mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 df270ef745
			
		
	
	df270ef745
	
	
	
		
			
			- Add `struct llama_sampler` and `struct llama_sampler_i` - Add `llama_sampler_` API - Add `llama_sampler_chain_` API for chaining multiple samplers - Remove `LLAMA_API_INTERNAL` - Add `llama_perf_` API and remove old `llama_print_timings` and `llama_reset_timings`
		
			
				
	
	
		
			132 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			132 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #pragma once
 | |
| 
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| enum gpt_sampler_type {
 | |
|     GPT_SAMPLER_TYPE_NONE        = 0,
 | |
|     GPT_SAMPLER_TYPE_TOP_K       = 1,
 | |
|     GPT_SAMPLER_TYPE_TOP_P       = 2,
 | |
|     GPT_SAMPLER_TYPE_MIN_P       = 3,
 | |
|     GPT_SAMPLER_TYPE_TFS_Z       = 4,
 | |
|     GPT_SAMPLER_TYPE_TYPICAL_P   = 5,
 | |
|     GPT_SAMPLER_TYPE_TEMPERATURE = 6,
 | |
| };
 | |
| 
 | |
| // sampling parameters
 | |
| struct gpt_sampler_params {
 | |
|     uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
 | |
| 
 | |
|     int32_t n_prev            = 64;    // number of previous tokens to remember
 | |
|     int32_t n_probs           = 0;     // if greater than 0, output the probabilities of top n_probs tokens.
 | |
|     int32_t min_keep          = 0;     // 0 = disabled, otherwise samplers should return at least min_keep tokens
 | |
|     int32_t top_k             = 40;    // <= 0 to use vocab size
 | |
|     float   top_p             = 0.95f; // 1.0 = disabled
 | |
|     float   min_p             = 0.05f; // 0.0 = disabled
 | |
|     float   tfs_z             = 1.00f; // 1.0 = disabled
 | |
|     float   typ_p             = 1.00f; // typical_p, 1.0 = disabled
 | |
|     float   temp              = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
 | |
|     float   dynatemp_range    = 0.00f; // 0.0 = disabled
 | |
|     float   dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
 | |
|     int32_t penalty_last_n    = 64;    // last n tokens to penalize (0 = disable penalty, -1 = context size)
 | |
|     float   penalty_repeat    = 1.00f; // 1.0 = disabled
 | |
|     float   penalty_freq      = 0.00f; // 0.0 = disabled
 | |
|     float   penalty_present   = 0.00f; // 0.0 = disabled
 | |
|     int32_t mirostat          = 0;     // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
 | |
|     float   mirostat_tau      = 5.00f; // target entropy
 | |
|     float   mirostat_eta      = 0.10f; // learning rate
 | |
|     bool    penalize_nl       = false; // consider newlines as a repeatable token
 | |
|     bool    ignore_eos        = false;
 | |
| 
 | |
|     std::vector<enum gpt_sampler_type> samplers = {
 | |
|         GPT_SAMPLER_TYPE_TOP_K,
 | |
|         GPT_SAMPLER_TYPE_TFS_Z,
 | |
|         GPT_SAMPLER_TYPE_TYPICAL_P,
 | |
|         GPT_SAMPLER_TYPE_TOP_P,
 | |
|         GPT_SAMPLER_TYPE_MIN_P,
 | |
|         GPT_SAMPLER_TYPE_TEMPERATURE
 | |
|     };
 | |
| 
 | |
|     std::string grammar; // optional BNF-like grammar to constrain sampling
 | |
| 
 | |
|     std::vector<llama_logit_bias> logit_bias; // logit biases to apply
 | |
| 
 | |
|     // print the parameters into a string
 | |
|     std::string print() const;
 | |
| };
 | |
| 
 | |
| // gpt_sampler extends llama_sampler with additional functionality:
 | |
| //
 | |
| //  - grammar support
 | |
| //  - custom sampler logic based on the parameters
 | |
| //  - history of the last accepted tokens
 | |
| //  - performance metrics
 | |
| //
 | |
| // This goal is to have a common implementation of the sampling logic shared across the examples.
 | |
| // For example, depending on the temperature, the sampling chain can be very simple (greedy) or more
 | |
| // complex (top-k, top-p, etc).
 | |
| //
 | |
| // Another example is related to the grammar. In general, the grammar constraints applied on the full
 | |
| // vocabulary can be very taxing. To improve performance, the grammar can be applied only to the sampled
 | |
| // token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
 | |
| // grammar constraints are applied to the full vocabulary and the token is resampled.
 | |
| //
 | |
| // The gpt_sampler also maintains a container with the last accepted tokens. In the future, this can
 | |
| // be moved into the core llama library.
 | |
| //
 | |
| // For convenience, the gpt_sampler also maintains a container with the current candidate tokens.
 | |
| // This can be used to access the probabilities of the rest of the non-sampled tokens.
 | |
| //
 | |
| // TODO: measure grammar performance
 | |
| //
 | |
| 
 | |
| struct gpt_sampler;
 | |
| 
 | |
| // llama_sampler API overloads
 | |
| 
 | |
| struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params);
 | |
| 
 | |
| void gpt_sampler_free(struct gpt_sampler * gsmpl);
 | |
| 
 | |
| // if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
 | |
| void                 gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar);
 | |
| void                 gpt_sampler_reset (struct gpt_sampler * gsmpl);
 | |
| struct gpt_sampler * gpt_sampler_clone (struct gpt_sampler * gsmpl);
 | |
| 
 | |
| // arguments can be nullptr to skip printing
 | |
| void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl);
 | |
| 
 | |
| // extended sampling implementation:
 | |
| //
 | |
| // - set logits
 | |
| // - apply the configured sampler chain
 | |
| // - check if the token fits the grammar (if any)
 | |
| // - if not: resample by first applying the grammar constraints and then sampling again (slower path)
 | |
| //
 | |
| // if grammar_first is true, the grammar is applied before the samplers (slower)
 | |
| // useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
 | |
| //
 | |
| llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
 | |
| 
 | |
| // helpers
 | |
| 
 | |
| // access the internal list of current candidate tokens
 | |
| llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl);
 | |
| 
 | |
| // get the last accepted token
 | |
| llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl);
 | |
| 
 | |
| // print the sampler chain into a string
 | |
| std::string gpt_sampler_print(const struct gpt_sampler * gsmpl);
 | |
| 
 | |
| // get a string representation of the last accepted tokens
 | |
| std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx, int n);
 | |
| 
 | |
| char        gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr);
 | |
| std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr);
 | |
| 
 | |
| std::vector<enum gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
 | |
| std::vector<enum gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars);
 |