fuse + 1]->src[0]) {
|
|
break;
|
|
}
|
|
|
|
// b[0] === b[1] === ...
|
|
if (!ggml_are_same_layout(nodes[n_fuse]->src[1], nodes[n_fuse + 1]->src[1])) {
|
|
break;
|
|
}
|
|
|
|
// only fuse nodes if src1 is in the same Metal buffer
|
|
id_fuse = ggml_metal_get_buffer(nodes[n_fuse + 1]->src[1], &offs_fuse);
|
|
if (id_fuse != id_src1) {
|
|
break;
|
|
}
|
|
|
|
ctx_dev->fuse_cnt[nodes[n_fuse + 1]->op]++;
|
|
|
|
args.o1[n_fuse + 1] = offs_fuse;
|
|
}
|
|
|
|
++n_fuse;
|
|
|
|
if (ctx_dev->debug_fusion > 1 && n_fuse > 1) {
|
|
GGML_LOG_DEBUG("%s: fuse: ADD x %d\n", __func__, n_fuse);
|
|
}
|
|
}
|
|
|
|
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
// src1 is a row
|
|
GGML_ASSERT(ne11 == 1);
|
|
|
|
switch (dst->op) {
|
|
case GGML_OP_ADD:
|
|
{
|
|
switch (n_fuse) {
|
|
case 1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4 ].pipeline; break;
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_2].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_3].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_4].pipeline; break;
|
|
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_5].pipeline; break;
|
|
case 6: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_6].pipeline; break;
|
|
case 7: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_7].pipeline; break;
|
|
case 8: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW_C4_FUSE_8].pipeline; break;
|
|
default: GGML_ABORT("fatal error");
|
|
}
|
|
} break;
|
|
case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB_ROW_C4].pipeline; break;
|
|
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW_C4].pipeline; break;
|
|
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW_C4].pipeline; break;
|
|
default: GGML_ABORT("fatal error");
|
|
}
|
|
|
|
bcast_row = true;
|
|
} else {
|
|
switch (dst->op) {
|
|
case GGML_OP_ADD:
|
|
{
|
|
switch (n_fuse) {
|
|
case 1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD ].pipeline; break;
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_2].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_3].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_4].pipeline; break;
|
|
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_5].pipeline; break;
|
|
case 6: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_6].pipeline; break;
|
|
case 7: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_7].pipeline; break;
|
|
case 8: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_FUSE_8].pipeline; break;
|
|
default: GGML_ABORT("fatal error");
|
|
}
|
|
} break;
|
|
case GGML_OP_SUB: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUB].pipeline; break;
|
|
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break;
|
|
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break;
|
|
default: GGML_ABORT("fatal error");
|
|
}
|
|
}
|
|
|
|
if (n_fuse > 1) {
|
|
id_dst = ggml_metal_get_buffer(nodes[n_fuse - 1], &offs_dst);
|
|
}
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_src1 offset:0 atIndex:2];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
|
|
|
if (bcast_row) {
|
|
const int64_t n = ggml_nelements(dst)/4;
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} else {
|
|
int nth = 32;
|
|
|
|
while (16*nth < ne0 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
|
|
nth *= 2;
|
|
}
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
}
|
|
} break;
|
|
case GGML_OP_ADD_ID:
|
|
{
|
|
GGML_ASSERT(src0t == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
|
GGML_ASSERT(src2t == GGML_TYPE_I32);
|
|
GGML_ASSERT(dstt == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(ggml_is_contiguous_rows(src0));
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ID].pipeline;
|
|
|
|
ggml_metal_kargs_add_id args = {
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb21 =*/ nb21,
|
|
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
|
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
|
|
|
|
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_REPEAT:
|
|
{
|
|
id<MTLComputePipelineState> pipeline;
|
|
|
|
switch (src0t) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F32].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F16].pipeline; break;
|
|
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I32].pipeline; break;
|
|
case GGML_TYPE_I16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I16].pipeline; break;
|
|
default: GGML_ABORT("fatal error");
|
|
}
|
|
|
|
ggml_metal_kargs_repeat args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.ne03 =*/ ne03,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.ne2 =*/ ne2,
|
|
/*.ne3 =*/ ne3,
|
|
/*.nb0 =*/ nb0,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
/*.nb3 =*/ nb3,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
|
|
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_ACC:
|
|
{
|
|
GGML_ASSERT(src0t == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
|
GGML_ASSERT(dstt == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
|
|
const size_t pnb1 = ((const int32_t *) dst->op_params)[0];
|
|
const size_t pnb2 = ((const int32_t *) dst->op_params)[1];
|
|
const size_t pnb3 = ((const int32_t *) dst->op_params)[2];
|
|
const size_t offs = ((const int32_t *) dst->op_params)[3];
|
|
|
|
const bool inplace = (bool) ((const int32_t *) dst->op_params)[4];
|
|
|
|
if (!inplace) {
|
|
// run a separete kernel to cpy src->dst
|
|
// not sure how to avoid this
|
|
// TODO: make a simpler cpy_bytes kernel
|
|
|
|
const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline;
|
|
|
|
ggml_metal_kargs_cpy args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.ne03 =*/ ne03,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.ne2 =*/ ne2,
|
|
/*.ne3 =*/ ne3,
|
|
/*.nb0 =*/ nb0,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
/*.nb3 =*/ nb3,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
|
|
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
}
|
|
|
|
const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline;
|
|
|
|
ggml_metal_kargs_bin args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.ne03 =*/ ne03,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ pnb1,
|
|
/*.nb02 =*/ pnb2,
|
|
/*.nb03 =*/ pnb3,
|
|
/*.ne10 =*/ ne10,
|
|
/*.ne11 =*/ ne11,
|
|
/*.ne12 =*/ ne12,
|
|
/*.ne13 =*/ ne13,
|
|
/*.nb10 =*/ nb10,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb12 =*/ nb12,
|
|
/*.nb13 =*/ nb13,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.ne2 =*/ ne2,
|
|
/*.ne3 =*/ ne3,
|
|
/*.nb0 =*/ nb0,
|
|
/*.nb1 =*/ pnb1,
|
|
/*.nb2 =*/ pnb2,
|
|
/*.nb3 =*/ pnb3,
|
|
/*.offs =*/ offs,
|
|
/*.o1 =*/ { offs_src1},
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_src1 offset:0 atIndex:2];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
|
|
|
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne11, ne12, ne13) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_SCALE:
|
|
{
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
float scale;
|
|
float bias;
|
|
memcpy(&scale, ((const int32_t *) dst->op_params) + 0, sizeof(float));
|
|
memcpy(&bias, ((const int32_t *) dst->op_params) + 1, sizeof(float));
|
|
|
|
int64_t n = ggml_nelements(dst);
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
if (n % 4 == 0) {
|
|
n /= 4;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE_4].pipeline;
|
|
} else {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE].pipeline;
|
|
}
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
|
|
[encoder setBytes:&bias length:sizeof(bias) atIndex:3];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_OP_CLAMP:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CLAMP].pipeline;
|
|
|
|
float min;
|
|
float max;
|
|
memcpy(&min, ((const int32_t *) dst->op_params) + 0, sizeof(float));
|
|
memcpy(&max, ((const int32_t *) dst->op_params) + 1, sizeof(float));
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&min length:sizeof(min) atIndex:2];
|
|
[encoder setBytes:&max length:sizeof(max) atIndex:3];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(node)) {
|
|
// we are not taking into account the strides, so for now require contiguous tensors
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
case GGML_UNARY_OP_TANH:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_RELU:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RELU].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_SIGMOID:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SIGMOID].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_GELU:
|
|
{
|
|
int64_t n = ggml_nelements(dst);
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
if (n % 4 == 0) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_4].pipeline;
|
|
n /= 4;
|
|
} else {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
|
|
}
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_GELU_ERF:
|
|
{
|
|
int64_t n = ggml_nelements(dst);
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
if (n % 4 == 0) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_ERF_4].pipeline;
|
|
n /= 4;
|
|
} else {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_ERF].pipeline;
|
|
}
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_GELU_QUICK:
|
|
{
|
|
int64_t n = ggml_nelements(dst);
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
if (n % 4 == 0) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK_4].pipeline;
|
|
n /= 4;
|
|
} else {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
|
|
}
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_SILU:
|
|
{
|
|
int64_t n = ggml_nelements(dst);
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
if (n % 4 == 0) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU_4].pipeline;
|
|
n /= 4;
|
|
} else {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
|
|
}
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_ELU:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ELU].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_NEG:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NEG].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_ABS:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ABS].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_SGN:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SGN].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_STEP:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_STEP].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_HARDSWISH:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_HARDSWISH].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_HARDSIGMOID:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_HARDSIGMOID].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_UNARY_OP_EXP:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_EXP].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
} break;
|
|
case GGML_OP_GLU:
|
|
{
|
|
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
|
|
|
if (src1) {
|
|
GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
|
}
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
switch (ggml_get_glu_op(node)) {
|
|
case GGML_GLU_OP_REGLU:
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REGLU].pipeline;
|
|
break;
|
|
case GGML_GLU_OP_GEGLU:
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GEGLU].pipeline;
|
|
break;
|
|
case GGML_GLU_OP_SWIGLU:
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SWIGLU].pipeline;
|
|
break;
|
|
case GGML_GLU_OP_SWIGLU_OAI:
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SWIGLU_OAI].pipeline;
|
|
break;
|
|
case GGML_GLU_OP_GEGLU_ERF:
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GEGLU_ERF].pipeline;
|
|
break;
|
|
case GGML_GLU_OP_GEGLU_QUICK:
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GEGLU_QUICK].pipeline;
|
|
break;
|
|
default:
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
const int32_t swp = ggml_get_op_params_i32(dst, 1);
|
|
const float alpha = ggml_get_op_params_f32(dst, 2);
|
|
const float limit = ggml_get_op_params_f32(dst, 3);
|
|
|
|
const int32_t i00 = swp ? ne0 : 0;
|
|
const int32_t i10 = swp ? 0 : ne0;
|
|
|
|
ggml_metal_kargs_glu args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.ne10 =*/ src1 ? ne10 : ne00,
|
|
/*.nb11 =*/ src1 ? nb11 : nb01,
|
|
/*.ne0 =*/ ne0,
|
|
/*.nb1 =*/ nb1,
|
|
/*.i00 =*/ src1 ? 0 : i00,
|
|
/*.i10 =*/ src1 ? 0 : i10,
|
|
/*.alpha=*/ alpha,
|
|
/*.limit=*/ limit
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
if (src1) {
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
} else {
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
}
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:3];
|
|
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
const int32_t nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00/2);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_SQR:
|
|
{
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQR].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_OP_SQRT:
|
|
{
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQRT].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_OP_SIN:
|
|
{
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SIN].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_OP_COS:
|
|
{
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_COS].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_OP_SUM_ROWS:
|
|
case GGML_OP_MEAN:
|
|
{
|
|
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
switch (dst->op) {
|
|
case GGML_OP_SUM_ROWS:
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
|
|
break;
|
|
case GGML_OP_MEAN:
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MEAN].pipeline;
|
|
break;
|
|
default:
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
int nth = 32; // SIMD width
|
|
|
|
while (nth < ne00 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
|
|
nth *= 2;
|
|
}
|
|
|
|
nth = MIN(nth, (int) pipeline.maxTotalThreadsPerThreadgroup);
|
|
nth = MIN(nth, ne00);
|
|
|
|
ggml_metal_kargs_sum_rows args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.ne03 =*/ ne03,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne10 =*/ ne10,
|
|
/*.ne11 =*/ ne11,
|
|
/*.ne12 =*/ ne12,
|
|
/*.ne13 =*/ ne13,
|
|
/*.nb10 =*/ nb10,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb12 =*/ nb12,
|
|
/*.nb13 =*/ nb13,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.ne2 =*/ ne2,
|
|
/*.ne3 =*/ ne3,
|
|
/*.nb0 =*/ nb0,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
/*.nb3 =*/ nb3,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_SOFT_MAX:
|
|
{
|
|
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
|
|
|
|
int nth = 32; // SIMD width
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
|
|
|
if (ne00%4 == 0) {
|
|
while (nth < ne00/4 && nth*ne01*ne02*ne03 < 256) {
|
|
nth *= 2;
|
|
}
|
|
if (use_f16) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4].pipeline;
|
|
} else {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4].pipeline;
|
|
}
|
|
} else {
|
|
while (nth < ne00 && nth*ne01*ne02*ne03 < 256) {
|
|
nth *= 2;
|
|
}
|
|
if (use_f16) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16].pipeline;
|
|
} else {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32].pipeline;
|
|
}
|
|
}
|
|
|
|
float scale;
|
|
float max_bias;
|
|
|
|
memcpy(&scale, ((const int32_t *) dst->op_params) + 0, sizeof(scale));
|
|
memcpy(&max_bias, ((const int32_t *) dst->op_params) + 1, sizeof(max_bias));
|
|
|
|
const uint32_t n_head = src0->ne[2];
|
|
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
|
|
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
|
|
// use this branch to test the ggml_metal_mem_pool functionality
|
|
#if 0
|
|
// cpy to tmp buffer in MTLHeap
|
|
|
|
id<MTLBuffer> h_src0 = h_src0 = ggml_metal_mem_pool_alloc(mem_pool, ggml_nbytes(src0));
|
|
if (!h_src0) {
|
|
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, ggml_nbytes(src0));
|
|
return 0;
|
|
}
|
|
|
|
offs_src0 = 0;
|
|
|
|
ggml_metal_kargs_cpy args_cpy = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.ne03 =*/ ne03,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne0 =*/ ne00,
|
|
/*.ne1 =*/ ne01,
|
|
/*.ne2 =*/ ne02,
|
|
/*.ne3 =*/ ne03,
|
|
/*.nb0 =*/ nb00,
|
|
/*.nb1 =*/ nb01,
|
|
/*.nb2 =*/ nb02,
|
|
/*.nb3 =*/ nb03,
|
|
};
|
|
|
|
if (src0->type == GGML_TYPE_F16) {
|
|
[encoder setComputePipelineState:ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline];
|
|
} else {
|
|
[encoder setComputePipelineState:ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline];
|
|
}
|
|
[encoder setBytes:&args_cpy length:sizeof(args_cpy) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:h_src0 offset:0 atIndex:2];
|
|
|
|
GGML_ASSERT(ne00 % ggml_blck_size(src0->type) == 0);
|
|
int nth_cpy = MIN(1024, ne00 / ggml_blck_size(src0->type));
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth_cpy, 1, 1)];
|
|
|
|
#else
|
|
id<MTLBuffer> h_src0 = id_src0;
|
|
#endif
|
|
// softmax
|
|
|
|
ggml_metal_kargs_soft_max args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne11 =*/ ne11,
|
|
/*.ne12 =*/ ne12,
|
|
/*.ne13 =*/ ne13,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb12 =*/ nb12,
|
|
/*.nb13 =*/ nb13,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
/*.nb3 =*/ nb3,
|
|
/*.scale =*/ scale,
|
|
/*.max_bias =*/ max_bias,
|
|
/*.m0 =*/ m0,
|
|
/*.m1 =*/ m1,
|
|
/*.n_head_log2 =*/ n_head_log2,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:h_src0 offset:offs_src0 atIndex:0];
|
|
if (id_src1) {
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
} else {
|
|
[encoder setBuffer:h_src0 offset:offs_src0 atIndex:1];
|
|
}
|
|
if (id_src2) {
|
|
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
|
} else {
|
|
[encoder setBuffer:h_src0 offset:offs_src0 atIndex:2];
|
|
}
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:4];
|
|
|
|
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
{
|
|
const int n_past = ((const int32_t *)(dst->op_params))[0];
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
if (ne00%8 == 0) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8].pipeline;
|
|
} else {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF].pipeline;
|
|
}
|
|
|
|
ggml_metal_kargs_diag_mask_inf args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.n_past =*/ n_past,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:2];
|
|
|
|
if (ne00%8 == 0) {
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
}
|
|
else {
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
}
|
|
} break;
|
|
case GGML_OP_SSM_CONV:
|
|
{
|
|
GGML_ASSERT(src0t == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_CONV_F32].pipeline;
|
|
|
|
ggml_metal_kargs_ssm_conv args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.ne10 =*/ ne10,
|
|
/*.ne11 =*/ ne11,
|
|
/*.nb10 =*/ nb10,
|
|
/*.nb11 =*/ nb11,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.ne2 =*/ ne2,
|
|
/*.nb0 =*/ nb0,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:3];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne1, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_OP_SSM_SCAN:
|
|
{
|
|
struct ggml_tensor * src3 = node->src[3];
|
|
struct ggml_tensor * src4 = node->src[4];
|
|
struct ggml_tensor * src5 = node->src[5];
|
|
struct ggml_tensor * src6 = node->src[6];
|
|
|
|
GGML_ASSERT(src3);
|
|
GGML_ASSERT(src4);
|
|
GGML_ASSERT(src5);
|
|
GGML_ASSERT(src6);
|
|
|
|
size_t offs_src3 = 0;
|
|
size_t offs_src4 = 0;
|
|
size_t offs_src5 = 0;
|
|
size_t offs_src6 = 0;
|
|
|
|
id<MTLBuffer> id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil;
|
|
id<MTLBuffer> id_src4 = src4 ? ggml_metal_get_buffer(src4, &offs_src4) : nil;
|
|
id<MTLBuffer> id_src5 = src5 ? ggml_metal_get_buffer(src5, &offs_src5) : nil;
|
|
id<MTLBuffer> id_src6 = src6 ? ggml_metal_get_buffer(src6, &offs_src6) : nil;
|
|
|
|
const int64_t ne30 = src3->ne[0];
|
|
const int64_t ne31 = src3->ne[1]; GGML_UNUSED(ne31);
|
|
|
|
const uint64_t nb30 = src3->nb[0]; GGML_UNUSED(nb30);
|
|
const uint64_t nb31 = src3->nb[1];
|
|
|
|
const int64_t ne40 = src4->ne[0]; GGML_UNUSED(ne40);
|
|
const int64_t ne41 = src4->ne[1];
|
|
const int64_t ne42 = src4->ne[2]; GGML_UNUSED(ne42);
|
|
const int64_t ne43 = src4->ne[3]; GGML_UNUSED(ne43);
|
|
|
|
const uint64_t nb40 = src4->nb[0]; GGML_UNUSED(nb40);
|
|
const uint64_t nb41 = src4->nb[1];
|
|
const uint64_t nb42 = src4->nb[2];
|
|
const uint64_t nb43 = src4->nb[3];
|
|
|
|
const int64_t ne50 = src5->ne[0]; GGML_UNUSED(ne50);
|
|
const int64_t ne51 = src5->ne[1]; GGML_UNUSED(ne51);
|
|
const int64_t ne52 = src5->ne[2]; GGML_UNUSED(ne52);
|
|
const int64_t ne53 = src5->ne[3]; GGML_UNUSED(ne53);
|
|
|
|
const uint64_t nb50 = src5->nb[0]; GGML_UNUSED(nb50);
|
|
const uint64_t nb51 = src5->nb[1];
|
|
const uint64_t nb52 = src5->nb[2];
|
|
const uint64_t nb53 = src5->nb[3];
|
|
|
|
const int64_t ne60 = src6->ne[0]; GGML_UNUSED(ne60);
|
|
|
|
const uint64_t nb60 = src6->nb[0]; GGML_UNUSED(nb60);
|
|
|
|
const int64_t d_state = ne00;
|
|
const int64_t d_inner = ne01;
|
|
const int64_t n_head = ne02;
|
|
const int64_t n_group = ne41;
|
|
const int64_t n_seq_tokens = ne12;
|
|
const int64_t n_seqs = ne13;
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
if (ne30 == 1) {
|
|
// Mamba-2
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32_GROUP].pipeline;
|
|
} else {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32].pipeline;
|
|
}
|
|
|
|
ggml_metal_kargs_ssm_scan args = {
|
|
/*.d_state =*/ d_state,
|
|
/*.d_inner =*/ d_inner,
|
|
/*.n_head =*/ n_head,
|
|
/*.n_group =*/ n_group,
|
|
/*.n_seq_tokens =*/ n_seq_tokens,
|
|
/*.n_seqs =*/ n_seqs,
|
|
/*.s_off =*/ ggml_nelements(src1) * sizeof(float),
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb12 =*/ nb12,
|
|
/*.nb13 =*/ nb13,
|
|
/*.nb21 =*/ nb21,
|
|
/*.nb22 =*/ nb22,
|
|
/*.nb31 =*/ nb31,
|
|
/*.nb41 =*/ nb41,
|
|
/*.nb42 =*/ nb42,
|
|
/*.nb43 =*/ nb43,
|
|
/*.nb51 =*/ nb51,
|
|
/*.nb52 =*/ nb52,
|
|
/*.nb53 =*/ nb53,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
|
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
|
|
[encoder setBuffer:id_src4 offset:offs_src4 atIndex:4];
|
|
[encoder setBuffer:id_src5 offset:offs_src5 atIndex:5];
|
|
[encoder setBuffer:id_src6 offset:offs_src6 atIndex:6];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:7];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:8];
|
|
|
|
// One shared memory bucket for each simd group in the threadgroup
|
|
// NOTE: Metal kernels require the buffer size to be multiple of 16 bytes
|
|
// https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/1443142-setthreadgroupmemorylength
|
|
if (d_state >= 32) {
|
|
GGML_ASSERT((int64_t)(d_state / 32) <= 32);
|
|
const int64_t shmem_size = 32;
|
|
GGML_ASSERT(d_state <= (int64_t)pipeline.maxTotalThreadsPerThreadgroup);
|
|
[encoder setThreadgroupMemoryLength:(shmem_size)*sizeof(float) atIndex:0];
|
|
}
|
|
|
|
if (ne30 == 1) {
|
|
// Mamba-2
|
|
[encoder dispatchThreadgroups:MTLSizeMake(d_inner, n_head, n_seqs) threadsPerThreadgroup:MTLSizeMake(d_state, 1, 1)];
|
|
} else {
|
|
GGML_ASSERT(d_inner == 1);
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n_head, n_seqs, 1) threadsPerThreadgroup:MTLSizeMake(d_state, 1, 1)];
|
|
}
|
|
} break;
|
|
case GGML_OP_RWKV_WKV6:
|
|
{
|
|
const int64_t B = dst->src[5]->ne[1];
|
|
const int64_t T = dst->src[0]->ne[2];
|
|
const int64_t C = dst->ne[0];
|
|
const int64_t H = dst->src[0]->ne[1];
|
|
|
|
GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(C % H == 0);
|
|
GGML_ASSERT(C / H == 64);
|
|
|
|
size_t offs_src3 = 0;
|
|
size_t offs_src4 = 0;
|
|
size_t offs_src5 = 0;
|
|
|
|
id<MTLBuffer> id_src3 = dst->src[3] ? ggml_metal_get_buffer(dst->src[3], &offs_src3) : nil;
|
|
id<MTLBuffer> id_src4 = dst->src[4] ? ggml_metal_get_buffer(dst->src[4], &offs_src4) : nil;
|
|
id<MTLBuffer> id_src5 = dst->src[5] ? ggml_metal_get_buffer(dst->src[5], &offs_src5) : nil;
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RWKV_WKV6_F32].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
|
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
|
|
[encoder setBuffer:id_src4 offset:offs_src4 atIndex:4];
|
|
[encoder setBuffer:id_src5 offset:offs_src5 atIndex:5];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:6];
|
|
|
|
[encoder setBytes:&B length:sizeof(B) atIndex:7];
|
|
[encoder setBytes:&T length:sizeof(T) atIndex:8];
|
|
[encoder setBytes:&C length:sizeof(C) atIndex:9];
|
|
[encoder setBytes:&H length:sizeof(H) atIndex:10];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(B * H, 1, 1) threadsPerThreadgroup:MTLSizeMake(C/ H, 1, 1)];
|
|
} break;
|
|
case GGML_OP_RWKV_WKV7:
|
|
{
|
|
const int64_t B = dst->src[6]->ne[1];
|
|
const int64_t T = dst->src[0]->ne[2];
|
|
const int64_t C = dst->ne[0];
|
|
const int64_t H = dst->src[0]->ne[1];
|
|
|
|
GGML_ASSERT(dst->src[6]->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(C % H == 0);
|
|
GGML_ASSERT(C / H == 64);
|
|
|
|
size_t offs_src3 = 0;
|
|
size_t offs_src4 = 0;
|
|
size_t offs_src5 = 0;
|
|
size_t offs_src6 = 0;
|
|
|
|
id<MTLBuffer> id_src3 = dst->src[3] ? ggml_metal_get_buffer(dst->src[3], &offs_src3) : nil;
|
|
id<MTLBuffer> id_src4 = dst->src[4] ? ggml_metal_get_buffer(dst->src[4], &offs_src4) : nil;
|
|
id<MTLBuffer> id_src5 = dst->src[5] ? ggml_metal_get_buffer(dst->src[5], &offs_src5) : nil;
|
|
id<MTLBuffer> id_src6 = dst->src[6] ? ggml_metal_get_buffer(dst->src[6], &offs_src6) : nil;
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RWKV_WKV7_F32].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
|
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
|
|
[encoder setBuffer:id_src4 offset:offs_src4 atIndex:4];
|
|
[encoder setBuffer:id_src5 offset:offs_src5 atIndex:5];
|
|
[encoder setBuffer:id_src6 offset:offs_src6 atIndex:6];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:7];
|
|
|
|
[encoder setBytes:&B length:sizeof(B) atIndex:8];
|
|
[encoder setBytes:&T length:sizeof(T) atIndex:9];
|
|
[encoder setBytes:&C length:sizeof(C) atIndex:10];
|
|
[encoder setBytes:&H length:sizeof(H) atIndex:11];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(B * H, 1, 1) threadsPerThreadgroup:MTLSizeMake(C/ H, 1, 1)];
|
|
} break;
|
|
case GGML_OP_MUL_MAT:
|
|
{
|
|
GGML_ASSERT(ne00 == ne10);
|
|
|
|
GGML_ASSERT(ne12 % ne02 == 0);
|
|
GGML_ASSERT(ne13 % ne03 == 0);
|
|
|
|
const uint32_t r2 = ne12/ne02;
|
|
const uint32_t r3 = ne13/ne03;
|
|
|
|
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
|
// to the matrix-vector kernel
|
|
const int ne11_mm_min = 8;
|
|
|
|
// first try to use small-batch mat-mv kernels
|
|
// these should be efficient for BS [2, ~8]
|
|
if (src1t == GGML_TYPE_F32 && (ne00%128 == 0) &&
|
|
(
|
|
(
|
|
(
|
|
src0t == GGML_TYPE_F32 || // TODO: helper function
|
|
src0t == GGML_TYPE_F16 ||
|
|
src0t == GGML_TYPE_Q4_0 ||
|
|
src0t == GGML_TYPE_Q4_1 ||
|
|
src0t == GGML_TYPE_Q5_0 ||
|
|
src0t == GGML_TYPE_Q5_1 ||
|
|
src0t == GGML_TYPE_Q8_0 ||
|
|
src0t == GGML_TYPE_MXFP4 ||
|
|
src0t == GGML_TYPE_IQ4_NL ||
|
|
false) && (ne11 >= 2 && ne11 <= 8)
|
|
) ||
|
|
(
|
|
(
|
|
src0t == GGML_TYPE_Q4_K ||
|
|
src0t == GGML_TYPE_Q5_K ||
|
|
src0t == GGML_TYPE_Q6_K ||
|
|
false) && (ne11 >= 4 && ne11 <= 8)
|
|
)
|
|
)
|
|
) {
|
|
// TODO: determine the optimal parameters based on grid utilization
|
|
// I still don't know why we should not always use the maximum available threads:
|
|
//
|
|
// nsg = pipeline.maxTotalThreadsPerThreadgroup / 32
|
|
//
|
|
// my current hypothesis is that the work grid is not evenly divisible for different nsg
|
|
// values and there can be some tail effects when nsg is high. need to confirm this
|
|
//
|
|
const int nsg = 2; // num simdgroups per threadgroup
|
|
|
|
// num threads along row per simdgroup
|
|
int nxpsg = 0;
|
|
if (ne00 % 256 == 0 && ne11 < 3) {
|
|
nxpsg = 16;
|
|
} else if (ne00 % 128 == 0) {
|
|
nxpsg = 8;
|
|
} else {
|
|
nxpsg = 4;
|
|
}
|
|
|
|
const int nypsg = 32/nxpsg; // num threads along col per simdgroup (i.e. a simdgroup processes that many src0 rows at a time)
|
|
const int r0ptg = nypsg*nsg; // num src0 rows per threadgroup
|
|
int r1ptg = 4; // num src1 rows per threadgroup
|
|
|
|
// note: not sure how optimal are those across all different hardware. there might be someting cleverer
|
|
switch (ne11) {
|
|
case 2:
|
|
r1ptg = 2; break;
|
|
case 3:
|
|
case 6:
|
|
r1ptg = 3; break;
|
|
case 4:
|
|
case 7:
|
|
case 8:
|
|
r1ptg = 4; break;
|
|
case 5:
|
|
r1ptg = 5; break;
|
|
};
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
switch (r1ptg) {
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_2].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_3].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_4].pipeline; break;
|
|
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F32_F32_R1_5].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
switch (r1ptg) {
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_3].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_4].pipeline; break;
|
|
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_5].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
} break;
|
|
case GGML_TYPE_Q4_0:
|
|
switch (r1ptg) {
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_2].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_3].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_4].pipeline; break;
|
|
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_0_F32_R1_5].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
} break;
|
|
case GGML_TYPE_Q4_1:
|
|
switch (r1ptg) {
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_2].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_3].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_4].pipeline; break;
|
|
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_1_F32_R1_5].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
} break;
|
|
case GGML_TYPE_Q5_0:
|
|
switch (r1ptg) {
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_2].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_3].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_4].pipeline; break;
|
|
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_0_F32_R1_5].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
} break;
|
|
case GGML_TYPE_Q5_1:
|
|
switch (r1ptg) {
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_2].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_3].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_4].pipeline; break;
|
|
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_1_F32_R1_5].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
} break;
|
|
case GGML_TYPE_Q8_0:
|
|
switch (r1ptg) {
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_2].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_3].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_4].pipeline; break;
|
|
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_5].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
} break;
|
|
case GGML_TYPE_MXFP4:
|
|
switch (r1ptg) {
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_2].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_3].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_4].pipeline; break;
|
|
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_5].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
} break;
|
|
case GGML_TYPE_Q4_K:
|
|
switch (r1ptg) {
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_2].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_3].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_4].pipeline; break;
|
|
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_5].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
} break;
|
|
case GGML_TYPE_Q5_K:
|
|
switch (r1ptg) {
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_2].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_3].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_4].pipeline; break;
|
|
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q5_K_F32_R1_5].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
} break;
|
|
case GGML_TYPE_Q6_K:
|
|
switch (r1ptg) {
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_2].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_3].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_4].pipeline; break;
|
|
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q6_K_F32_R1_5].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
} break;
|
|
case GGML_TYPE_IQ4_NL:
|
|
switch (r1ptg) {
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_2].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_3].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_4].pipeline; break;
|
|
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_IQ4_NL_F32_R1_5].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
} break;
|
|
default: GGML_ABORT("not implemented");
|
|
}
|
|
|
|
ggml_metal_kargs_mul_mv_ext args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne10 =*/ ne10,
|
|
/*.ne11 =*/ ne11,
|
|
/*.ne12 =*/ ne12,
|
|
/*.nb10 =*/ nb10,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb12 =*/ nb12,
|
|
/*.nb13 =*/ nb13,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.r2 =*/ r2,
|
|
/*.r3 =*/ r3,
|
|
/*.nsg =*/ nsg,
|
|
/*.nxpsg =*/ nxpsg,
|
|
/*.r1ptg =*/ r1ptg,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
|
|
|
//printf("ne01 = %lld nr0ptg = %d\n", ne01, nr0ptg);
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + r0ptg - 1)/r0ptg, (ne11 + r1ptg - 1)/r1ptg, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
|
|
} else
|
|
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
|
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
|
if ([device supportsFamily:MTLGPUFamilyApple7] &&
|
|
!ggml_is_transposed(src0) &&
|
|
!ggml_is_transposed(src1) &&
|
|
src1t == GGML_TYPE_F32 &&
|
|
ne00 % 32 == 0 && ne00 >= 64 &&
|
|
(ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) {
|
|
//printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
|
|
|
|
// some Metal matrix data types require aligned pointers
|
|
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
|
|
case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break;
|
|
case GGML_TYPE_BF16: GGML_ASSERT(nb01 % 8 == 0); break;
|
|
default: break;
|
|
}
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32 ].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32 ].pipeline; break;
|
|
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32 ].pipeline; break;
|
|
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32 ].pipeline; break;
|
|
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32 ].pipeline; break;
|
|
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break;
|
|
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32 ].pipeline; break;
|
|
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32 ].pipeline; break;
|
|
case GGML_TYPE_MXFP4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32 ].pipeline; break;
|
|
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32 ].pipeline; break;
|
|
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32 ].pipeline; break;
|
|
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32 ].pipeline; break;
|
|
case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32 ].pipeline; break;
|
|
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32 ].pipeline; break;
|
|
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break;
|
|
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break;
|
|
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break;
|
|
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32 ].pipeline; break;
|
|
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32 ].pipeline; break;
|
|
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break;
|
|
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32 ].pipeline; break;
|
|
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break;
|
|
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break;
|
|
default: GGML_ABORT("MUL MAT-MAT not implemented");
|
|
}
|
|
|
|
ggml_metal_kargs_mul_mm args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne02 =*/ ne02,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne12 =*/ ne12,
|
|
/*.nb10 =*/ nb10,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb12 =*/ nb12,
|
|
/*.nb13 =*/ nb13,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.r2 =*/ r2,
|
|
/*.r3 =*/ r3,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
|
|
|
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
|
} else {
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
int nsg = 0; // number of simdgroups
|
|
int nr0 = 0; // number of src0 rows per simdgroup
|
|
int nr1 = 1; // number of src1 rows per threadgroup
|
|
|
|
size_t smem = 0; // shared memory
|
|
|
|
// use custom matrix x vector kernel
|
|
switch (src0t) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
|
nsg = 1;
|
|
nr0 = 1;
|
|
nr1 = 4;
|
|
if (ne00 == 4) {
|
|
nr0 = 32;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32_C4].pipeline;
|
|
} else {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32].pipeline;
|
|
}
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
nsg = 1;
|
|
nr0 = 1;
|
|
if (src1t == GGML_TYPE_F32) {
|
|
if (ne00 == 4) {
|
|
nr0 = 32;
|
|
nr1 = 4;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_C4].pipeline;
|
|
} else if (ne11 * ne12 < 4) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW].pipeline;
|
|
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4].pipeline;
|
|
nr1 = ne11;
|
|
} else {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32].pipeline;
|
|
nr1 = 4;
|
|
}
|
|
} else {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16].pipeline;
|
|
nr1 = 4;
|
|
}
|
|
} break;
|
|
case GGML_TYPE_BF16:
|
|
{
|
|
nsg = 1;
|
|
nr0 = 1;
|
|
if (src1t == GGML_TYPE_F32) {
|
|
if (ne00 == 4) {
|
|
nr0 = 32;
|
|
nr1 = 4;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_C4].pipeline;
|
|
} else if (ne11 * ne12 < 4) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_1ROW].pipeline;
|
|
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_L4].pipeline;
|
|
nr1 = ne11;
|
|
} else {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32].pipeline;
|
|
nr1 = 4;
|
|
}
|
|
} else {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_BF16].pipeline;
|
|
nr1 = 4;
|
|
}
|
|
} break;
|
|
case GGML_TYPE_Q4_0:
|
|
{
|
|
nsg = N_SG_Q4_0;
|
|
nr0 = N_R0_Q4_0;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q4_1:
|
|
{
|
|
nsg = N_SG_Q4_1;
|
|
nr0 = N_R0_Q4_1;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q5_0:
|
|
{
|
|
nsg = N_SG_Q5_0;
|
|
nr0 = N_R0_Q5_0;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q5_1:
|
|
{
|
|
nsg = N_SG_Q5_1;
|
|
nr0 = N_R0_Q5_1;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q8_0:
|
|
{
|
|
nsg = N_SG_Q8_0;
|
|
nr0 = N_R0_Q8_0;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_MXFP4:
|
|
{
|
|
nsg = N_SG_MXFP4;
|
|
nr0 = N_R0_MXFP4;
|
|
smem = 32*sizeof(float);
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q2_K:
|
|
{
|
|
nsg = N_SG_Q2_K;
|
|
nr0 = N_R0_Q2_K;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q3_K:
|
|
{
|
|
nsg = N_SG_Q3_K;
|
|
nr0 = N_R0_Q3_K;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q4_K:
|
|
{
|
|
nsg = N_SG_Q4_K;
|
|
nr0 = N_R0_Q4_K;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q5_K:
|
|
{
|
|
nsg = N_SG_Q5_K;
|
|
nr0 = N_R0_Q5_K;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q6_K:
|
|
{
|
|
nsg = N_SG_Q6_K;
|
|
nr0 = N_R0_Q6_K;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ2_XXS:
|
|
{
|
|
nsg = N_SG_IQ2_XXS;
|
|
nr0 = N_R0_IQ2_XXS;
|
|
smem = 256*8+128;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ2_XS:
|
|
{
|
|
nsg = N_SG_IQ2_XS;
|
|
nr0 = N_R0_IQ2_XS;
|
|
smem = 512*8+128;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ3_XXS:
|
|
{
|
|
nsg = N_SG_IQ3_XXS;
|
|
nr0 = N_R0_IQ3_XXS;
|
|
smem = 256*4+128;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ3_S:
|
|
{
|
|
nsg = N_SG_IQ3_S;
|
|
nr0 = N_R0_IQ3_S;
|
|
smem = 512*4;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ2_S:
|
|
{
|
|
nsg = N_SG_IQ2_S;
|
|
nr0 = N_R0_IQ2_S;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ1_S:
|
|
{
|
|
nsg = N_SG_IQ1_S;
|
|
nr0 = N_R0_IQ1_S;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ1_M:
|
|
{
|
|
nsg = N_SG_IQ1_M;
|
|
nr0 = N_R0_IQ1_M;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ4_NL:
|
|
{
|
|
nsg = N_SG_IQ4_NL;
|
|
nr0 = N_R0_IQ4_NL;
|
|
smem = 32*sizeof(float);
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ4_XS:
|
|
{
|
|
nsg = N_SG_IQ4_XS;
|
|
nr0 = N_R0_IQ4_XS;
|
|
smem = 32*sizeof(float);
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32].pipeline;
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("Asserting on type %d\n", (int)src0t);
|
|
GGML_ABORT("not implemented");
|
|
}
|
|
};
|
|
|
|
ggml_metal_kargs_mul_mv args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne10 =*/ ne10,
|
|
/*.ne11 =*/ ne11,
|
|
/*.ne12 =*/ ne12,
|
|
/*.nb10 =*/ nb10,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb12 =*/ nb12,
|
|
/*.nb13 =*/ nb13,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.r2 =*/ r2,
|
|
/*.r3 =*/ r3,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
|
|
|
if (smem > 0) {
|
|
[encoder setThreadgroupMemoryLength:smem atIndex:0];
|
|
}
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nr0*nsg - 1)/(nr0*nsg), (ne11 + nr1 - 1)/nr1, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
|
|
}
|
|
} break;
|
|
case GGML_OP_MUL_MAT_ID:
|
|
{
|
|
// src2 = ids
|
|
GGML_ASSERT(src2t == GGML_TYPE_I32);
|
|
|
|
GGML_ASSERT(!ggml_is_transposed(src0));
|
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
|
|
|
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(ne03 == 1);
|
|
GGML_ASSERT(ne13 == 1);
|
|
|
|
const uint32_t r2 = 1;
|
|
const uint32_t r3 = 1;
|
|
|
|
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
|
// to the matrix-vector kernel
|
|
// ne20 = n_used_experts
|
|
// ne21 = n_rows (batch size)
|
|
const int ne21_mm_id_min = 32;
|
|
|
|
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
|
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
|
if ([device supportsFamily:MTLGPUFamilyApple7] &&
|
|
ne00 % 32 == 0 && ne00 >= 64 &&
|
|
(ne21 >= ne21_mm_id_min)) {
|
|
GGML_ASSERT(ne00 % 4 == 0);
|
|
|
|
// some Metal matrix data types require aligned pointers
|
|
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
|
|
case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break;
|
|
case GGML_TYPE_BF16: GGML_ASSERT(nb01 % 8 == 0); break;
|
|
default: break;
|
|
}
|
|
|
|
// tokens per expert
|
|
const size_t s_tpe = ggml_type_size(GGML_TYPE_I32)*ne02;
|
|
id<MTLBuffer> h_tpe = ggml_metal_mem_pool_alloc(mem_pool, s_tpe);
|
|
if (!h_tpe) {
|
|
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_tpe);
|
|
return 0;
|
|
}
|
|
|
|
// id map
|
|
// [n_tokens, n_expert]
|
|
const size_t s_ids = ggml_type_size(GGML_TYPE_I32)*ne21*ne02;
|
|
id<MTLBuffer> h_ids = ggml_metal_mem_pool_alloc(mem_pool, s_ids);
|
|
if (!h_ids) {
|
|
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_ids);
|
|
return 0;
|
|
}
|
|
|
|
{
|
|
ggml_metal_kargs_mul_mm_id_map0 args = {
|
|
ne02,
|
|
ne10,
|
|
ne11, // n_expert_used (bcast)
|
|
nb11,
|
|
nb12,
|
|
ne21, // n_tokens
|
|
ne20, // n_expert_used
|
|
nb21,
|
|
};
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
pipeline = nil;
|
|
|
|
switch (ne20) {
|
|
case 1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_1 ].pipeline; break;
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_2 ].pipeline; break;
|
|
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_4 ].pipeline; break;
|
|
case 6: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_6 ].pipeline; break;
|
|
case 8: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_8 ].pipeline; break;
|
|
case 16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16_NE20_16].pipeline; break;
|
|
default: GGML_ABORT("missing specialization for ne20 = %d", (int) ne20);
|
|
}
|
|
|
|
GGML_ASSERT(ne02 <= (int) pipeline.maxTotalThreadsPerThreadgroup);
|
|
|
|
const size_t smem = ne02*ne20*sizeof(uint16_t);
|
|
|
|
GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength);
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:1];
|
|
[encoder setBuffer: h_tpe offset:0 atIndex:2];
|
|
[encoder setBuffer: h_ids offset:0 atIndex:3];
|
|
[encoder setThreadgroupMemoryLength:smem atIndex:0];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(ne02, 1, 1)];
|
|
}
|
|
|
|
{
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16 ].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16 ].pipeline; break;
|
|
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16 ].pipeline; break;
|
|
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F16 ].pipeline; break;
|
|
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F16 ].pipeline; break;
|
|
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16 ].pipeline; break;
|
|
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16 ].pipeline; break;
|
|
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16 ].pipeline; break;
|
|
case GGML_TYPE_MXFP4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16 ].pipeline; break;
|
|
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16 ].pipeline; break;
|
|
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16 ].pipeline; break;
|
|
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16 ].pipeline; break;
|
|
case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F16 ].pipeline; break;
|
|
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F16 ].pipeline; break;
|
|
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F16].pipeline; break;
|
|
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F16 ].pipeline; break;
|
|
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F16].pipeline; break;
|
|
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F16 ].pipeline; break;
|
|
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F16 ].pipeline; break;
|
|
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F16 ].pipeline; break;
|
|
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16 ].pipeline; break;
|
|
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16 ].pipeline; break;
|
|
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16 ].pipeline; break;
|
|
default: GGML_ABORT("MUL_MAT_ID not implemented");
|
|
}
|
|
|
|
ggml_metal_kargs_mul_mm_id args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne02 =*/ ne02,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne11 =*/ ne11, // n_expert_used (bcast)
|
|
/*.nb10 =*/ nb10,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb12 =*/ nb12,
|
|
/*.nb13 =*/ nb13,
|
|
/*.ne20 =*/ ne20, // n_expert_used
|
|
/*.ne21 =*/ ne21, // n_tokens
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.r2 =*/ r2,
|
|
/*.r3 =*/ r3,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
|
[encoder setBuffer: h_tpe offset:0 atIndex:3];
|
|
[encoder setBuffer: h_ids offset:0 atIndex:4];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:5];
|
|
|
|
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, ne02) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
|
}
|
|
} else {
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
int nsg = 0; // number of simdgroups
|
|
int nr0 = 0; // number of src0 rows per simdgroup
|
|
int nr1 = 1; // number of src1 rows per threadgroup
|
|
|
|
size_t smem = 0; // shared memory
|
|
|
|
// use custom matrix x vector kernel
|
|
switch (src0t) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
|
nsg = 1;
|
|
nr0 = 1;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
|
nsg = 1;
|
|
nr0 = 1;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_BF16:
|
|
{
|
|
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
|
nsg = 1;
|
|
nr0 = 1;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_BF16_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q4_0:
|
|
{
|
|
nsg = N_SG_Q4_0;
|
|
nr0 = N_R0_Q4_0;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q4_1:
|
|
{
|
|
nsg = N_SG_Q4_1;
|
|
nr0 = N_R0_Q4_1;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q5_0:
|
|
{
|
|
nsg = N_SG_Q5_0;
|
|
nr0 = N_R0_Q5_0;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q5_1:
|
|
{
|
|
nsg = N_SG_Q5_1;
|
|
nr0 = N_R0_Q5_1;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q8_0:
|
|
{
|
|
nsg = N_SG_Q8_0;
|
|
nr0 = N_R0_Q8_0;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_MXFP4:
|
|
{
|
|
nsg = N_SG_MXFP4;
|
|
nr0 = N_R0_MXFP4;
|
|
smem = 32*sizeof(float);
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q2_K:
|
|
{
|
|
nsg = N_SG_Q2_K;
|
|
nr0 = N_R0_Q2_K;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q3_K:
|
|
{
|
|
nsg = N_SG_Q3_K;
|
|
nr0 = N_R0_Q3_K;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q4_K:
|
|
{
|
|
nsg = N_SG_Q4_K;
|
|
nr0 = N_R0_Q4_K;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q5_K:
|
|
{
|
|
nsg = N_SG_Q5_K;
|
|
nr0 = N_R0_Q5_K;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_Q6_K:
|
|
{
|
|
nsg = N_SG_Q6_K;
|
|
nr0 = N_R0_Q6_K;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ2_XXS:
|
|
{
|
|
nsg = N_SG_IQ2_XXS;
|
|
nr0 = N_R0_IQ2_XXS;
|
|
smem = 256*8+128;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ2_XS:
|
|
{
|
|
nsg = N_SG_IQ2_XS;
|
|
nr0 = N_R0_IQ2_XS;
|
|
smem = 512*8+128;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ3_XXS:
|
|
{
|
|
nsg = N_SG_IQ3_XXS;
|
|
nr0 = N_R0_IQ3_XXS;
|
|
smem = 256*4+128;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ3_S:
|
|
{
|
|
nsg = N_SG_IQ3_S;
|
|
nr0 = N_R0_IQ3_S;
|
|
smem = 512*4;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ2_S:
|
|
{
|
|
nsg = N_SG_IQ2_S;
|
|
nr0 = N_R0_IQ2_S;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ1_S:
|
|
{
|
|
nsg = N_SG_IQ1_S;
|
|
nr0 = N_R0_IQ1_S;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ1_M:
|
|
{
|
|
nsg = N_SG_IQ1_M;
|
|
nr0 = N_R0_IQ1_M;
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ4_NL:
|
|
{
|
|
nsg = N_SG_IQ4_NL;
|
|
nr0 = N_R0_IQ4_NL;
|
|
smem = 32*sizeof(float);
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_IQ4_XS:
|
|
{
|
|
nsg = N_SG_IQ4_XS;
|
|
nr0 = N_R0_IQ4_XS;
|
|
smem = 32*sizeof(float);
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline;
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("Asserting on type %d\n", (int)src2t);
|
|
GGML_ABORT("not implemented");
|
|
}
|
|
};
|
|
|
|
if (ggml_is_quantized(src0t)) {
|
|
GGML_ASSERT(ne00 >= nsg*nr0);
|
|
}
|
|
|
|
ggml_metal_kargs_mul_mv_id args = {
|
|
/*.nei0 =*/ ne20,
|
|
/*.nei1 =*/ ne21,
|
|
/*.nbi1 =*/ nb21,
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.ne10 =*/ ne10,
|
|
/*.ne11 =*/ ne11,
|
|
/*.ne12 =*/ ne12,
|
|
/*.ne13 =*/ ne13,
|
|
/*.nb10 =*/ nb10,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb12 =*/ nb12,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.nb1 =*/ nb1,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
|
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:4];
|
|
|
|
const int64_t _ne1 = 1;
|
|
const int64_t ne123 = ne20*ne21;
|
|
|
|
if (smem > 0) {
|
|
[encoder setThreadgroupMemoryLength:smem atIndex:0];
|
|
}
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nr0*nsg - 1)/(nr0*nsg), (_ne1 + nr1 - 1)/nr1, ne123) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
|
|
}
|
|
} break;
|
|
case GGML_OP_GET_ROWS:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F32 ].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F16 ].pipeline; break;
|
|
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_BF16 ].pipeline; break;
|
|
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0 ].pipeline; break;
|
|
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1 ].pipeline; break;
|
|
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0 ].pipeline; break;
|
|
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1 ].pipeline; break;
|
|
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0 ].pipeline; break;
|
|
case GGML_TYPE_MXFP4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_MXFP4 ].pipeline; break;
|
|
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K ].pipeline; break;
|
|
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K ].pipeline; break;
|
|
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K ].pipeline; break;
|
|
case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K ].pipeline; break;
|
|
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K ].pipeline; break;
|
|
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break;
|
|
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break;
|
|
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS].pipeline; break;
|
|
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S ].pipeline; break;
|
|
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S ].pipeline; break;
|
|
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S ].pipeline; break;
|
|
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M ].pipeline; break;
|
|
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break;
|
|
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break;
|
|
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
}
|
|
|
|
ggml_metal_kargs_get_rows args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.ne10 =*/ ne10,
|
|
/*.nb10 =*/ nb10,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
|
|
} break;
|
|
case GGML_OP_SET_ROWS:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
switch (dst->type) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_F32 ].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_F16 ].pipeline; break;
|
|
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_BF16 ].pipeline; break;
|
|
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q8_0 ].pipeline; break;
|
|
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_0 ].pipeline; break;
|
|
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q4_1 ].pipeline; break;
|
|
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_0 ].pipeline; break;
|
|
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_Q5_1 ].pipeline; break;
|
|
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_ROWS_IQ4_NL].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
}
|
|
|
|
const int32_t nk0 = ne0/ggml_blck_size(dst->type);
|
|
|
|
int nth = 32; // SIMD width
|
|
|
|
while (nth < nk0 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
|
|
nth *= 2;
|
|
}
|
|
|
|
int nrptg = 1;
|
|
if (nth > nk0) {
|
|
nrptg = (nth + nk0 - 1)/nk0;
|
|
nth = nk0;
|
|
|
|
if (nrptg*nth > (int) pipeline.maxTotalThreadsPerThreadgroup) {
|
|
nrptg--;
|
|
}
|
|
}
|
|
|
|
nth = MIN(nth, nk0);
|
|
|
|
ggml_metal_kargs_set_rows args = {
|
|
/*.nk0 =*/ nk0,
|
|
/*.ne01 =*/ ne01,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne11 =*/ ne11,
|
|
/*.ne12 =*/ ne12,
|
|
/*.nb10 =*/ nb10,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb12 =*/ nb12,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
/*.nb3 =*/ nb3,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nrptg - 1)/nrptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, nrptg, 1)];
|
|
} break;
|
|
case GGML_OP_RMS_NORM:
|
|
{
|
|
GGML_ASSERT(ne00 % 4 == 0);
|
|
GGML_ASSERT(ggml_is_contiguous_rows(src0));
|
|
|
|
float eps;
|
|
memcpy(&eps, dst->op_params, sizeof(float));
|
|
|
|
ggml_metal_kargs_rms_norm args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne00_4 =*/ ne00/4,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
/*.nb3 =*/ nb3,
|
|
/*.eps =*/ eps,
|
|
/*.nef1 =*/ { ne01 },
|
|
/*.nef2 =*/ { ne02 },
|
|
/*.nef3 =*/ { ne03 },
|
|
/*.nbf1 =*/ { nb01 },
|
|
/*.nbf2 =*/ { nb02 },
|
|
/*.nbf3 =*/ { nb03 },
|
|
};
|
|
|
|
size_t offs_fuse[2] = { 0, 0 };
|
|
id<MTLBuffer> id_fuse[2] = { id_src0, id_src0 };
|
|
|
|
// d[0] = rms_norm(a)
|
|
// d[1] = mul(d[0], b)
|
|
// d[2] = add(d[1], c)
|
|
if (ctx_dev->use_fusion) {
|
|
ops[0] = GGML_OP_RMS_NORM;
|
|
ops[1] = GGML_OP_MUL;
|
|
ops[2] = GGML_OP_ADD;
|
|
|
|
for (n_fuse = 0; n_fuse <= 1 && idx + n_fuse + 1 < idx_end; ++n_fuse) {
|
|
if (!ggml_can_fuse(gf, idx + n_fuse, ops + n_fuse, 2)) {
|
|
break;
|
|
}
|
|
|
|
if (nodes[n_fuse] != nodes[n_fuse + 1]->src[0]) {
|
|
break;
|
|
}
|
|
|
|
if (nodes[n_fuse + 1]->src[1]->ne[0] != node->ne[0]) {
|
|
break;
|
|
}
|
|
|
|
if (!ggml_is_contiguous_rows(nodes[n_fuse + 1]->src[1])) {
|
|
break;
|
|
}
|
|
|
|
if (nodes[n_fuse + 1]->type != GGML_TYPE_F32) {
|
|
break;
|
|
}
|
|
|
|
ctx_dev->fuse_cnt[nodes[n_fuse + 1]->op]++;
|
|
|
|
id_fuse[n_fuse] = ggml_metal_get_buffer(nodes[n_fuse + 1]->src[1], &offs_fuse[n_fuse]);
|
|
|
|
args.nef1[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->ne[1];
|
|
args.nef2[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->ne[2];
|
|
args.nef3[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->ne[3];
|
|
|
|
args.nbf1[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->nb[1];
|
|
args.nbf2[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->nb[2];
|
|
args.nbf3[n_fuse + 1] = nodes[n_fuse + 1]->src[1]->nb[3];
|
|
}
|
|
|
|
++n_fuse;
|
|
|
|
if (ctx_dev->debug_fusion > 1 && n_fuse > 1) {
|
|
if (n_fuse == 2) {
|
|
GGML_LOG_DEBUG("%s: fuse: RMS_NORM + MUL\n", __func__);
|
|
}
|
|
if (n_fuse == 3) {
|
|
GGML_LOG_DEBUG("%s: fuse: RMS_NORM + MUL + ADD\n", __func__);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (n_fuse > 1) {
|
|
id_dst = ggml_metal_get_buffer(nodes[n_fuse - 1], &offs_dst);
|
|
}
|
|
|
|
id<MTLComputePipelineState> pipeline;
|
|
|
|
switch (n_fuse) {
|
|
case 1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM ].pipeline; break;
|
|
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL ].pipeline; break;
|
|
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM_MUL_ADD].pipeline; break;
|
|
default: GGML_ABORT("unsupported n_fuse = %d\n", n_fuse);
|
|
}
|
|
|
|
int nth = 32; // SIMD width
|
|
|
|
while (nth < ne00/4 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
|
|
nth *= 2;
|
|
}
|
|
|
|
nth = MIN(nth, (int) pipeline.maxTotalThreadsPerThreadgroup);
|
|
nth = MIN(nth, ne00/4);
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_fuse[0] offset:offs_fuse[0] atIndex:2];
|
|
[encoder setBuffer:id_fuse[1] offset:offs_fuse[1] atIndex:3];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
|
|
|
|
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_L2_NORM:
|
|
{
|
|
GGML_ASSERT(ne00 % 4 == 0);
|
|
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
|
|
|
float eps;
|
|
memcpy(&eps, dst->op_params, sizeof(float));
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_L2_NORM].pipeline;
|
|
|
|
int nth = 32; // SIMD width
|
|
|
|
while (nth < ne00/4 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
|
|
nth *= 2;
|
|
}
|
|
|
|
nth = MIN(nth, (int) pipeline.maxTotalThreadsPerThreadgroup);
|
|
nth = MIN(nth, ne00/4);
|
|
|
|
ggml_metal_kargs_l2_norm args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne00_4 =*/ ne00/4,
|
|
/*.nb01 =*/ nb01,
|
|
/*.eps =*/ eps,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
|
|
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
|
|
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_GROUP_NORM:
|
|
{
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
float eps;
|
|
memcpy(&eps, dst->op_params + 1, sizeof(float));
|
|
|
|
const int32_t n_groups = ((const int32_t *) dst->op_params)[0];
|
|
|
|
int nth = 32; // SIMD width
|
|
|
|
//while (nth < ne00/4 && nth < 1024) {
|
|
// nth *= 2;
|
|
//}
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GROUP_NORM].pipeline;
|
|
|
|
ggml_metal_kargs_group_norm args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.n_groups =*/ n_groups,
|
|
/*.eps =*/ eps,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:2];
|
|
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n_groups, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_NORM:
|
|
{
|
|
GGML_ASSERT(ne00 % 4 == 0);
|
|
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
|
|
|
float eps;
|
|
memcpy(&eps, dst->op_params, sizeof(float));
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NORM].pipeline;
|
|
|
|
int nth = 32; // SIMD width
|
|
|
|
while (nth < ne00/4 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
|
|
nth *= 2;
|
|
}
|
|
|
|
nth = MIN(nth, (int) pipeline.maxTotalThreadsPerThreadgroup);
|
|
nth = MIN(nth, ne00/4);
|
|
|
|
ggml_metal_kargs_norm args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne00_4 =*/ ne00/4,
|
|
/*.nb01 =*/ nb01,
|
|
/*.eps =*/ eps,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
|
|
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
|
|
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_ROPE:
|
|
{
|
|
|
|
// make sure we have one or more position id(ne10) per token(ne02)
|
|
GGML_ASSERT(ne10 % ne02 == 0);
|
|
GGML_ASSERT(ne10 >= ne02);
|
|
|
|
const int nth = MIN(1024, ne00);
|
|
|
|
const int n_past = ((const int32_t *) dst->op_params)[0];
|
|
const int n_dims = ((const int32_t *) dst->op_params)[1];
|
|
const int mode = ((const int32_t *) dst->op_params)[2];
|
|
// skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
|
|
const int n_ctx_orig = ((const int32_t *) dst->op_params)[4];
|
|
|
|
float freq_base;
|
|
float freq_scale;
|
|
float ext_factor;
|
|
float attn_factor;
|
|
float beta_fast;
|
|
float beta_slow;
|
|
|
|
memcpy(&freq_base, (const int32_t *) dst->op_params + 5, sizeof(float));
|
|
memcpy(&freq_scale, (const int32_t *) dst->op_params + 6, sizeof(float));
|
|
memcpy(&ext_factor, (const int32_t *) dst->op_params + 7, sizeof(float));
|
|
memcpy(&attn_factor, (const int32_t *) dst->op_params + 8, sizeof(float));
|
|
memcpy(&beta_fast, (const int32_t *) dst->op_params + 9, sizeof(float));
|
|
memcpy(&beta_slow, (const int32_t *) dst->op_params + 10, sizeof(float));
|
|
|
|
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
|
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
|
|
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
|
|
|
// mrope
|
|
const int sect_0 = ((const int32_t *) dst->op_params)[11];
|
|
const int sect_1 = ((const int32_t *) dst->op_params)[12];
|
|
const int sect_2 = ((const int32_t *) dst->op_params)[13];
|
|
const int sect_3 = ((const int32_t *) dst->op_params)[14];
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
if (is_neox) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break;
|
|
default: GGML_ABORT("fatal error");
|
|
};
|
|
} else if (is_mrope && !is_vision) {
|
|
GGML_ASSERT(ne10*4 >= ne02); // need at least 4 pos per token
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F32].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_MULTI_F16].pipeline; break;
|
|
default: GGML_ABORT("fatal error");
|
|
};
|
|
} else if (is_vision) {
|
|
GGML_ASSERT(ne10*4 >= ne02); // need at least 4 pos per token
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_VISION_F32].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_VISION_F16].pipeline; break;
|
|
default: GGML_ABORT("fatal error");
|
|
};
|
|
} else {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break;
|
|
default: GGML_ABORT("fatal error");
|
|
};
|
|
}
|
|
|
|
ggml_metal_kargs_rope args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.ne03 =*/ ne03,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.ne2 =*/ ne2,
|
|
/*.ne3 =*/ ne3,
|
|
/*.nb0 =*/ nb0,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
/*.nb3 =*/ nb3,
|
|
/*.n_past =*/ n_past,
|
|
/*.n_dims =*/ n_dims,
|
|
/*.n_ctx_orig =*/ n_ctx_orig,
|
|
/*.freq_base =*/ freq_base,
|
|
/*.freq_scale =*/ freq_scale,
|
|
/*.ext_factor =*/ ext_factor,
|
|
/*.attn_factor =*/ attn_factor,
|
|
/*.beta_fast =*/ beta_fast,
|
|
/*.beta_slow =*/ beta_slow,
|
|
/* sect_0 =*/ sect_0,
|
|
/* sect_1 =*/ sect_1,
|
|
/* sect_2 =*/ sect_2,
|
|
/* sect_3 =*/ sect_3,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
|
if (id_src2 != nil) {
|
|
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
|
|
} else {
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:3];
|
|
}
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_IM2COL:
|
|
{
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
|
|
|
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
|
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
|
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
|
|
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
|
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
|
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
|
|
|
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
|
|
|
const int32_t N = src1->ne[is_2D ? 3 : 2];
|
|
const int32_t IC = src1->ne[is_2D ? 2 : 1];
|
|
const int32_t IH = is_2D ? src1->ne[1] : 1;
|
|
const int32_t IW = src1->ne[0];
|
|
|
|
const int32_t KH = is_2D ? src0->ne[1] : 1;
|
|
const int32_t KW = src0->ne[0];
|
|
|
|
const int32_t OH = is_2D ? dst->ne[2] : 1;
|
|
const int32_t OW = dst->ne[1];
|
|
|
|
const int32_t CHW = IC * KH * KW;
|
|
|
|
const uint64_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
|
|
const uint64_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline;
|
|
|
|
const bool is_gt_mttpt = ((size_t)(N * KH * KW)) > pipeline.maxTotalThreadsPerThreadgroup;
|
|
|
|
switch (dst->type) {
|
|
case GGML_TYPE_F32: {
|
|
pipeline = (is_gt_mttpt ?
|
|
ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F32].pipeline
|
|
:
|
|
ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline);
|
|
} break;
|
|
case GGML_TYPE_F16: {
|
|
pipeline = (is_gt_mttpt ?
|
|
ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_EXT_F16].pipeline
|
|
:
|
|
ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline);
|
|
} break;
|
|
default: GGML_ABORT("fatal error");
|
|
};
|
|
|
|
ggml_metal_kargs_im2col args = {
|
|
/*.ofs0 =*/ ofs0,
|
|
/*.ofs1 =*/ ofs1,
|
|
/*.IW =*/ IW,
|
|
/*.IH =*/ IH,
|
|
/*.CHW =*/ CHW,
|
|
/*.s0 =*/ s0,
|
|
/*.s1 =*/ s1,
|
|
/*.p0 =*/ p0,
|
|
/*.p1 =*/ p1,
|
|
/*.d0 =*/ d0,
|
|
/*.d1 =*/ d1,
|
|
/*.N =*/ N,
|
|
/*.KH =*/ KH,
|
|
/*.KW =*/ KW,
|
|
/*.KHW =*/ KH * KW,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:2];
|
|
|
|
if (is_gt_mttpt) {
|
|
const uint64_t n_threads = MIN(pipeline.maxTotalThreadsPerThreadgroup, (uint64_t)N);
|
|
|
|
const int64_t quotient = N / n_threads + (N % n_threads > 0 ? 1 : 0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(quotient * CHW, OH, OW) threadsPerThreadgroup:MTLSizeMake(n_threads, 1, 1)];
|
|
} else {
|
|
[encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
|
|
}
|
|
} break;
|
|
case GGML_OP_CONV_TRANSPOSE_1D:
|
|
{
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
|
|
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
|
|
|
const int32_t IC = src1->ne[1];
|
|
const int32_t IL = src1->ne[0];
|
|
|
|
const int32_t K = src0->ne[0];
|
|
|
|
const int32_t OL = dst->ne[0];
|
|
const int32_t OC = dst->ne[1];
|
|
|
|
id<MTLComputePipelineState> pipeline;
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32: {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONV_TRANSPOSE_1D_F32_F32].pipeline;
|
|
} break;
|
|
case GGML_TYPE_F16: {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONV_TRANSPOSE_1D_F16_F32].pipeline;
|
|
} break;
|
|
default: GGML_ABORT("fatal error");
|
|
};
|
|
|
|
ggml_metal_kargs_conv_transpose_1d args = {
|
|
/*.IC =*/ IC,
|
|
/*.IL =*/ IL,
|
|
/*.K =*/ K,
|
|
/*.s0 =*/ s0,
|
|
/*.nb0 =*/ nb0,
|
|
/*.nb1 =*/ nb1,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:3];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(OL, OC, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_OP_UPSCALE:
|
|
{
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
|
|
const float sf0 = (float)ne0/src0->ne[0];
|
|
const float sf1 = (float)ne1/src0->ne[1];
|
|
const float sf2 = (float)ne2/src0->ne[2];
|
|
const float sf3 = (float)ne3/src0->ne[3];
|
|
|
|
const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline;
|
|
|
|
ggml_metal_kargs_upscale args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.ne03 =*/ ne03,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.ne2 =*/ ne2,
|
|
/*.ne3 =*/ ne3,
|
|
/*.nb0 =*/ nb0,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
/*.nb3 =*/ nb3,
|
|
/*.sf0 =*/ sf0,
|
|
/*.sf1 =*/ sf1,
|
|
/*.sf2 =*/ sf2,
|
|
/*.sf3 =*/ sf3
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:2];
|
|
|
|
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_PAD:
|
|
{
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_F32].pipeline;
|
|
|
|
ggml_metal_kargs_pad args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.ne03 =*/ ne03,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.ne2 =*/ ne2,
|
|
/*.ne3 =*/ ne3,
|
|
/*.nb0 =*/ nb0,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
/*.nb3 =*/ nb3
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:2];
|
|
|
|
const int nth = MIN(1024, ne0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_PAD_REFLECT_1D:
|
|
{
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
|
|
const int32_t p0 = ((const int32_t *)(dst->op_params))[0];
|
|
const int32_t p1 = ((const int32_t *)(dst->op_params))[1];
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32].pipeline;
|
|
|
|
ggml_metal_kargs_pad_reflect_1d args = {
|
|
/*.ne00 =*/ ne00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.ne03 =*/ ne03,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.ne2 =*/ ne2,
|
|
/*.ne3 =*/ ne3,
|
|
/*.nb0 =*/ nb0,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
/*.nb3 =*/ nb3,
|
|
/*.p0 =*/ p0,
|
|
/*.p1 =*/ p1
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:2];
|
|
|
|
const int nth = MIN(1024, ne0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_ARANGE:
|
|
{
|
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
|
|
|
float start;
|
|
float step;
|
|
|
|
memcpy(&start, ((const int32_t *) dst->op_params) + 0, sizeof(float));
|
|
memcpy(&step, ((const int32_t *) dst->op_params) + 2, sizeof(float));
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARANGE_F32].pipeline;
|
|
|
|
ggml_metal_kargs_arange args = {
|
|
/*.ne0 =*/ ne0,
|
|
/*.start =*/ start,
|
|
/*.step =*/ step
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:0];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:1];
|
|
|
|
const int nth = MIN(1024, ne0);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
|
{
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
|
|
const int dim = dst->op_params[0];
|
|
const int max_period = dst->op_params[1];
|
|
|
|
const int half = dim / 2;
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32].pipeline;
|
|
|
|
ggml_metal_kargs_timestep_embedding args = {
|
|
/*.nb1 =*/ nb1,
|
|
/*.dim =*/ dim,
|
|
/*.max_period =*/ max_period
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:2];
|
|
|
|
const int nth = MIN(1024, half);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne00, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_ARGSORT:
|
|
{
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
|
|
|
const int nrows = ggml_nrows(src0);
|
|
|
|
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
|
|
|
// bitonic sort requires the number of elements to be power of 2
|
|
int64_t ne00_padded = 1;
|
|
while (ne00_padded < ne00) {
|
|
ne00_padded *= 2;
|
|
}
|
|
|
|
// Metal kernels require the buffer size to be multiple of 16 bytes
|
|
// https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/1443142-setthreadgroupmemorylength
|
|
const int mem_size = GGML_PAD(ne00_padded*sizeof(int32_t), 16);
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
switch (order) {
|
|
case GGML_SORT_ORDER_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break;
|
|
case GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
|
|
default: GGML_ABORT("fatal error");
|
|
};
|
|
|
|
ggml_metal_kargs_argsort args = {
|
|
/*.ncols =*/ ne00,
|
|
/*.ncols_pad =*/ ne00_padded
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:2];
|
|
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00_padded, 1, 1)];
|
|
} break;
|
|
case GGML_OP_LEAKY_RELU:
|
|
{
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
|
|
float slope;
|
|
memcpy(&slope, dst->op_params, sizeof(float));
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32].pipeline;
|
|
|
|
ggml_metal_kargs_leaky_relu args = {
|
|
/*.slope =*/ slope
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:2];
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
|
} break;
|
|
case GGML_OP_FLASH_ATTN_EXT:
|
|
{
|
|
GGML_ASSERT(ne00 % 4 == 0);
|
|
GGML_ASSERT(ne11 % 32 == 0);
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(src1->type == src2->type);
|
|
|
|
//GGML_ASSERT(ggml_are_same_shape (src1, src2));
|
|
GGML_ASSERT(ne11 == ne21);
|
|
GGML_ASSERT(ne12 == ne22);
|
|
|
|
struct ggml_tensor * src3 = node->src[3]; // mask
|
|
struct ggml_tensor * src4 = node->src[4]; // sinks
|
|
|
|
size_t offs_src3 = 0;
|
|
size_t offs_src4 = 0;
|
|
|
|
id<MTLBuffer> id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil;
|
|
id<MTLBuffer> id_src4 = src4 ? ggml_metal_get_buffer(src4, &offs_src4) : nil;
|
|
|
|
GGML_ASSERT(!src3 || src3->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(!src3 || src3->ne[1] >= GGML_PAD(src0->ne[1], 8) &&
|
|
"the Flash-Attention Metal kernel requires the mask to be padded to 8 and at least n_queries big");
|
|
|
|
const int64_t ne30 = src3 ? src3->ne[0] : 0; GGML_UNUSED(ne30);
|
|
//const int64_t ne31 = src3 ? src3->ne[1] : 0;
|
|
const int64_t ne32 = src3 ? src3->ne[2] : 0; GGML_UNUSED(ne32);
|
|
const int64_t ne33 = src3 ? src3->ne[3] : 0; GGML_UNUSED(ne33);
|
|
|
|
const uint64_t nb30 = src3 ? src3->nb[0] : 0; GGML_UNUSED(nb30);
|
|
const uint64_t nb31 = src3 ? src3->nb[1] : 0;
|
|
const uint64_t nb32 = src3 ? src3->nb[2] : 0; GGML_UNUSED(nb32);
|
|
const uint64_t nb33 = src3 ? src3->nb[3] : 0; GGML_UNUSED(nb33);
|
|
|
|
float scale;
|
|
float max_bias;
|
|
float logit_softcap;
|
|
memcpy(&scale, ((const int32_t *) dst->op_params) + 0, sizeof(scale));
|
|
memcpy(&max_bias, ((const int32_t *) dst->op_params) + 1, sizeof(max_bias));
|
|
memcpy(&logit_softcap, ((const int32_t *) dst->op_params) + 2, sizeof(logit_softcap));
|
|
|
|
if (logit_softcap != 0.0f) {
|
|
scale /= logit_softcap;
|
|
}
|
|
|
|
const uint32_t n_head = src0->ne[2];
|
|
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
|
|
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
bool use_vec_kernel = false;
|
|
|
|
// TODO: add vec kernels for (ne00%64 == 0) and maybe also for (ne00%32 == 0)
|
|
// for now avoiding mainly to keep the number of templates/kernels a bit lower
|
|
// these are now trivial to add after: https://github.com/ggml-org/llama.cpp/pull/12612
|
|
if (ne01 >= 20 || (ne00%128 != 0 && ne00 != 64 && ne00 != 96 && ne00 != 192 && ne00 != 576)) {
|
|
switch (src1->type) {
|
|
case GGML_TYPE_F16:
|
|
{
|
|
if (ne00 == 192 && ne20 == 128) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK192_HV128].pipeline;
|
|
} else if (ne00 == 576 && ne20 == 512) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_HK576_HV512].pipeline;
|
|
} else {
|
|
switch (ne00) {
|
|
case 40: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H40 ].pipeline; break;
|
|
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64 ].pipeline; break;
|
|
case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80 ].pipeline; break;
|
|
case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96 ].pipeline; break;
|
|
case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112].pipeline; break;
|
|
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128].pipeline; break;
|
|
case 192: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H192].pipeline; break;
|
|
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported size: %lld\n", ne00);
|
|
GGML_LOG_ERROR("add template specialization for this size\n");
|
|
GGML_ABORT("add template specialization for this size");
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
case GGML_TYPE_BF16:
|
|
{
|
|
if (ne00 == 192 && ne20 == 128) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK192_HV128].pipeline;
|
|
} else if (ne00 == 576 && ne20 == 512) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_HK576_HV512].pipeline;
|
|
} else {
|
|
switch (ne00) {
|
|
case 40: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H40 ].pipeline; break;
|
|
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64 ].pipeline; break;
|
|
case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H80 ].pipeline; break;
|
|
case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H96 ].pipeline; break;
|
|
case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H112].pipeline; break;
|
|
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H128].pipeline; break;
|
|
case 192: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H192].pipeline; break;
|
|
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H256].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported size: %lld\n", ne00);
|
|
GGML_LOG_ERROR("add template specialization for this size\n");
|
|
GGML_ABORT("add template specialization for this size");
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
case GGML_TYPE_Q4_0:
|
|
{
|
|
if (ne00 == 192 && ne20 == 128) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK192_HV128].pipeline;
|
|
} else if (ne00 == 576 && ne20 == 512) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_HK576_HV512].pipeline;
|
|
} else {
|
|
switch (ne00) {
|
|
case 40: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H40 ].pipeline; break;
|
|
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64 ].pipeline; break;
|
|
case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80 ].pipeline; break;
|
|
case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96 ].pipeline; break;
|
|
case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H112].pipeline; break;
|
|
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H128].pipeline; break;
|
|
case 192: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H192].pipeline; break;
|
|
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H256].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported size: %lld\n", ne00);
|
|
GGML_LOG_ERROR("add template specialization for this size\n");
|
|
GGML_ABORT("add template specialization for this size");
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
case GGML_TYPE_Q4_1:
|
|
{
|
|
if (ne00 == 192 && ne20 == 128) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK192_HV128].pipeline;
|
|
} else if (ne00 == 576 && ne20 == 512) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_HK576_HV512].pipeline;
|
|
} else {
|
|
switch (ne00) {
|
|
case 40: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H40 ].pipeline; break;
|
|
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H64 ].pipeline; break;
|
|
case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H80 ].pipeline; break;
|
|
case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H96 ].pipeline; break;
|
|
case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H112].pipeline; break;
|
|
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H128].pipeline; break;
|
|
case 192: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H192].pipeline; break;
|
|
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H256].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported size: %lld\n", ne00);
|
|
GGML_LOG_ERROR("add template specialization for this size\n");
|
|
GGML_ABORT("add template specialization for this size");
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
case GGML_TYPE_Q5_0:
|
|
{
|
|
if (ne00 == 192 && ne20 == 128) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK192_HV128].pipeline;
|
|
} else if (ne00 == 576 && ne20 == 512) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_HK576_HV512].pipeline;
|
|
} else {
|
|
switch (ne00) {
|
|
case 40: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H40 ].pipeline; break;
|
|
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H64 ].pipeline; break;
|
|
case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H80 ].pipeline; break;
|
|
case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H96 ].pipeline; break;
|
|
case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H112].pipeline; break;
|
|
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H128].pipeline; break;
|
|
case 192: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H192].pipeline; break;
|
|
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H256].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported size: %lld\n", ne00);
|
|
GGML_LOG_ERROR("add template specialization for this size\n");
|
|
GGML_ABORT("add template specialization for this size");
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
case GGML_TYPE_Q5_1:
|
|
{
|
|
if (ne00 == 192 && ne20 == 128) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK192_HV128].pipeline;
|
|
} else if (ne00 == 576 && ne20 == 512) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_HK576_HV512].pipeline;
|
|
} else {
|
|
switch (ne00) {
|
|
case 40: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H40 ].pipeline; break;
|
|
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H64 ].pipeline; break;
|
|
case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H80 ].pipeline; break;
|
|
case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H96 ].pipeline; break;
|
|
case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H112].pipeline; break;
|
|
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H128].pipeline; break;
|
|
case 192: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H192].pipeline; break;
|
|
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H256].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported size: %lld\n", ne00);
|
|
GGML_LOG_ERROR("add template specialization for this size\n");
|
|
GGML_ABORT("add template specialization for this size");
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
case GGML_TYPE_Q8_0:
|
|
{
|
|
if (ne00 == 192 && ne20 == 128) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK192_HV128].pipeline;
|
|
} else if (ne00 == 576 && ne20 == 512) {
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_HK576_HV512].pipeline;
|
|
} else {
|
|
switch (ne00) {
|
|
case 40: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H40 ].pipeline; break;
|
|
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64 ].pipeline; break;
|
|
case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80 ].pipeline; break;
|
|
case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96 ].pipeline; break;
|
|
case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H112].pipeline; break;
|
|
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H128].pipeline; break;
|
|
case 192: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H192].pipeline; break;
|
|
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported size: %lld\n", ne00);
|
|
GGML_LOG_ERROR("add template specialization for this size\n");
|
|
GGML_ABORT("add template specialization for this size");
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported type: %d\n", src1->type);
|
|
GGML_LOG_ERROR("add template specialization for this type\n");
|
|
GGML_ABORT("add template specialization for this type");
|
|
}
|
|
}
|
|
} else {
|
|
use_vec_kernel = true;
|
|
|
|
switch (ne00) {
|
|
case 40:
|
|
{
|
|
switch (src1->type) {
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H40].pipeline; break;
|
|
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H40].pipeline; break;
|
|
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H40].pipeline; break;
|
|
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H40].pipeline; break;
|
|
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H40].pipeline; break;
|
|
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H40].pipeline; break;
|
|
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H40].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported type: %d\n", src1->type);
|
|
GGML_LOG_ERROR("add template specialization for this type\n");
|
|
GGML_ABORT("add template specialization for this type");
|
|
}
|
|
}
|
|
} break;
|
|
case 64:
|
|
{
|
|
switch (src1->type) {
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H64].pipeline; break;
|
|
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H64].pipeline; break;
|
|
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H64].pipeline; break;
|
|
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H64].pipeline; break;
|
|
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H64].pipeline; break;
|
|
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H64].pipeline; break;
|
|
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H64].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported type: %d\n", src1->type);
|
|
GGML_LOG_ERROR("add template specialization for this type\n");
|
|
GGML_ABORT("add template specialization for this type");
|
|
}
|
|
}
|
|
} break;
|
|
case 96:
|
|
{
|
|
switch (src1->type) {
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H96].pipeline; break;
|
|
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H96].pipeline; break;
|
|
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H96].pipeline; break;
|
|
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H96].pipeline; break;
|
|
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H96].pipeline; break;
|
|
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H96].pipeline; break;
|
|
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H96].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported type: %d\n", src1->type);
|
|
GGML_LOG_ERROR("add template specialization for this type\n");
|
|
GGML_ABORT("add template specialization for this type");
|
|
}
|
|
}
|
|
} break;
|
|
case 128:
|
|
{
|
|
switch (src1->type) {
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128].pipeline; break;
|
|
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H128].pipeline; break;
|
|
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128].pipeline; break;
|
|
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H128].pipeline; break;
|
|
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H128].pipeline; break;
|
|
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H128].pipeline; break;
|
|
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H128].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported type: %d\n", src1->type);
|
|
GGML_LOG_ERROR("add template specialization for this type\n");
|
|
GGML_ABORT("add template specialization for this type");
|
|
}
|
|
}
|
|
} break;
|
|
case 192:
|
|
{
|
|
if (ne20 == 128) {
|
|
switch (src1->type) {
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK192_HV128].pipeline; break;
|
|
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_HK192_HV128].pipeline; break;
|
|
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_HK192_HV128].pipeline; break;
|
|
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_HK192_HV128].pipeline; break;
|
|
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_HK192_HV128].pipeline; break;
|
|
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_HK192_HV128].pipeline; break;
|
|
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK192_HV128].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported type: %d\n", src1->type);
|
|
GGML_LOG_ERROR("add template specialization for this type\n");
|
|
GGML_ABORT("add template specialization for this type");
|
|
}
|
|
}
|
|
} else {
|
|
switch (src1->type) {
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H192].pipeline; break;
|
|
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H192].pipeline; break;
|
|
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H192].pipeline; break;
|
|
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H192].pipeline; break;
|
|
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H192].pipeline; break;
|
|
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H192].pipeline; break;
|
|
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H192].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported type: %d\n", src1->type);
|
|
GGML_LOG_ERROR("add template specialization for this type\n");
|
|
GGML_ABORT("add template specialization for this type");
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
case 256:
|
|
{
|
|
switch (src1->type) {
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256].pipeline; break;
|
|
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H256].pipeline; break;
|
|
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H256].pipeline; break;
|
|
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H256].pipeline; break;
|
|
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H256].pipeline; break;
|
|
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H256].pipeline; break;
|
|
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported type: %d\n", src1->type);
|
|
GGML_LOG_ERROR("add template specialization for this type\n");
|
|
GGML_ABORT("add template specialization for this type");
|
|
}
|
|
}
|
|
} break;
|
|
case 576:
|
|
{
|
|
if (ne20 == 512) {
|
|
switch (src1->type) {
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_HK576_HV512].pipeline; break;
|
|
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_HK576_HV512].pipeline; break;
|
|
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_HK576_HV512].pipeline; break;
|
|
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_HK576_HV512].pipeline; break;
|
|
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_HK576_HV512].pipeline; break;
|
|
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_HK576_HV512].pipeline; break;
|
|
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_HK576_HV512].pipeline; break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported type: %d\n", src1->type);
|
|
GGML_LOG_ERROR("add template specialization for this type\n");
|
|
GGML_ABORT("add template specialization for this type");
|
|
}
|
|
}
|
|
} else {
|
|
GGML_LOG_ERROR("unsupported size: %lld\n", ne20);
|
|
GGML_LOG_ERROR("add template specialization for this size\n");
|
|
GGML_ABORT("add template specialization for this size");
|
|
}
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("unsupported size: %lld\n", ne00);
|
|
GGML_LOG_ERROR("add template specialization for this size\n");
|
|
GGML_ABORT("add template specialization for this size");
|
|
}
|
|
}
|
|
}
|
|
|
|
ggml_metal_kargs_flash_attn_ext args = {
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.ne03 =*/ ne03,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne11 =*/ ne11,
|
|
/*.ne_12_2 =*/ ne12,
|
|
/*.ne_12_3 =*/ ne13,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb12 =*/ nb12,
|
|
/*.nb13 =*/ nb13,
|
|
/*.nb21 =*/ nb21,
|
|
/*.nb22 =*/ nb22,
|
|
/*.nb23 =*/ nb23,
|
|
/*.ne32 =*/ ne32,
|
|
/*.ne33 =*/ ne33,
|
|
/*.nb31 =*/ nb31,
|
|
/*.nb32 =*/ nb32,
|
|
/*.nb33 =*/ nb33,
|
|
/*.ne1 =*/ ne1,
|
|
/*.ne2 =*/ ne2,
|
|
/*.ne3 =*/ ne3,
|
|
/*.scale =*/ scale,
|
|
/*.max_bias =*/ max_bias,
|
|
/*.m0 =*/ m0,
|
|
/*.m1 =*/ m1,
|
|
/*.n_head_log2 =*/ n_head_log2,
|
|
/*.logit_softcap =*/ logit_softcap,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
|
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
|
|
if (id_src3) {
|
|
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:4];
|
|
} else {
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:4];
|
|
}
|
|
if (id_src4) {
|
|
[encoder setBuffer:id_src4 offset:offs_src4 atIndex:5];
|
|
} else {
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:5];
|
|
}
|
|
|
|
if (!use_vec_kernel) {
|
|
// half8x8 kernel
|
|
const int64_t nqptg = 8; // queries per threadgroup !! sync with kernel template arguments !!
|
|
const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !!
|
|
|
|
GGML_ASSERT(nqptg <= 32);
|
|
GGML_ASSERT(nqptg % 8 == 0);
|
|
GGML_ASSERT(ncpsg % 32 == 0);
|
|
|
|
const int is_q = ggml_is_quantized(src1->type) ? 1 : 0;
|
|
|
|
// 2*(2*ncpsg + nqptg)*(nsg)
|
|
// ncpsg soft_max values + ncpsg mask values + a diagonal scaling matrix (in float)
|
|
//
|
|
// 16*32*(nsg)
|
|
// the shared memory needed for the simdgroups to load the KV cache
|
|
// each thread loads (dequantizes) 16 head elements, there are 32 threads in th SG
|
|
//
|
|
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(2*ne00 + 2*(2*ncpsg + nqptg)*(nsg)) + is_q*(16*32*(nsg)))*(sizeof(float)/2), 16))
|
|
|
|
int64_t nsgmax = 2;
|
|
|
|
while (true) {
|
|
const size_t smem = FATTN_SMEM(nsgmax);
|
|
if (smem > device.maxThreadgroupMemoryLength/2) {
|
|
break;
|
|
}
|
|
nsgmax *= 2;
|
|
}
|
|
nsgmax /= 2;
|
|
|
|
// simdgroups per threadgroup (a.k.a. warps)
|
|
const int64_t nsg = ne01 <= nqptg ? MAX(4, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))) : 4;
|
|
|
|
const size_t smem = FATTN_SMEM(nsg);
|
|
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:6];
|
|
|
|
//printf("smem: %zu, max: %zu, nsg = %d\n", smem, device.maxThreadgroupMemoryLength, (int) nsg);
|
|
GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength);
|
|
[encoder setThreadgroupMemoryLength:smem atIndex:0];
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
|
|
#undef FATTN_SMEM
|
|
} else {
|
|
// half4x4 kernel
|
|
const int64_t nqptg = 1; // queries per threadgroup !! sync with kernel template arguments !!
|
|
const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !!
|
|
const int64_t nkpsg = 1*ncpsg; // TODO: make adjustable
|
|
|
|
GGML_ASSERT(nqptg <= 32);
|
|
GGML_ASSERT(nqptg % 1 == 0);
|
|
GGML_ASSERT(ncpsg % 32 == 0);
|
|
|
|
// ne00 + 2*ncpsg*(nsg)
|
|
// for each query, we load it as f16 in shared memory (ne00)
|
|
// and store the soft_max values and the mask
|
|
//
|
|
// ne20*(nsg)
|
|
// each simdgroup has a full f32 head vector in shared mem to accumulate results
|
|
//
|
|
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + 2*ne20*(nsg))*(sizeof(float)/2), 16))
|
|
//#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)))*(sizeof(float)/2), 16))
|
|
|
|
int64_t nsgmax = 2;
|
|
while (true) {
|
|
const size_t smem = FATTN_SMEM(nsgmax);
|
|
// avoid using more than half of the threadgroup memory - can cause slow downs especially for large head sizes
|
|
if (smem > device.maxThreadgroupMemoryLength/2) {
|
|
break;
|
|
}
|
|
nsgmax *= 2;
|
|
}
|
|
nsgmax /= 2;
|
|
|
|
// simdgroups per threadgroup (a.k.a. warps)
|
|
const int64_t nsgt = MAX(2, MIN(nsgmax, MIN((ne11 + nkpsg - 1)/(nkpsg), (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32)));
|
|
|
|
int64_t nsg = 1;
|
|
while (nsg <= nsgt) {
|
|
nsg *= 2;
|
|
}
|
|
nsg /= 2;
|
|
|
|
// workgroups
|
|
// each workgroup handles nsg*nkpsg cache values
|
|
uint16_t nwg = 1;
|
|
if (4*nsg*nkpsg >= ne11) {
|
|
const size_t smem = FATTN_SMEM(nsg);
|
|
|
|
//printf("smem: %zu, max: %zu, nsg = %d, nsgmax = %d\n", smem, device.maxThreadgroupMemoryLength, (int) nsg, (int) nsgmax);
|
|
GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength);
|
|
|
|
// using 1 workgroup -> write the result directly into dst
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:6];
|
|
[encoder setBytes:&nwg length:sizeof(uint16_t) atIndex:7];
|
|
|
|
[encoder setThreadgroupMemoryLength:smem atIndex:0];
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
|
|
} else {
|
|
nwg = 32;
|
|
nsg = MIN(4, nsg);
|
|
|
|
const size_t smem = FATTN_SMEM(nsg);
|
|
|
|
//printf("smem: %zu, max: %zu, nsg = %d, nsgmax = %d\n", smem, device.maxThreadgroupMemoryLength, (int) nsg, (int) nsgmax);
|
|
GGML_ASSERT(smem <= device.maxThreadgroupMemoryLength);
|
|
|
|
// sanity checks
|
|
GGML_ASSERT(ne01*ne02*ne03 == ne1*ne2*ne3);
|
|
GGML_ASSERT(ne1*ne2*ne3 <= (1u << 31));
|
|
|
|
const int32_t nrows = ne1*ne2*ne3;
|
|
|
|
// temp buffer for writing the results from each workgroup
|
|
// - ne20: the size of the head vector
|
|
// - + 2: the S and M values for each intermediate result
|
|
const size_t s_tmp = ggml_type_size(GGML_TYPE_F32)*(nrows*nwg*(ne20 + 2));
|
|
id<MTLBuffer> h_tmp = ggml_metal_mem_pool_alloc(mem_pool, s_tmp);
|
|
if (!h_tmp) {
|
|
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_tmp);
|
|
return 0;
|
|
}
|
|
|
|
//printf("ne01 = %d, ne02 = %d, ne03 = %d, ne20 = %d\n", ne01, ne02, ne03, ne20);
|
|
//printf("needed memory: %.3f MiB\n", (float) (ne01*ne02*ne03*ne20*sizeof(float))/1024.0f/1024.0f);
|
|
|
|
[encoder setBuffer:h_tmp offset:0 atIndex:6];
|
|
[encoder setBytes:&nwg length:sizeof(uint16_t) atIndex:7];
|
|
|
|
[encoder setThreadgroupMemoryLength:smem atIndex:0];
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
|
|
|
|
// reduce the results from the workgroups
|
|
{
|
|
ggml_metal_kargs_flash_attn_ext_reduce args0 = {
|
|
nrows,
|
|
ne20,
|
|
};
|
|
|
|
id<MTLComputePipelineState> pipeline0 = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_REDUCE].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline0];
|
|
[encoder setBytes:&args0 length:sizeof(args0) atIndex:0];
|
|
[encoder setBuffer:h_tmp offset:0 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
|
|
//printf("ne1 = %d, ne2 = %d, ne3 = %d, ne20 = %d\n", ne1, ne2, ne3, ne20);
|
|
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(32*32, 1, 1)];
|
|
}
|
|
}
|
|
#undef FATTN_SMEM
|
|
}
|
|
} break;
|
|
case GGML_OP_DUP:
|
|
case GGML_OP_CPY:
|
|
case GGML_OP_CONT:
|
|
{
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
switch (src0t) {
|
|
case GGML_TYPE_F32:
|
|
{
|
|
GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0);
|
|
|
|
switch (dstt) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline; break;
|
|
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_BF16].pipeline; break;
|
|
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break;
|
|
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break;
|
|
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break;
|
|
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break;
|
|
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break;
|
|
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
};
|
|
} break;
|
|
case GGML_TYPE_F16:
|
|
{
|
|
switch (dstt) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
};
|
|
} break;
|
|
case GGML_TYPE_BF16:
|
|
{
|
|
switch (dstt) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_BF16_F32].pipeline; break;
|
|
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_BF16_BF16].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
};
|
|
} break;
|
|
case GGML_TYPE_Q4_0:
|
|
{
|
|
switch (dstt) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q4_0_F32].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q4_0_F16].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
};
|
|
} break;
|
|
case GGML_TYPE_Q4_1:
|
|
{
|
|
switch (dstt) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q4_1_F32].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q4_1_F16].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
};
|
|
} break;
|
|
case GGML_TYPE_Q5_0:
|
|
{
|
|
switch (dstt) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q5_0_F32].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q5_0_F16].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
};
|
|
} break;
|
|
case GGML_TYPE_Q5_1:
|
|
{
|
|
switch (dstt) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q5_1_F32].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q5_1_F16].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
};
|
|
} break;
|
|
case GGML_TYPE_Q8_0:
|
|
{
|
|
switch (dstt) {
|
|
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q8_0_F32].pipeline; break;
|
|
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_Q8_0_F16].pipeline; break;
|
|
default: GGML_ABORT("not implemented");
|
|
};
|
|
} break;
|
|
default: GGML_ABORT("not implemented");
|
|
}
|
|
|
|
GGML_ASSERT(ne00 % ggml_blck_size(src0->type) == 0);
|
|
|
|
// TODO: support
|
|
//const int32_t nk00 = ne00/ggml_blck_size(dst->type);
|
|
const int32_t nk00 = ne00;
|
|
|
|
int nth = 32; // SIMD width
|
|
|
|
while (nth < nk00 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
|
|
nth *= 2;
|
|
}
|
|
|
|
nth = MIN(nth, (int) pipeline.maxTotalThreadsPerThreadgroup);
|
|
|
|
// when rows are small, we can batch them together in a single threadgroup
|
|
int nrptg = 1;
|
|
|
|
// TODO: relax this constraint in the future
|
|
if (ggml_blck_size(src0->type) == 1 && ggml_blck_size(dst->type) == 1) {
|
|
if (nth > nk00) {
|
|
nrptg = (nth + nk00 - 1)/nk00;
|
|
nth = nk00;
|
|
|
|
if (nrptg*nth > (int) pipeline.maxTotalThreadsPerThreadgroup) {
|
|
nrptg--;
|
|
}
|
|
}
|
|
}
|
|
|
|
nth = MIN(nth, nk00);
|
|
|
|
ggml_metal_kargs_cpy args = {
|
|
/*.ne00 =*/ nk00,
|
|
/*.ne01 =*/ ne01,
|
|
/*.ne02 =*/ ne02,
|
|
/*.ne03 =*/ ne03,
|
|
/*.nb00 =*/ nb00,
|
|
/*.nb01 =*/ nb01,
|
|
/*.nb02 =*/ nb02,
|
|
/*.nb03 =*/ nb03,
|
|
/*.ne0 =*/ ne0,
|
|
/*.ne1 =*/ ne1,
|
|
/*.ne2 =*/ ne2,
|
|
/*.ne3 =*/ ne3,
|
|
/*.nb0 =*/ nb0,
|
|
/*.nb1 =*/ nb1,
|
|
/*.nb2 =*/ nb2,
|
|
/*.nb3 =*/ nb3,
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nrptg - 1)/nrptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, nrptg, 1)];
|
|
} break;
|
|
case GGML_OP_SET:
|
|
{
|
|
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
|
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
|
|
|
// src0 and dst as viewed during set
|
|
const size_t dst_nb0 = ggml_element_size(src0);
|
|
|
|
const size_t dst_nb1 = ((int32_t *) dst->op_params)[0];
|
|
const size_t dst_nb2 = ((int32_t *) dst->op_params)[1];
|
|
const size_t dst_nb3 = ((int32_t *) dst->op_params)[2];
|
|
const size_t offset = ((int32_t *) dst->op_params)[3];
|
|
const bool inplace = (bool) ((int32_t *) dst->op_params)[4];
|
|
|
|
if (!inplace) {
|
|
memcpy(((char *) dst->data), ((char *) src0->data), ggml_nbytes(dst));
|
|
}
|
|
|
|
const int im0 = (ne10 == 0 ? 0 : ne10-1);
|
|
const int im1 = (ne11 == 0 ? 0 : ne11-1);
|
|
const int im2 = (ne12 == 0 ? 0 : ne12-1);
|
|
const int im3 = (ne13 == 0 ? 0 : ne13-1);
|
|
|
|
GGML_ASSERT(offset + im0*dst_nb0 + im1*dst_nb1 + im2*dst_nb2 + im3*dst_nb3 <= ggml_nbytes(dst));
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
|
|
switch (src0t) {
|
|
case GGML_TYPE_F32:
|
|
GGML_ASSERT(nb10 == sizeof(float));
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_F32].pipeline; break;
|
|
case GGML_TYPE_I32:
|
|
GGML_ASSERT(nb10 == sizeof(int32_t));
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SET_I32].pipeline; break;
|
|
default: GGML_ABORT("fatal error");
|
|
}
|
|
|
|
ggml_metal_kargs_set args = {
|
|
/*.ne10 =*/ ne10,
|
|
/*.ne11 =*/ ne11,
|
|
/*.ne12 =*/ ne12,
|
|
/*.nb10 =*/ nb10,
|
|
/*.nb11 =*/ nb11,
|
|
/*.nb12 =*/ nb12,
|
|
/*.nb13 =*/ nb13,
|
|
/*.nb1 =*/ dst_nb1,
|
|
/*.nb2 =*/ dst_nb2,
|
|
/*.nb3 =*/ dst_nb3,
|
|
/*.offs =*/ offset,
|
|
/*.inplace =*/ inplace,
|
|
};
|
|
|
|
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne10);
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(ne11, ne12, ne13) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
case GGML_OP_POOL_2D:
|
|
{
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(src0t == GGML_TYPE_F32 && src0t == dstt);
|
|
|
|
const int32_t * opts = dst->op_params;
|
|
enum ggml_op_pool op = opts[0];
|
|
|
|
id<MTLComputePipelineState> pipeline = nil;
|
|
switch (src0t) {
|
|
case GGML_TYPE_F32: {
|
|
switch(op) {
|
|
case GGML_OP_POOL_AVG:
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32].pipeline; break;
|
|
case GGML_OP_POOL_MAX:
|
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32].pipeline; break;
|
|
default: GGML_ASSERT(false && "not implemented");
|
|
}
|
|
} break;
|
|
default: GGML_ASSERT(false && "not implemented");
|
|
}
|
|
|
|
const int32_t k0 = opts[1];
|
|
const int32_t k1 = opts[2];
|
|
const int32_t s0 = opts[3];
|
|
const int32_t s1 = opts[4];
|
|
const int32_t p0 = opts[5];
|
|
const int32_t p1 = opts[6];
|
|
|
|
const int64_t IH = src0->ne[1];
|
|
const int64_t IW = src0->ne[0];
|
|
|
|
const int64_t N = dst->ne[3];
|
|
const int64_t OC = dst->ne[2];
|
|
const int64_t OH = dst->ne[1];
|
|
const int64_t OW = dst->ne[0];
|
|
|
|
const int64_t parallel_elements = N * OC * OH * OW;
|
|
const int64_t n_threads = MIN((int64_t)[pipeline maxTotalThreadsPerThreadgroup], parallel_elements);
|
|
const int64_t n_tg = (parallel_elements + n_threads - 1) / n_threads;
|
|
|
|
ggml_metal_kargs_pool_2d args_pool_2d = {
|
|
/* .k0 = */ k0,
|
|
/* .k1 = */ k1,
|
|
/* .s0 = */ s0,
|
|
/* .s1 = */ s1,
|
|
/* .p0 = */ p0,
|
|
/* .p1 = */ p1,
|
|
/* .IH = */ IH,
|
|
/* .IW = */ IW,
|
|
/* .OH = */ OH,
|
|
/* .OW = */ OW,
|
|
/* .parallel_elements = */ parallel_elements
|
|
};
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&args_pool_2d length:sizeof(args_pool_2d) atIndex:2];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(n_tg, 1, 1) threadsPerThreadgroup:MTLSizeMake(n_threads, 1, 1)];
|
|
} break;
|
|
case GGML_OP_ARGMAX:
|
|
{
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
|
GGML_ASSERT(nb00 == ggml_type_size(src0->type));
|
|
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
int nth = 32; // SIMD width
|
|
while (nth < ne00 && nth*ne01*ne02*ne03 < 256) {
|
|
nth *= 2;
|
|
}
|
|
|
|
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGMAX].pipeline;
|
|
|
|
[encoder setComputePipelineState:pipeline];
|
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
|
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
|
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
|
|
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
|
|
[encoder setThreadgroupMemoryLength:32*sizeof(int32_t) atIndex:1];
|
|
|
|
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
|
} break;
|
|
default:
|
|
{
|
|
GGML_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
}
|
|
|
|
return n_fuse;
|
|
}
|
|
|
|
static enum ggml_status ggml_metal_graph_compute(
|
|
ggml_backend_t backend,
|
|
struct ggml_cgraph * gf) {
|
|
struct ggml_backend_metal_context * ctx = backend->context;
|
|
struct ggml_backend_metal_device_context * ctx_dev = backend->device->context;
|
|
|
|
// number of nodes encoded by the main thread (empirically determined)
|
|
const int n_main = 128;
|
|
|
|
// number of threads in addition to the main thread
|
|
const int n_cb = ctx->n_cb;
|
|
|
|
// submit the ggml compute graph to the GPU by creating command buffers and encoding the ops in them
|
|
// the first n_nodes_0 are encoded and submitted for processing directly by the calling thread
|
|
// while these nodes are processing, we start n_cb threads to enqueue the rest of the nodes
|
|
// each thread creates it's own command buffer and enqueues the ops in parallel
|
|
//
|
|
// tests on M1 Pro and M2 Ultra using LLaMA models, show that optimal values for n_cb are 1 or 2
|
|
|
|
@autoreleasepool {
|
|
ctx->gf = gf;
|
|
|
|
ctx->n_nodes_0 = MIN(n_main, gf->n_nodes);
|
|
ctx->n_nodes_1 = gf->n_nodes - ctx->n_nodes_0;
|
|
|
|
ctx->n_nodes_per_cb = (ctx->n_nodes_1 + ctx->n_cb - 1) / ctx->n_cb;
|
|
|
|
const bool should_capture = ctx->capture_next_compute;
|
|
if (should_capture) {
|
|
ctx->capture_next_compute = false;
|
|
|
|
if (!ctx->capture_started) {
|
|
// create capture scope
|
|
ctx->capture_scope = [[MTLCaptureManager sharedCaptureManager] newCaptureScopeWithDevice:ctx_dev->mtl_device];
|
|
|
|
MTLCaptureDescriptor * descriptor = [MTLCaptureDescriptor new];
|
|
descriptor.captureObject = ctx->capture_scope;
|
|
descriptor.destination = MTLCaptureDestinationGPUTraceDocument;
|
|
descriptor.outputURL = [NSURL fileURLWithPath:[NSString stringWithFormat:@"/tmp/perf-metal.gputrace"]];
|
|
|
|
NSError * error = nil;
|
|
if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) {
|
|
GGML_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]);
|
|
} else {
|
|
[ctx->capture_scope beginScope];
|
|
ctx->capture_started = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// the main thread commits the first few commands immediately
|
|
// cmd_buf[n_cb]
|
|
{
|
|
id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
|
|
ctx->cmd_bufs[n_cb].obj = cmd_buf;
|
|
|
|
[cmd_buf enqueue];
|
|
ctx->encode_async(n_cb);
|
|
}
|
|
|
|
// prepare the rest of the command buffers asynchronously
|
|
// cmd_buf[0.. n_cb)
|
|
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
|
|
id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
|
|
ctx->cmd_bufs[cb_idx].obj = cmd_buf;
|
|
|
|
// always enqueue the first two command buffers
|
|
// enqueue all of the command buffers if we don't need to abort
|
|
if (cb_idx < 2 || ctx->abort_callback == NULL) {
|
|
[cmd_buf enqueue];
|
|
}
|
|
}
|
|
|
|
dispatch_apply(n_cb, ctx->d_queue, ctx->encode_async);
|
|
|
|
// wait for completion and check status of each command buffer
|
|
// needed to detect if the device ran out-of-memory for example (#1881)
|
|
{
|
|
id<MTLCommandBuffer> cmd_buf = ctx->cmd_bufs[n_cb].obj;
|
|
[cmd_buf waitUntilCompleted];
|
|
|
|
MTLCommandBufferStatus status = [cmd_buf status];
|
|
if (status != MTLCommandBufferStatusCompleted) {
|
|
GGML_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, n_cb, status);
|
|
if (status == MTLCommandBufferStatusError) {
|
|
GGML_LOG_INFO("error: %s\n", [[cmd_buf error].localizedDescription UTF8String]);
|
|
}
|
|
|
|
return GGML_STATUS_FAILED;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < n_cb; ++i) {
|
|
id<MTLCommandBuffer> cmd_buf = ctx->cmd_bufs[i].obj;
|
|
[cmd_buf waitUntilCompleted];
|
|
|
|
MTLCommandBufferStatus status = [cmd_buf status];
|
|
if (status != MTLCommandBufferStatusCompleted) {
|
|
GGML_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
|
|
if (status == MTLCommandBufferStatusError) {
|
|
GGML_LOG_INFO("error: %s\n", [[cmd_buf error].localizedDescription UTF8String]);
|
|
}
|
|
|
|
return GGML_STATUS_FAILED;
|
|
}
|
|
|
|
id<MTLCommandBuffer> next_buffer = (i + 1 < n_cb ? ctx->cmd_bufs[i + 1].obj : nil);
|
|
if (!next_buffer) {
|
|
continue;
|
|
}
|
|
|
|
const bool next_queued = ([next_buffer status] != MTLCommandBufferStatusNotEnqueued);
|
|
if (next_queued) {
|
|
continue;
|
|
}
|
|
|
|
if (ctx->abort_callback && ctx->abort_callback(ctx->abort_callback_data)) {
|
|
GGML_LOG_INFO("%s: command buffer %d aborted", __func__, i);
|
|
return GGML_STATUS_ABORTED;
|
|
}
|
|
|
|
[next_buffer commit];
|
|
}
|
|
|
|
if (!should_capture && ctx->capture_started) {
|
|
[ctx->capture_scope endScope];
|
|
[[MTLCaptureManager sharedCaptureManager] stopCapture];
|
|
}
|
|
}
|
|
|
|
return GGML_STATUS_SUCCESS;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// backend interface
|
|
|
|
static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
|
|
|
|
for (int i = 0; i < ctx->n_buffers; i++) {
|
|
[ctx->buffers[i].metal release];
|
|
}
|
|
|
|
ggml_backend_metal_buffer_rset_free(ctx);
|
|
|
|
if (ctx->owned) {
|
|
#if TARGET_OS_OSX
|
|
vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ctx->all_data, ctx->all_size);
|
|
#else
|
|
free(ctx->all_data);
|
|
#endif
|
|
}
|
|
|
|
free(ctx);
|
|
}
|
|
|
|
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
|
|
|
|
return ctx->all_data;
|
|
}
|
|
|
|
static void ggml_backend_metal_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
|
memset((char *)tensor->data + offset, value, size);
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
memcpy((char *)tensor->data + offset, data, size);
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
memcpy(data, (const char *)tensor->data + offset, size);
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
|
if (ggml_backend_buffer_is_host(src->buffer)) {
|
|
memcpy(dst->data, src->data, ggml_nbytes(src));
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
|
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
|
|
|
|
memset(ctx->all_data, value, ctx->all_size);
|
|
}
|
|
|
|
static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
|
|
/* .free_buffer = */ ggml_backend_metal_buffer_free_buffer,
|
|
/* .get_base = */ ggml_backend_metal_buffer_get_base,
|
|
/* .init_tensor = */ NULL,
|
|
/* .memset_tensor = */ ggml_backend_metal_buffer_memset_tensor,
|
|
/* .set_tensor = */ ggml_backend_metal_buffer_set_tensor,
|
|
/* .get_tensor = */ ggml_backend_metal_buffer_get_tensor,
|
|
/* .cpy_tensor = */ ggml_backend_metal_buffer_cpy_tensor,
|
|
/* .clear = */ ggml_backend_metal_buffer_clear,
|
|
/* .reset = */ NULL,
|
|
};
|
|
|
|
// default buffer type
|
|
|
|
static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
|
return "Metal";
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device, size_t size_aligned) {
|
|
#ifndef GGML_METAL_NDEBUG
|
|
#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
|
|
if (@available(macOS 10.12, iOS 16.0, *)) {
|
|
GGML_LOG_DEBUG("%s: allocated buffer, size = %8.2f MiB, (%8.2f / %8.2f)\n",
|
|
__func__,
|
|
size_aligned / 1024.0 / 1024.0,
|
|
device.currentAllocatedSize / 1024.0 / 1024.0,
|
|
device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
|
|
|
if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
|
|
GGML_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
|
|
}
|
|
} else {
|
|
GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f)\n",
|
|
__func__,
|
|
size_aligned / 1024.0 / 1024.0,
|
|
device.currentAllocatedSize / 1024.0 / 1024.0);
|
|
}
|
|
#endif
|
|
#endif
|
|
GGML_UNUSED(device);
|
|
GGML_UNUSED(size_aligned);
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
|
struct ggml_backend_metal_buffer_context * ctx = calloc(1, sizeof(struct ggml_backend_metal_buffer_context));
|
|
|
|
const size_t size_page = sysconf(_SC_PAGESIZE);
|
|
|
|
size_t size_aligned = size;
|
|
if ((size_aligned % size_page) != 0) {
|
|
size_aligned += (size_page - (size_aligned % size_page));
|
|
}
|
|
|
|
struct ggml_backend_metal_device_context * ctx_dev = (struct ggml_backend_metal_device_context *)buft->device->context;
|
|
|
|
GGML_ASSERT(ctx_dev->mtl_device != nil);
|
|
|
|
id<MTLDevice> device = ctx_dev->mtl_device;
|
|
|
|
ctx->all_data = ggml_metal_host_malloc(size_aligned);
|
|
ctx->all_size = size_aligned;
|
|
ctx->owned = true;
|
|
ctx->n_buffers = 1;
|
|
|
|
if (ctx->all_data != NULL) {
|
|
ctx->buffers[0].data = ctx->all_data;
|
|
ctx->buffers[0].size = size;
|
|
ctx->buffers[0].metal = nil;
|
|
|
|
if (size_aligned > 0) {
|
|
ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data
|
|
length:size_aligned
|
|
options:MTLResourceStorageModeShared
|
|
deallocator:nil];
|
|
}
|
|
}
|
|
|
|
if (size_aligned > 0 && (ctx->all_data == NULL || ctx->buffers[0].metal == nil)) {
|
|
GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
|
|
free(ctx);
|
|
return NULL;
|
|
}
|
|
|
|
if (!ggml_backend_metal_buffer_rset_init(ctx, ctx_dev, device)) {
|
|
GGML_LOG_ERROR("%s: error: failed to initialize residency set\n", __func__);
|
|
free(ctx);
|
|
return NULL;
|
|
}
|
|
|
|
//ggml_backend_metal_log_allocated_size(device, size_aligned);
|
|
|
|
return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size);
|
|
}
|
|
|
|
static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
|
return 32;
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
|
const size_t max_size = ((struct ggml_backend_metal_device_context *)buft->device->context)->max_size;
|
|
|
|
return max_size;
|
|
}
|
|
|
|
static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
|
return true;
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
|
static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
|
|
/* .iface = */ {
|
|
/* .get_name = */ ggml_backend_metal_buffer_type_get_name,
|
|
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
|
|
/* .get_max_size = */ ggml_backend_metal_buffer_type_get_max_size,
|
|
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
|
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
|
|
},
|
|
/* .device = */ &g_ggml_backend_metal_device,
|
|
/* .context = */ NULL,
|
|
};
|
|
|
|
return &ggml_backend_buffer_type_metal;
|
|
}
|
|
|
|
static const char * ggml_backend_metal_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
|
|
return "Metal_Mapped";
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_from_ptr_type(void) {
|
|
static struct ggml_backend_buffer_type ggml_backend_buffer_from_ptr_type_metal = {
|
|
/* .iface = */ {
|
|
/* .get_name = */ ggml_backend_metal_buffer_from_ptr_type_get_name,
|
|
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
|
|
/* .get_max_size = */ ggml_backend_metal_buffer_type_get_max_size,
|
|
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
|
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
|
|
},
|
|
/* .device = */ &g_ggml_backend_metal_device,
|
|
/* .context = */ NULL,
|
|
};
|
|
|
|
return &ggml_backend_buffer_from_ptr_type_metal;
|
|
}
|
|
|
|
// TODO: obsoleted by ggml_backend_metal_device_buffer_from_ptr
|
|
ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) {
|
|
struct ggml_backend_metal_buffer_context * ctx = calloc(1, sizeof(struct ggml_backend_metal_buffer_context));
|
|
|
|
ctx->all_data = data;
|
|
ctx->all_size = size;
|
|
ctx->owned = false;
|
|
ctx->n_buffers = 0;
|
|
|
|
const size_t size_page = sysconf(_SC_PAGESIZE);
|
|
|
|
// page-align the data ptr
|
|
{
|
|
const uintptr_t offs = (uintptr_t) data % size_page;
|
|
data = (void *) ((char *) data - offs);
|
|
size += offs;
|
|
}
|
|
|
|
size_t size_aligned = size;
|
|
if ((size_aligned % size_page) != 0) {
|
|
size_aligned += (size_page - (size_aligned % size_page));
|
|
}
|
|
|
|
struct ggml_backend_metal_device_context * ctx_dev = &g_ggml_ctx_dev_main;
|
|
|
|
GGML_ASSERT(ctx_dev->mtl_device != nil);
|
|
|
|
id<MTLDevice> device = ctx_dev->mtl_device;
|
|
|
|
// the buffer fits into the max buffer size allowed by the device
|
|
if (size_aligned <= device.maxBufferLength) {
|
|
ctx->buffers[ctx->n_buffers].data = data;
|
|
ctx->buffers[ctx->n_buffers].size = size;
|
|
ctx->buffers[ctx->n_buffers].metal = nil;
|
|
|
|
if (size_aligned > 0) {
|
|
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
|
|
|
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
|
GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ggml_backend_metal_log_allocated_size(device, size_aligned);
|
|
|
|
++ctx->n_buffers;
|
|
} else {
|
|
// this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
|
|
// one of the views
|
|
const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
|
|
const size_t size_step = device.maxBufferLength - size_ovlp;
|
|
const size_t size_view = device.maxBufferLength;
|
|
|
|
for (size_t i = 0; i < size; i += size_step) {
|
|
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
|
|
|
|
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
|
|
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
|
|
ctx->buffers[ctx->n_buffers].metal = nil;
|
|
|
|
if (size_step_aligned > 0) {
|
|
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
|
|
|
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
|
GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ggml_backend_metal_log_allocated_size(device, size_step_aligned);
|
|
|
|
if (i + size_step < size) {
|
|
GGML_LOG_INFO("\n");
|
|
}
|
|
|
|
++ctx->n_buffers;
|
|
}
|
|
}
|
|
|
|
if (!ggml_backend_metal_buffer_rset_init(ctx, ctx_dev, device)) {
|
|
GGML_LOG_ERROR("%s: error: failed to initialize residency set\n", __func__);
|
|
free(ctx);
|
|
return NULL;
|
|
}
|
|
|
|
return ggml_backend_buffer_init(ggml_backend_metal_buffer_from_ptr_type(), ggml_backend_metal_buffer_i, ctx, size);
|
|
}
|
|
|
|
// backend
|
|
|
|
static const char * ggml_backend_metal_name(ggml_backend_t backend) {
|
|
return "Metal";
|
|
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_metal_free(ggml_backend_t backend) {
|
|
struct ggml_backend_metal_context * ctx = backend->context;
|
|
|
|
ggml_metal_free(ctx);
|
|
|
|
free(backend);
|
|
}
|
|
|
|
static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
|
return ggml_metal_graph_compute(backend, cgraph);
|
|
}
|
|
|
|
static void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
|
|
GGML_ASSERT(ggml_backend_is_metal(backend));
|
|
|
|
struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context;
|
|
|
|
if (ctx->n_cb != n_cb) {
|
|
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_COMMAND_BUFFERS);
|
|
|
|
if (ctx->n_cb > 2) {
|
|
GGML_LOG_WARN("%s: n_cb = %d, using n_cb > 2 is not recommended and can degrade the performance in some cases\n", __func__, n_cb);
|
|
}
|
|
}
|
|
|
|
if (ctx->encode_async) {
|
|
Block_release(ctx->encode_async);
|
|
}
|
|
|
|
ctx->encode_async = Block_copy(^(size_t iter) {
|
|
const int cb_idx = iter;
|
|
const int n_cb_l = ctx->n_cb;
|
|
|
|
const int n_nodes_0 = ctx->n_nodes_0;
|
|
const int n_nodes_1 = ctx->n_nodes_1;
|
|
|
|
const int n_nodes_per_cb = ctx->n_nodes_per_cb;
|
|
|
|
id<MTLCommandBuffer> cmd_buf = ctx->cmd_bufs[cb_idx].obj;
|
|
|
|
id<MTLComputeCommandEncoder> encoder = [cmd_buf computeCommandEncoder];
|
|
|
|
int node_start = 0;
|
|
int node_end = n_nodes_0;
|
|
|
|
if (cb_idx < n_cb_l) {
|
|
node_start = n_nodes_0 + ( (cb_idx + 0) * n_nodes_per_cb);
|
|
node_end = n_nodes_0 + (MIN((cb_idx == n_cb_l - 1) ? n_nodes_1 : (cb_idx + 1) * n_nodes_per_cb, n_nodes_1));
|
|
}
|
|
|
|
const bool should_capture = ctx->capture_next_compute;
|
|
|
|
struct ggml_metal_mem_pool * mem_pool = ctx->cmd_bufs[cb_idx].mem_pool;
|
|
ggml_metal_mem_pool_reset(mem_pool);
|
|
|
|
for (int idx = node_start; idx < node_end;) {
|
|
if (should_capture) {
|
|
[encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(ggml_graph_node(ctx->gf, idx)) encoding:NSUTF8StringEncoding]];
|
|
}
|
|
|
|
const int res = ggml_metal_encode_node(backend, idx, node_end, encoder, mem_pool);
|
|
if (idx + res > node_end) {
|
|
GGML_ABORT("fusion error: nodes spanning multiple encoders have been fused. this indicates a bug in the fusion logic %s",
|
|
"https://github.com/ggml-org/llama.cpp/pull/14849");
|
|
}
|
|
|
|
if (should_capture) {
|
|
[encoder popDebugGroup];
|
|
}
|
|
|
|
if (res == 0) {
|
|
break;
|
|
}
|
|
|
|
idx += res;
|
|
}
|
|
|
|
[encoder endEncoding];
|
|
|
|
if (cb_idx < 2 || ctx->abort_callback == NULL) {
|
|
[cmd_buf commit];
|
|
}
|
|
});
|
|
}
|
|
|
|
static struct ggml_backend_i ggml_backend_metal_i = {
|
|
/* .get_name = */ ggml_backend_metal_name,
|
|
/* .free = */ ggml_backend_metal_free,
|
|
/* .set_tensor_async = */ NULL,
|
|
/* .get_tensor_async = */ NULL,
|
|
/* .cpy_tensor_async = */ NULL,
|
|
/* .synchronize = */ NULL,
|
|
/* .graph_plan_create = */ NULL,
|
|
/* .graph_plan_free = */ NULL,
|
|
/* .graph_plan_update = */ NULL,
|
|
/* .graph_plan_compute = */ NULL,
|
|
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
|
/* .event_record = */ NULL,
|
|
/* .event_wait = */ NULL,
|
|
};
|
|
|
|
static ggml_guid_t ggml_backend_metal_guid(void) {
|
|
static ggml_guid guid = { 0x81, 0xa1, 0x8b, 0x1e, 0x71, 0xec, 0x79, 0xed, 0x2b, 0x85, 0xdc, 0x8a, 0x61, 0x98, 0x30, 0xe6 };
|
|
return &guid;
|
|
}
|
|
|
|
// TODO: remove in the future
|
|
ggml_backend_t ggml_backend_metal_init(void) {
|
|
ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_metal_reg(), 0);
|
|
|
|
struct ggml_backend_metal_context * ctx = ggml_metal_init(dev);
|
|
if (ctx == NULL) {
|
|
GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
ggml_backend_t backend = malloc(sizeof(struct ggml_backend));
|
|
|
|
*backend = (struct ggml_backend) {
|
|
/* .guid = */ ggml_backend_metal_guid(),
|
|
/* .interface = */ ggml_backend_metal_i,
|
|
/* .device = */ dev,
|
|
/* .context = */ ctx,
|
|
};
|
|
|
|
ggml_backend_metal_set_n_cb(backend, 1);
|
|
|
|
return backend;
|
|
}
|
|
|
|
bool ggml_backend_is_metal(ggml_backend_t backend) {
|
|
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_metal_guid());
|
|
}
|
|
|
|
void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data) {
|
|
GGML_ASSERT(ggml_backend_is_metal(backend));
|
|
|
|
struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context;
|
|
|
|
ctx->abort_callback = abort_callback;
|
|
ctx->abort_callback_data = user_data;
|
|
}
|
|
|
|
bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
|
|
GGML_ASSERT(ggml_backend_is_metal(backend));
|
|
|
|
struct ggml_backend_metal_device_context * ctx_dev = backend->device->context;
|
|
|
|
GGML_ASSERT(ctx_dev->mtl_device != nil);
|
|
|
|
return [ctx_dev->mtl_device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
|
|
}
|
|
|
|
void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
|
|
GGML_ASSERT(ggml_backend_is_metal(backend));
|
|
|
|
struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context;
|
|
ctx->capture_next_compute = true;
|
|
}
|
|
|
|
// backend device
|
|
|
|
static const char * ggml_backend_metal_device_get_name(ggml_backend_dev_t dev) {
|
|
return "Metal";
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static const char * ggml_backend_metal_device_get_description(ggml_backend_dev_t dev) {
|
|
struct ggml_backend_metal_device_context * ctx_dev = (struct ggml_backend_metal_device_context *)dev->context;
|
|
|
|
return ctx_dev->name;
|
|
}
|
|
|
|
static void ggml_backend_metal_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
|
if (@available(macOS 10.12, iOS 16.0, *)) {
|
|
struct ggml_backend_metal_device_context * ctx_dev = (struct ggml_backend_metal_device_context *)dev->context;
|
|
id<MTLDevice> device = ctx_dev->mtl_device;
|
|
|
|
*total = device.recommendedMaxWorkingSetSize;
|
|
*free = *total - device.currentAllocatedSize;
|
|
} else {
|
|
*free = 1;
|
|
*total = 1;
|
|
}
|
|
}
|
|
|
|
static enum ggml_backend_dev_type ggml_backend_metal_device_get_type(ggml_backend_dev_t dev) {
|
|
return GGML_BACKEND_DEVICE_TYPE_GPU;
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static void ggml_backend_metal_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
|
props->name = ggml_backend_metal_device_get_name(dev);
|
|
props->description = ggml_backend_metal_device_get_description(dev);
|
|
props->type = ggml_backend_metal_device_get_type(dev);
|
|
ggml_backend_metal_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
|
props->caps = (struct ggml_backend_dev_caps) {
|
|
/* .async = */ false,
|
|
/* .host_buffer = */ false,
|
|
/* .buffer_from_host_ptr = */ true,
|
|
/* .events = */ false,
|
|
};
|
|
}
|
|
|
|
static ggml_backend_t ggml_backend_metal_device_init(ggml_backend_dev_t dev, const char * params) {
|
|
struct ggml_backend_metal_context * ctx = ggml_metal_init(dev);
|
|
if (ctx == NULL) {
|
|
GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
ggml_backend_t backend = malloc(sizeof(struct ggml_backend));
|
|
|
|
*backend = (struct ggml_backend) {
|
|
/* .guid = */ ggml_backend_metal_guid(),
|
|
/* .interface = */ ggml_backend_metal_i,
|
|
/* .device = */ dev,
|
|
/* .context = */ ctx,
|
|
};
|
|
|
|
ggml_backend_metal_set_n_cb(backend, 1);
|
|
|
|
return backend;
|
|
|
|
GGML_UNUSED(params);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_t ggml_backend_metal_device_get_buffer_type(ggml_backend_dev_t dev) {
|
|
return ggml_backend_metal_buffer_type();
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_metal_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
|
struct ggml_backend_metal_buffer_context * ctx = calloc(1, sizeof(struct ggml_backend_metal_buffer_context));
|
|
|
|
ctx->all_data = ptr;
|
|
ctx->all_size = size;
|
|
ctx->owned = false;
|
|
ctx->n_buffers = 0;
|
|
|
|
const size_t size_page = sysconf(_SC_PAGESIZE);
|
|
|
|
// page-align the data ptr
|
|
{
|
|
const uintptr_t offs = (uintptr_t) ptr % size_page;
|
|
ptr = (void *) ((char *) ptr - offs);
|
|
size += offs;
|
|
}
|
|
|
|
size_t size_aligned = size;
|
|
if ((size_aligned % size_page) != 0) {
|
|
size_aligned += (size_page - (size_aligned % size_page));
|
|
}
|
|
|
|
struct ggml_backend_metal_device_context * ctx_dev = (struct ggml_backend_metal_device_context *)dev->context;
|
|
|
|
GGML_ASSERT(ctx_dev->mtl_device != nil);
|
|
|
|
id<MTLDevice> device = ctx_dev->mtl_device;
|
|
|
|
// the buffer fits into the max buffer size allowed by the device
|
|
if (size_aligned <= device.maxBufferLength) {
|
|
ctx->buffers[ctx->n_buffers].data = ptr;
|
|
ctx->buffers[ctx->n_buffers].size = size;
|
|
ctx->buffers[ctx->n_buffers].metal = nil;
|
|
|
|
if (size_aligned > 0) {
|
|
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:ptr length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
|
|
|
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
|
GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ggml_backend_metal_log_allocated_size(device, size_aligned);
|
|
|
|
++ctx->n_buffers;
|
|
} else {
|
|
// this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
|
|
// one of the views
|
|
const size_t size_ovlp = ((max_tensor_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
|
|
const size_t size_step = device.maxBufferLength - size_ovlp;
|
|
const size_t size_view = device.maxBufferLength;
|
|
|
|
for (size_t i = 0; i < size; i += size_step) {
|
|
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
|
|
|
|
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) ptr + i);
|
|
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
|
|
ctx->buffers[ctx->n_buffers].metal = nil;
|
|
|
|
if (size_step_aligned > 0) {
|
|
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) ptr + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
|
|
|
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
|
GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ggml_backend_metal_log_allocated_size(device, size_step_aligned);
|
|
|
|
if (i + size_step < size) {
|
|
GGML_LOG_INFO("\n");
|
|
}
|
|
|
|
++ctx->n_buffers;
|
|
}
|
|
}
|
|
|
|
if (!ggml_backend_metal_buffer_rset_init(ctx, ctx_dev, device)) {
|
|
GGML_LOG_ERROR("%s: error: failed to initialize residency set\n", __func__);
|
|
free(ctx);
|
|
return NULL;
|
|
}
|
|
|
|
return ggml_backend_buffer_init(ggml_backend_metal_buffer_from_ptr_type(), ggml_backend_metal_buffer_i, ctx, size);
|
|
}
|
|
|
|
static bool ggml_backend_metal_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
|
struct ggml_backend_metal_device_context * ctx_dev = dev->context;
|
|
|
|
return ggml_metal_supports_op(ctx_dev, op);
|
|
}
|
|
|
|
static bool ggml_backend_metal_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
|
return
|
|
buft->iface.get_name == ggml_backend_metal_buffer_type_get_name ||
|
|
buft->iface.get_name == ggml_backend_metal_buffer_from_ptr_type_get_name;
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static bool ggml_backend_metal_device_offload_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
|
return false;
|
|
|
|
GGML_UNUSED(dev);
|
|
GGML_UNUSED(op);
|
|
}
|
|
|
|
static struct ggml_backend_device_i ggml_backend_metal_device_i = {
|
|
/* .get_name = */ ggml_backend_metal_device_get_name,
|
|
/* .get_description = */ ggml_backend_metal_device_get_description,
|
|
/* .get_memory = */ ggml_backend_metal_device_get_memory,
|
|
/* .get_type = */ ggml_backend_metal_device_get_type,
|
|
/* .get_props = */ ggml_backend_metal_device_get_props,
|
|
/* .init_backend = */ ggml_backend_metal_device_init,
|
|
/* .get_buffer_type = */ ggml_backend_metal_device_get_buffer_type,
|
|
/* .get_host_buffer_type = */ NULL,
|
|
/* .buffer_from_host_ptr = */ ggml_backend_metal_device_buffer_from_ptr,
|
|
/* .supports_op = */ ggml_backend_metal_device_supports_op,
|
|
/* .supports_buft = */ ggml_backend_metal_device_supports_buft,
|
|
/* .offload_op = */ ggml_backend_metal_device_offload_op,
|
|
/* .event_new = */ NULL,
|
|
/* .event_free = */ NULL,
|
|
/* .event_synchronize = */ NULL,
|
|
};
|
|
|
|
// backend registry
|
|
|
|
static const char * ggml_backend_metal_reg_get_name(ggml_backend_reg_t reg) {
|
|
return "Metal";
|
|
|
|
GGML_UNUSED(reg);
|
|
}
|
|
|
|
static size_t ggml_backend_metal_reg_device_count(ggml_backend_reg_t reg) {
|
|
return 1;
|
|
|
|
GGML_UNUSED(reg);
|
|
}
|
|
|
|
static ggml_backend_dev_t ggml_backend_metal_reg_device_get(ggml_backend_reg_t reg, size_t index) {
|
|
GGML_ASSERT(index == 0);
|
|
|
|
return &g_ggml_backend_metal_device;
|
|
|
|
GGML_UNUSED(reg);
|
|
GGML_UNUSED(index);
|
|
}
|
|
|
|
static struct ggml_backend_feature g_ggml_backend_metal_features[] = {
|
|
#if defined(GGML_METAL_EMBED_LIBRARY)
|
|
{ "EMBED_LIBRARY", "1" },
|
|
#endif
|
|
#if defined(GGML_METAL_USE_BF16)
|
|
{ "BF16", "1" },
|
|
#endif
|
|
{ nil, nil },
|
|
};
|
|
|
|
static struct ggml_backend_feature * ggml_backend_metal_get_features(ggml_backend_reg_t reg) {
|
|
return g_ggml_backend_metal_features;
|
|
|
|
GGML_UNUSED(reg);
|
|
}
|
|
|
|
static void * ggml_backend_metal_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
|
if (strcmp(name, "ggml_backend_get_features") == 0) {
|
|
return (void *)ggml_backend_metal_get_features;
|
|
}
|
|
|
|
return NULL;
|
|
|
|
GGML_UNUSED(reg);
|
|
}
|
|
static struct ggml_backend_reg_i ggml_backend_metal_reg_i = {
|
|
/* .get_name = */ ggml_backend_metal_reg_get_name,
|
|
/* .device_count = */ ggml_backend_metal_reg_device_count,
|
|
/* .device_get = */ ggml_backend_metal_reg_device_get,
|
|
/* .get_proc_address = */ ggml_backend_metal_get_proc_address,
|
|
};
|
|
|
|
// called upon program exit
|
|
static void ggml_metal_cleanup(void) {
|
|
ggml_backend_metal_device_rel(&g_ggml_ctx_dev_main);
|
|
}
|
|
|
|
// TODO: make thread-safe
|
|
ggml_backend_reg_t ggml_backend_metal_reg(void) {
|
|
ggml_backend_metal_device_acq(&g_ggml_ctx_dev_main);
|
|
|
|
// register cleanup callback
|
|
// TODO: not ideal, but not sure if there is a better way to do this in Objective-C
|
|
atexit(ggml_metal_cleanup);
|
|
|
|
{
|
|
g_ggml_backend_metal_reg = (struct ggml_backend_reg) {
|
|
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
|
/* .iface = */ ggml_backend_metal_reg_i,
|
|
/* .context = */ NULL,
|
|
};
|
|
|
|
g_ggml_backend_metal_device = (struct ggml_backend_device) {
|
|
/* .iface = */ ggml_backend_metal_device_i,
|
|
/* .reg = */ &g_ggml_backend_metal_reg,
|
|
/* .context = */ &g_ggml_ctx_dev_main,
|
|
};
|
|
}
|
|
|
|
return &g_ggml_backend_metal_reg;
|
|
}
|
|
|
|
GGML_BACKEND_DL_IMPL(ggml_backend_metal_reg)
|