Files
llama.cpp/ggml/src/ggml-metal/ggml-metal.metal
Georgi Gerganov b2c08c9ec4 metal : mark FA blocks (#16372)
* metal : better unroll in the FA kernels

* metal : index FA blocks

* tests : restore [no ci]

* metal : prevent division by zero in FA kernels

* metal : fix -INF detection logic
2025-10-08 10:57:53 +03:00

8747 lines
361 KiB
Metal

#define GGML_COMMON_DECL_METAL
#define GGML_COMMON_IMPL_METAL
#if defined(GGML_METAL_EMBED_LIBRARY)
__embed_ggml-common.h__
#else
#include "ggml-common.h"
#endif
#include "ggml-metal-impl.h"
#include <metal_stdlib>
using namespace metal;
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; }
#define PAD2(x, n) (((x) + (n) - 1) & ~((n) - 1))
#define FOR_UNROLL(x) _Pragma("clang loop unroll(full)") for (x)
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
//
// cmd:
// .../usr/bin/metal -dM -E -c ggml/src/ggml-metal/ggml-metal.metal
// .../usr/bin/metal -dM -E -c -target air64-apple-ios14.0 ggml/src/ggml-metal/ggml-metal.metal
//
#if __METAL_VERSION__ < 310 && defined(GGML_METAL_HAS_BF16)
#undef GGML_METAL_HAS_BF16
#endif
#if defined(GGML_METAL_HAS_BF16)
typedef matrix<bfloat, 4, 4> bfloat4x4;
typedef matrix<bfloat, 2, 4> bfloat2x4;
#endif
constexpr constant static float kvalues_iq4nl_f[16] = {
-127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f
};
constexpr constant static float kvalues_mxfp4_f[16] = {
0, .5f, 1.f, 1.5f, 2.f, 3.f, 4.f, 6.f, -0, -.5f, -1.f, -1.5f, -2.f, -3.f, -4.f, -6.f
};
static inline int best_index_int8(int n, constant float * val, float x) {
if (x <= val[0]) return 0;
if (x >= val[n-1]) return n-1;
int ml = 0, mu = n-1;
while (mu-ml > 1) {
int mav = (ml+mu)/2;
if (x < val[mav]) mu = mav; else ml = mav;
}
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
}
static inline float e8m0_to_fp32(uint8_t x) {
uint32_t bits;
if (x == 0) {
bits = 0x00400000;
} else {
bits = (uint32_t) x << 23;
}
return as_type<float>(bits);
}
static inline float dot(float x, float y) {
return x*y;
}
// NOTE: this is not dequantizing - we are simply fitting the template
template <typename type4x4>
void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
reg = (type4x4)(*src);
}
template <typename type4>
void dequantize_f32_t4(device const float4 * src, short il, thread type4 & reg) {
reg = (type4)(*src);
}
template <typename type4x4>
void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
reg = (type4x4)(*src);
}
template <typename type4>
void dequantize_f16_t4(device const half4 * src, short il, thread type4 & reg) {
reg = (type4)(*(src));
}
#if defined(GGML_METAL_HAS_BF16)
template <typename type4x4>
void dequantize_bf16(device const bfloat4x4 * src, short il, thread type4x4 & reg) {
reg = (type4x4)(*src);
}
template <typename type4>
void dequantize_bf16_t4(device const bfloat4 * src, short il, thread type4 & reg) {
reg = (type4)(*(src));
}
#endif
template <typename type4x4>
void dequantize_q4_0(device const block_q4_0 * xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 1);
const float d1 = il ? (xb->d / 16.h) : xb->d;
const float d2 = d1 / 256.f;
const float md = -8.h * xb->d;
const ushort mask0 = il ? 0x00F0 : 0x000F;
const ushort mask1 = mask0 << 8;
float4x4 reg_f;
for (int i = 0; i < 8; i++) {
reg_f[i/2][2*(i%2) + 0] = d1 * (qs[i] & mask0) + md;
reg_f[i/2][2*(i%2) + 1] = d2 * (qs[i] & mask1) + md;
}
reg = (type4x4) reg_f;
}
template <typename type4>
void dequantize_q4_0_t4(device const block_q4_0 * xb, short il, thread type4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 1);
const float d1 = (il/4) ? (xb->d / 16.h) : xb->d;
const float d2 = d1 / 256.f;
const float md = -8.h * xb->d;
const ushort mask0 = (il/4) ? 0x00F0 : 0x000F;
const ushort mask1 = mask0 << 8;
for (int i = 0; i < 2; i++) {
reg[2*i + 0] = d1 * (qs[2*(il%4) + i] & mask0) + md;
reg[2*i + 1] = d2 * (qs[2*(il%4) + i] & mask1) + md;
}
}
void quantize_q4_0(device const float * src, device block_q4_0 & dst) {
#pragma METAL fp math_mode(safe)
float amax = 0.0f; // absolute max
float max = 0.0f;
for (int j = 0; j < QK4_0; j++) {
const float v = src[j];
if (amax < fabs(v)) {
amax = fabs(v);
max = v;
}
}
const float d = max / -8;
const float id = d ? 1.0f/d : 0.0f;
dst.d = d;
for (int j = 0; j < QK4_0/2; ++j) {
const float x0 = src[0 + j]*id;
const float x1 = src[QK4_0/2 + j]*id;
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
dst.qs[j] = xi0;
dst.qs[j] |= xi1 << 4;
}
}
void quantize_q4_1(device const float * src, device block_q4_1 & dst) {
#pragma METAL fp math_mode(safe)
float min = FLT_MAX;
float max = -FLT_MAX;
for (int j = 0; j < QK4_1; j++) {
const float v = src[j];
if (min > v) min = v;
if (max < v) max = v;
}
const float d = (max - min) / ((1 << 4) - 1);
const float id = d ? 1.0f/d : 0.0f;
dst.d = d;
dst.m = min;
for (int j = 0; j < QK4_1/2; ++j) {
const float x0 = (src[0 + j] - min)*id;
const float x1 = (src[QK4_1/2 + j] - min)*id;
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
dst.qs[j] = xi0;
dst.qs[j] |= xi1 << 4;
}
}
void quantize_q5_0(device const float * src, device block_q5_0 & dst) {
#pragma METAL fp math_mode(safe)
float amax = 0.0f; // absolute max
float max = 0.0f;
for (int j = 0; j < QK5_0; j++) {
const float v = src[j];
if (amax < fabs(v)) {
amax = fabs(v);
max = v;
}
}
const float d = max / -16;
const float id = d ? 1.0f/d : 0.0f;
dst.d = d;
uint32_t qh = 0;
for (int j = 0; j < QK5_0/2; ++j) {
const float x0 = src[0 + j]*id;
const float x1 = src[QK5_0/2 + j]*id;
const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
dst.qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
}
thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
for (int j = 0; j < 4; ++j) {
dst.qh[j] = qh8[j];
}
}
void quantize_q5_1(device const float * src, device block_q5_1 & dst) {
#pragma METAL fp math_mode(safe)
float max = src[0];
float min = src[0];
for (int j = 1; j < QK5_1; j++) {
const float v = src[j];
min = v < min ? v : min;
max = v > max ? v : max;
}
const float d = (max - min) / 31;
const float id = d ? 1.0f/d : 0.0f;
dst.d = d;
dst.m = min;
uint32_t qh = 0;
for (int j = 0; j < QK5_1/2; ++j) {
const float x0 = (src[0 + j] - min)*id;
const float x1 = (src[QK5_1/2 + j] - min)*id;
const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
dst.qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
}
thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
for (int j = 0; j < 4; ++j) {
dst.qh[j] = qh8[j];
}
}
void quantize_q8_0(device const float * src, device block_q8_0 & dst) {
#pragma METAL fp math_mode(safe)
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = src[j];
amax = MAX(amax, fabs(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
dst.d = d;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = src[j]*id;
dst.qs[j] = round(x0);
}
}
void quantize_iq4_nl(device const float * src, device block_iq4_nl & dst) {
#pragma METAL fp math_mode(safe)
float amax = 0.0f; // absolute max
float max = 0.0f;
for (int j = 0; j < QK4_NL; j++) {
const float v = src[j];
if (amax < fabs(v)) {
amax = fabs(v);
max = v;
}
}
const float d = max / kvalues_iq4nl_f[0];
const float id = d ? 1.0f/d : 0.0f;
float sumqx = 0, sumq2 = 0;
for (int j = 0; j < QK4_NL/2; ++j) {
const float x0 = src[0 + j]*id;
const float x1 = src[QK4_NL/2 + j]*id;
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl_f, x0);
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl_f, x1);
dst.qs[j] = xi0 | (xi1 << 4);
const float v0 = kvalues_iq4nl_f[xi0];
const float v1 = kvalues_iq4nl_f[xi1];
const float w0 = src[0 + j]*src[0 + j];
const float w1 = src[QK4_NL/2 + j]*src[QK4_NL/2 + j];
sumqx += w0*v0*src[j] + w1*v1*src[QK4_NL/2 + j];
sumq2 += w0*v0*v0 + w1*v1*v1;
}
dst.d = sumq2 > 0 ? sumqx/sumq2 : d;
}
template <typename type4x4>
void dequantize_q4_1(device const block_q4_1 * xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 2);
const float d1 = il ? (xb->d / 16.h) : xb->d;
const float d2 = d1 / 256.f;
const float m = xb->m;
const ushort mask0 = il ? 0x00F0 : 0x000F;
const ushort mask1 = mask0 << 8;
float4x4 reg_f;
for (int i = 0; i < 8; i++) {
reg_f[i/2][2*(i%2) + 0] = ((qs[i] & mask0) * d1) + m;
reg_f[i/2][2*(i%2) + 1] = ((qs[i] & mask1) * d2) + m;
}
reg = (type4x4) reg_f;
}
template <typename type4>
void dequantize_q4_1_t4(device const block_q4_1 * xb, short il, thread type4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 2);
const float d1 = (il/4) ? (xb->d / 16.h) : xb->d;
const float d2 = d1 / 256.f;
const float m = xb->m;
const ushort mask0 = (il/4) ? 0x00F0 : 0x000F;
const ushort mask1 = mask0 << 8;
for (int i = 0; i < 2; i++) {
reg[2*i + 0] = d1 * (qs[2*(il%4) + i] & mask0) + m;
reg[2*i + 1] = d2 * (qs[2*(il%4) + i] & mask1) + m;
}
}
template <typename type4x4>
void dequantize_q5_0(device const block_q5_0 * xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 3);
const float d = xb->d;
const float md = -16.h * xb->d;
const ushort mask = il ? 0x00F0 : 0x000F;
const uint32_t qh = *((device const uint32_t *)xb->qh);
const int x_mv = il ? 4 : 0;
const int gh_mv = il ? 12 : 0;
const int gh_bk = il ? 0 : 4;
float4x4 reg_f;
for (int i = 0; i < 8; i++) {
// extract the 5-th bits for x0 and x1
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
// combine the 4-bits from qs with the 5th bit
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
reg_f[i/2][2*(i%2) + 0] = d * x0 + md;
reg_f[i/2][2*(i%2) + 1] = d * x1 + md;
}
reg = (type4x4) reg_f;
}
template <typename type4>
void dequantize_q5_0_t4(device const block_q5_0 * xb, short il, thread type4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 3);
const float d = xb->d;
const float md = -16.h * xb->d;
const ushort mask = (il/4) ? 0x00F0 : 0x000F;
const uint32_t qh = *((device const uint32_t *)xb->qh);
const int x_mv = (il/4) ? 4 : 0;
const int gh_mv = (il/4) ? 12 : 0;
const int gh_bk = (il/4) ? 0 : 4;
for (int ii = 0; ii < 2; ii++) {
int i = 2*(il%4) + ii;
// extract the 5-th bits for x0 and x1
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
// combine the 4-bits from qs with the 5th bit
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
reg[2*ii + 0] = d * x0 + md;
reg[2*ii + 1] = d * x1 + md;
}
}
template <typename type4x4>
void dequantize_q5_1(device const block_q5_1 * xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 4);
const float d = xb->d;
const float m = xb->m;
const ushort mask = il ? 0x00F0 : 0x000F;
const uint32_t qh = *((device const uint32_t *)xb->qh);
const int x_mv = il ? 4 : 0;
const int gh_mv = il ? 12 : 0;
const int gh_bk = il ? 0 : 4;
float4x4 reg_f;
for (int i = 0; i < 8; i++) {
// extract the 5-th bits for x0 and x1
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
// combine the 4-bits from qs with the 5th bit
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
reg_f[i/2][2*(i%2) + 0] = d * x0 + m;
reg_f[i/2][2*(i%2) + 1] = d * x1 + m;
}
reg = (type4x4) reg_f;
}
template <typename type4>
void dequantize_q5_1_t4(device const block_q5_1 * xb, short il, thread type4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 4);
const float d = xb->d;
const float m = xb->m;
const ushort mask = (il/4) ? 0x00F0 : 0x000F;
const uint32_t qh = *((device const uint32_t *)xb->qh);
const int x_mv = (il/4) ? 4 : 0;
const int gh_mv = (il/4) ? 12 : 0;
const int gh_bk = (il/4) ? 0 : 4;
for (int ii = 0; ii < 2; ii++) {
int i = 2*(il%4) + ii;
// extract the 5-th bits for x0 and x1
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
// combine the 4-bits from qs with the 5th bit
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
reg[2*ii + 0] = d * x0 + m;
reg[2*ii + 1] = d * x1 + m;
}
}
template <typename type4x4>
void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
device const int8_t * qs = ((device const int8_t *)xb->qs);
const float d = xb->d;
float4x4 reg_f;
for (int i = 0; i < 16; i++) {
reg_f[i/4][i%4] = (qs[i + 16*il] * d);
}
reg = (type4x4) reg_f;
}
template <typename type4>
void dequantize_q8_0_t4(device const block_q8_0 *xb, short il, thread type4 & reg) {
device const int8_t * qs = ((device const int8_t *)xb->qs);
const float d = xb->d;
for (int i = 0; i < 4; i++) {
reg[i] = (qs[4*(il%4) + i + 16*(il/4)] * d);
}
}
template <typename type4x4>
void dequantize_mxfp4(device const block_mxfp4 * xb, short il, thread type4x4 & reg) {
device const uint8_t * q2 = (device const uint8_t *)xb->qs;
const float d = e8m0_to_fp32(xb->e);
const uint8_t shr = il >= 1 ? 4 : 0;
for (int i = 0; i < 4; ++i) {
reg[i][0] = d * kvalues_mxfp4_f[(q2[4*i + 0] >> shr) & 0x0F];
reg[i][1] = d * kvalues_mxfp4_f[(q2[4*i + 1] >> shr) & 0x0F];
reg[i][2] = d * kvalues_mxfp4_f[(q2[4*i + 2] >> shr) & 0x0F];
reg[i][3] = d * kvalues_mxfp4_f[(q2[4*i + 3] >> shr) & 0x0F];
}
}
template <typename type4>
void dequantize_mxfp4_t4(device const block_mxfp4 * xb, short il, thread type4 & reg) {
device const uint8_t * q2 = (device const uint8_t *)xb->qs;
const float d = e8m0_to_fp32(xb->e);
const short il4 = il%4;
const uint8_t shr = il >= 4 ? 4 : 0;
reg[0] = d * kvalues_mxfp4_f[(q2[4*il4 + 0] >> shr) & 0x0F];
reg[1] = d * kvalues_mxfp4_f[(q2[4*il4 + 1] >> shr) & 0x0F];
reg[2] = d * kvalues_mxfp4_f[(q2[4*il4 + 2] >> shr) & 0x0F];
reg[3] = d * kvalues_mxfp4_f[(q2[4*il4 + 3] >> shr) & 0x0F];
}
template <typename type4x4>
void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
const float d = xb->d;
const float min = xb->dmin;
device const uint8_t * q = (device const uint8_t *)xb->qs;
float dl, ml;
uint8_t sc = xb->scales[il];
q = q + 32*(il/8) + 16*(il&1);
il = (il/2)%4;
half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
}
}
template <typename type4x4>
void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
const half d_all = xb->d;
device const uint8_t * q = (device const uint8_t *)xb->qs;
device const uint8_t * h = (device const uint8_t *)xb->hmask;
device const int8_t * scales = (device const int8_t *)xb->scales;
q = q + 32 * (il/8) + 16 * (il&1);
h = h + 16 * (il&1);
uint8_t m = 1 << (il/2);
uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \
((il/4)>0 ? 12 : 3);
uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
: (scale_2&kmask2) | ((scale_1&kmask1) << 4);
float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f);
const float ml = 4.f * dl;
il = (il/2) & 3;
const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
dl *= coef;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
}
}
static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
: uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
}
template <typename type4x4>
void dequantize_q4_K(device const block_q4_K * xb, short il, thread type4x4 & reg) {
device const uchar * q = xb->qs;
short is = (il/4) * 2;
q = q + (il/4) * 32 + 16 * (il&1);
il = il & 3;
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
const float d = il < 2 ? xb->d : xb->d / 16.h;
const float min = xb->dmin;
const float dl = d * sc[0];
const float ml = min * sc[1];
const ushort mask = il < 2 ? 0x0F : 0xF0;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
}
}
template <typename type4x4>
void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) {
device const uint8_t * q = xb->qs;
device const uint8_t * qh = xb->qh;
short is = (il/4) * 2;
q = q + 32 * (il/4) + 16 * (il&1);
qh = qh + 16 * (il&1);
uint8_t ul = 1 << (il/2);
il = il & 3;
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
const float d = il < 2 ? xb->d : xb->d / 16.f;
const float min = xb->dmin;
const float dl = d * sc[0];
const float ml = min * sc[1];
const ushort mask = il<2 ? 0x0F : 0xF0;
const float qh_val = il<2 ? 16.f : 256.f;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
}
}
template <typename type4x4>
void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
const half d_all = xb->d;
device const uint16_t * ql = (device const uint16_t *)xb->ql;
device const uint16_t * qh = (device const uint16_t *)xb->qh;
device const int8_t * scales = (device const int8_t *)xb->scales;
ql = ql + 32*(il/8) + 16*((il/2)&1) + 8*(il&1);
qh = qh + 16*(il/8) + 8*(il&1);
float sc = scales[(il%2) + 2 * ((il/2))];
il = (il/2) & 3;
const uint32_t kmask1 = il>1 ? (il>2 ? 0xC0C0C0C0 : 0x30303030) : (il>0 ? 0x0C0C0C0C : 0x03030303);
const uint32_t kmask2 = il>1 ? 0xF0F0F0F0 : 0x0F0F0F0F;
const float ml = d_all * sc * 32.f;
const float dl0 = d_all * sc;
const float dl1 = dl0 / 256.f;
const float dl2 = dl0 / (256.f * 256.f);
const float dl3 = dl0 / (256.f * 256.f * 256.f);
const uint8_t shr_h = il>2 ? 2 : 0;
const uint8_t shl_h = il>1 ? 0 : (il>0 ? 2 : 4);
const uint8_t shr_l = il>1 ? 4 : 0;
for (int i = 0; i < 4; ++i) {
const uint32_t low = (ql[2*i] | (uint32_t)(ql[2*i+1] << 16)) & kmask2;
const uint32_t high = (qh[2*i] | (uint32_t)(qh[2*i+1] << 16)) & kmask1;
const uint32_t q = ((high << shl_h) >> shr_h) | (low >> shr_l);
reg[i][0] = dl0 * ((half)(q & 0xFF)) - ml;
reg[i][1] = dl1 * ((float)(q & 0xFF00)) - ml;
reg[i][2] = dl2 * ((float)(q & 0xFF0000)) - ml;
reg[i][3] = dl3 * ((float)(q & 0xFF000000)) - ml;
}
}
template <typename type4x4>
void dequantize_iq2_xxs(device const block_iq2_xxs * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
// each block of 32 needs 2 uint32_t's for the quants & scale, so 4 uint16_t's.
device const uint16_t * q2 = xb->qs + 4*ib32;
const uint32_t aux32_g = q2[0] | (q2[1] << 16);
const uint32_t aux32_s = q2[2] | (q2[3] << 16);
thread const uint8_t * aux8 = (thread const uint8_t *)&aux32_g;
const float dl = d * (0.5f + (aux32_s >> 28)) * 0.25f;
constant uint8_t * grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
uint8_t signs = ksigns_iq2xs[(aux32_s >> 14*il) & 127];
for (int i = 0; i < 8; ++i) {
reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
}
grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
signs = ksigns_iq2xs[(aux32_s >> (14*il+7)) & 127];
for (int i = 0; i < 8; ++i) {
reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
}
}
template <typename type4x4>
void dequantize_iq2_xs(device const block_iq2_xs * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint16_t * q2 = xb->qs + 4*ib32;
const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f;
constant uint8_t * grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+0] & 511));
uint8_t signs = ksigns_iq2xs[q2[2*il+0] >> 9];
for (int i = 0; i < 8; ++i) {
reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
}
grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+1] & 511));
signs = ksigns_iq2xs[q2[2*il+1] >> 9];
for (int i = 0; i < 8; ++i) {
reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
}
}
template <typename type4x4>
void dequantize_iq3_xxs(device const block_iq3_xxs * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint8_t * q3 = xb->qs + 8*ib32;
device const uint16_t * gas = (device const uint16_t *)(xb->qs + QK_K/4) + 2*ib32;
const uint32_t aux32 = gas[0] | (gas[1] << 16);
const float dl = d * (0.5f + (aux32 >> 28)) * 0.5f;
constant uint8_t * grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+0]);
constant uint8_t * grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+1]);
uint8_t signs = ksigns_iq2xs[(aux32 >> 14*il) & 127];
for (int i = 0; i < 4; ++i) {
reg[0][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
reg[1][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
}
grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+2]);
grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+3]);
signs = ksigns_iq2xs[(aux32 >> (14*il+7)) & 127];
for (int i = 0; i < 4; ++i) {
reg[2][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
reg[3][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
}
}
template <typename type4x4>
void dequantize_iq3_s(device const block_iq3_s * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint8_t * qs = xb->qs + 8*ib32;
device const uint8_t * signs = xb->signs + 4*ib32 + 2*il;
const uint8_t qh = xb->qh[ib32] >> 4*il;
const float dl = d * (1 + 2*((xb->scales[ib32/2] >> 4*(ib32%2)) & 0xf));
constant uint8_t * grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+0] | ((qh << 8) & 256)));
constant uint8_t * grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+1] | ((qh << 7) & 256)));
for (int i = 0; i < 4; ++i) {
reg[0][i] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i+0]);
reg[1][i] = dl * grid2[i] * select(1, -1, signs[0] & kmask_iq2xs[i+4]);
}
grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+2] | ((qh << 6) & 256)));
grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+3] | ((qh << 5) & 256)));
for (int i = 0; i < 4; ++i) {
reg[2][i] = dl * grid1[i] * select(1, -1, signs[1] & kmask_iq2xs[i+0]);
reg[3][i] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i+4]);
}
}
template <typename type4x4>
void dequantize_iq2_s(device const block_iq2_s * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const float d = xb->d;
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
device const uint8_t * signs = qs + QK_K/8;
const uint8_t qh = xb->qh[ib32] >> 4*il;
const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f;
constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[0] | ((qh << 8) & 0x300)));
constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[1] | ((qh << 6) & 0x300)));
for (int i = 0; i < 8; ++i) {
reg[i/4+0][i%4] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i]);
reg[i/4+2][i%4] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i]);
}
}
template <typename type4x4>
void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const int ib32 = il/2;
il = il%2;
const float d = xb->d;
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
device const uint16_t * qh = xb->qh;
const float dl = d * (2*((qh[ib32] >> 12) & 7) + 1);
const float ml = dl * (qh[ib32] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA);
const uint16_t h = qh[ib32] >> 6*il;
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((h << 8) & 0x700)));
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((h << 5) & 0x700)));
for (int i = 0; i < 4; ++i) {
reg[0][i] = dl * (grid1[i] & 0xf) + ml;
reg[1][i] = dl * (grid1[i] >> 4) + ml;
reg[2][i] = dl * (grid2[i] & 0xf) + ml;
reg[3][i] = dl * (grid2[i] >> 4) + ml;
}
}
template <typename type4x4>
void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const int ib32 = il/2;
il = il%2;
device const uint16_t * sc = (device const uint16_t *)xb->scales;
iq1m_scale_t scale;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
const float d = scale.f16;
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
device const uint8_t * qh = xb->qh + 2*ib32 + il;
const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1);
const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
for (int i = 0; i < 4; ++i) {
reg[0][i] = dl * (grid1[i] & 0xf) + ml1;
reg[1][i] = dl * (grid1[i] >> 4) + ml1;
reg[2][i] = dl * (grid2[i] & 0xf) + ml2;
reg[3][i] = dl * (grid2[i] >> 4) + ml2;
}
}
template <typename type4x4>
void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 & reg) {
device const uint16_t * q4 = (device const uint16_t *)xb->qs;
const float d = xb->d;
uint32_t aux32;
thread const uint8_t * q8 = (thread const uint8_t *)&aux32;
for (int i = 0; i < 4; ++i) {
aux32 = ((q4[2*i] | (q4[2*i+1] << 16)) >> 4*il) & 0x0f0f0f0f;
reg[i][0] = d * kvalues_iq4nl_f[q8[0]];
reg[i][1] = d * kvalues_iq4nl_f[q8[1]];
reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
}
}
template <typename type4>
void dequantize_iq4_nl_t4(device const block_iq4_nl * xb, short il, thread type4 & reg) {
device const uint16_t * q4 = (device const uint16_t *)xb->qs;
const float d = xb->d;
uint32_t aux32;
thread const uint8_t * q8 = (thread const uint8_t *)&aux32;
aux32 = ((q4[2*(il%4)] | (q4[2*(il%4)+1] << 16)) >> 4*(il/4)) & 0x0f0f0f0f;
reg[0] = d * kvalues_iq4nl_f[q8[0]];
reg[1] = d * kvalues_iq4nl_f[q8[1]];
reg[2] = d * kvalues_iq4nl_f[q8[2]];
reg[3] = d * kvalues_iq4nl_f[q8[3]];
}
template <typename type4x4>
void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) {
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const int ib32 = il/2;
il = il%2;
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
device const uint32_t * q4 = (device const uint32_t *)xb->qs + 4*ib32;
const int ls = ((xb->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((xb->scales_h >> 2*ib32) & 3) << 4);
const float d = (float)xb->d * (ls - 32);
uint32_t aux32;
thread const uint8_t * q8 = (thread const uint8_t *)&aux32;
for (int i = 0; i < 4; ++i) {
aux32 = (q4[i] >> 4*il) & 0x0f0f0f0f;
reg[i][0] = d * kvalues_iq4nl_f[q8[0]];
reg[i][1] = d * kvalues_iq4nl_f[q8[1]];
reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
}
}
enum ggml_sort_order {
GGML_SORT_ORDER_ASC,
GGML_SORT_ORDER_DESC,
};
// general-purpose kernel for addition, subtraction, multiplication and division of two tensors
// pros: works for non-contiguous tensors, supports broadcast across all dims
// cons: not very efficient
template <int F>
kernel void kernel_add_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
const int i13 = i03%args.ne13;
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
device const float * src0_ptr = (device const float *) (src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs);
device float * dst_ptr = (device float *) (dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs);
device const float * src1_ptr[F];
for (short j = 0; j < F; ++j) {
src1_ptr[j] = (device const float *) (src1 + args.o1[j] + i13*args.nb13 + i12*args.nb12 + i11*args.nb11);
}
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
float res = src0_ptr[i0];
#pragma unroll
for (short j = 0; j < F; ++j) {
res += src1_ptr[j][i10];
}
dst_ptr[i0] = res;
}
}
typedef decltype(kernel_add_fuse_impl<2>) kernel_add_fuse_t;
template [[host_name("kernel_add_fuse_1")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<1>;
template [[host_name("kernel_add_fuse_2")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<2>;
template [[host_name("kernel_add_fuse_3")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<3>;
template [[host_name("kernel_add_fuse_4")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<4>;
template [[host_name("kernel_add_fuse_5")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<5>;
template [[host_name("kernel_add_fuse_6")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<6>;
template [[host_name("kernel_add_fuse_7")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<7>;
template [[host_name("kernel_add_fuse_8")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<8>;
kernel void kernel_sub_fuse_1(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
const int i13 = i03%args.ne13;
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) - *((device float *)(src1_ptr + i10*args.nb10));
}
}
kernel void kernel_mul_fuse_1(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
const int i13 = i03%args.ne13;
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
if (args.ne10 == 1) {
const float x = *((device float *)(src1_ptr));
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * x;
}
} else {
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * *((device float *)(src1_ptr + i10*args.nb10));
}
}
}
kernel void kernel_div_fuse_1(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
const int i13 = i03%args.ne13;
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
if (args.ne10 == 1) {
const float x = 1.0f / *((device float *)(src1_ptr));
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * x;
}
} else {
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) / *((device float *)(src1_ptr + i10*args.nb10));
}
}
}
kernel void kernel_add_id(
constant ggml_metal_kargs_add_id & args,
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i1 = tgpig.x;
const int i2 = tgpig.y;
const int i11 = *((device const int32_t *) (src2 + i1*sizeof(int32_t) + i2*args.nb21));
const size_t nb1 = args.ne0 * sizeof(float);
const size_t nb2 = args.ne1 * nb1;
device float * dst_row = (device float *)((device char *)dst + i1*nb1 + i2*nb2);
device const float * src0_row = (device const float *)((device char *)src0 + i1*args.nb01 + i2*args.nb02);
device const float * src1_row = (device const float *)((device char *)src1 + i11*args.nb11);
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
dst_row[i0] = src0_row[i0] + src1_row[i0];
}
}
template<typename T>
kernel void kernel_repeat(
constant ggml_metal_kargs_repeat & args,
device const char * src0,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i3 = tgpig.z;
const int i2 = tgpig.y;
const int i1 = tgpig.x;
const int i03 = i3%args.ne03;
const int i02 = i2%args.ne02;
const int i01 = i1%args.ne01;
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01;
device char * dst_ptr = dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1;
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i00 = i0%args.ne00;
*((device T *)(dst_ptr + i0*args.nb0)) = *((device T *)(src0_ptr + i00*args.nb00));
}
}
typedef decltype(kernel_repeat<float>) kernel_repeat_t;
template [[host_name("kernel_repeat_f32")]] kernel kernel_repeat_t kernel_repeat<float>;
template [[host_name("kernel_repeat_f16")]] kernel kernel_repeat_t kernel_repeat<half>;
template [[host_name("kernel_repeat_i32")]] kernel kernel_repeat_t kernel_repeat<int>;
template [[host_name("kernel_repeat_i16")]] kernel kernel_repeat_t kernel_repeat<short>;
// assumption: src1 is a row
// broadcast src1 into src0
template <short F>
kernel void kernel_add_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res += ((device const float4 *) (src1 + args.o1[j]))[i];
}
dst_row[tpig] = res;
}
typedef decltype(kernel_add_row_c4_fuse_impl<1>) kernel_add_row_c4_fuse_t;
template [[host_name("kernel_add_row_c4_fuse_1")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<1>;
template [[host_name("kernel_add_row_c4_fuse_2")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<2>;
template [[host_name("kernel_add_row_c4_fuse_3")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<3>;
template [[host_name("kernel_add_row_c4_fuse_4")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<4>;
template [[host_name("kernel_add_row_c4_fuse_5")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<5>;
template [[host_name("kernel_add_row_c4_fuse_6")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<6>;
template [[host_name("kernel_add_row_c4_fuse_7")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<7>;
template [[host_name("kernel_add_row_c4_fuse_8")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<8>;
template <short F>
kernel void kernel_sub_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
device const float4 * src1_row[F];
for (short j = 0; j < F; ++j) {
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
}
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res -= src1_row[j][i];
}
dst_row[tpig] = res;
}
typedef decltype(kernel_sub_row_c4_fuse_impl<1>) kernel_sub_row_c4_fuse_t;
template [[host_name("kernel_sub_row_c4_fuse_1")]] kernel kernel_sub_row_c4_fuse_t kernel_sub_row_c4_fuse_impl<1>;
template <short F>
kernel void kernel_mul_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
device const float4 * src1_row[F];
for (short j = 0; j < F; ++j) {
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
}
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res *= src1_row[j][i];
}
dst_row[tpig] = res;
}
typedef decltype(kernel_mul_row_c4_fuse_impl<1>) kernel_mul_row_c4_fuse_t;
template [[host_name("kernel_mul_row_c4_fuse_1")]] kernel kernel_mul_row_c4_fuse_t kernel_mul_row_c4_fuse_impl<1>;
template <short F>
kernel void kernel_div_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
device const float4 * src1_row[F];
for (short j = 0; j < F; ++j) {
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
}
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res /= src1_row[j][i];
}
dst_row[tpig] = res;
}
typedef decltype(kernel_div_row_c4_fuse_impl<1>) kernel_div_row_c4_fuse_t;
template [[host_name("kernel_div_row_c4_fuse_1")]] kernel kernel_div_row_c4_fuse_t kernel_div_row_c4_fuse_impl<1>;
kernel void kernel_scale_f32(
constant ggml_metal_kargs_scale & args,
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * args.scale + args.bias;
}
kernel void kernel_scale_f32_4(
constant ggml_metal_kargs_scale & args,
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * args.scale + args.bias;
}
kernel void kernel_clamp_f32(
constant ggml_metal_kargs_clamp & args,
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = clamp(src0[tpig], args.min, args.max);
}
kernel void kernel_clamp_f32_4(
constant ggml_metal_kargs_clamp & args,
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = clamp(src0[tpig], args.min, args.max);
}
kernel void kernel_relu_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = max(0.0f, src0[tpig]);
}
kernel void kernel_relu_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = max(0.0f, src0[tpig]);
}
kernel void kernel_sigmoid_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = 1.0f / (1.0f + exp(-src0[tpig]));
}
kernel void kernel_sigmoid_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = 1.0f / (1.0f + exp(-src0[tpig]));
}
kernel void kernel_tanh_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = precise::tanh(src0[tpig]);
}
kernel void kernel_tanh_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = precise::tanh(src0[tpig]);
}
constant float GELU_COEF_A = 0.044715f;
constant float GELU_QUICK_COEF = -1.702f;
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
constant float SQRT_2_INV = 0.70710678118654752440084436210484f;
kernel void kernel_gelu_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
kernel void kernel_gelu_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
// BEWARE !!!
// Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
// This was observed with Falcon 7B and 40B models
//
dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
kernel void kernel_gelu_quick_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
}
kernel void kernel_gelu_quick_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
}
// based on Abramowitz and Stegun formula 7.1.26 or similar Hastings' approximation
// ref: https://www.johndcook.com/blog/python_erf/
constant float p_erf = 0.3275911f;
constant float a1_erf = 0.254829592f;
constant float a2_erf = -0.284496736f;
constant float a3_erf = 1.421413741f;
constant float a4_erf = -1.453152027f;
constant float a5_erf = 1.061405429f;
template<typename T>
T erf_approx(T x) {
T sign_x = sign(x);
x = fabs(x);
T t = 1.0f / (1.0f + p_erf * x);
T y = 1.0f - (((((a5_erf * t + a4_erf) * t) + a3_erf) * t + a2_erf) * t + a1_erf) * t * exp(-x * x);
return sign_x * y;
}
kernel void kernel_gelu_erf_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = 0.5f*x*(1.0f+erf_approx<float>(x*SQRT_2_INV));
}
kernel void kernel_gelu_erf_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
dst[tpig] = 0.5f*x*(1.0f+erf_approx<float4>(x*SQRT_2_INV));
}
kernel void kernel_silu_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = x / (1.0f + exp(-x));
}
kernel void kernel_silu_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
device const float4 & x = src0[tpig];
dst[tpig] = x / (1.0f + exp(-x));
}
kernel void kernel_elu_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
const float x = src0[tpig];
dst[tpig] = (x > 0.0f) ? x : (exp(x) - 1.0f);
}
kernel void kernel_elu_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
const float4 x = src0[tpig];
dst[tpig][0] = (x[0] > 0.0f) ? x[0] : (exp(x[0]) - 1.0f);
dst[tpig][1] = (x[1] > 0.0f) ? x[1] : (exp(x[1]) - 1.0f);
dst[tpig][2] = (x[2] > 0.0f) ? x[2] : (exp(x[2]) - 1.0f);
dst[tpig][3] = (x[3] > 0.0f) ? x[3] : (exp(x[3]) - 1.0f);
}
kernel void kernel_sqr_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src0[tpig];
}
kernel void kernel_sqr_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src0[tpig];
}
kernel void kernel_sqrt_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = sqrt(src0[tpig]);
}
kernel void kernel_sqrt_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = sqrt(src0[tpig]);
}
kernel void kernel_sin_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = sin(src0[tpig]);
}
kernel void kernel_sin_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = sin(src0[tpig]);
}
kernel void kernel_cos_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = cos(src0[tpig]);
}
kernel void kernel_cos_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = cos(src0[tpig]);
}
kernel void kernel_log_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = log(src0[tpig]);
}
kernel void kernel_log_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = log(src0[tpig]);
}
kernel void kernel_neg_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = -src0[tpig];
}
kernel void kernel_neg_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = -src0[tpig];
}
kernel void kernel_abs_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = fabs(src0[tpig]);
}
kernel void kernel_abs_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = fabs(src0[tpig]);
}
kernel void kernel_sgn_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = sign(src0[tpig]);
}
kernel void kernel_sgn_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = sign(src0[tpig]);
}
kernel void kernel_step_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = step(0.0f, src0[tpig]);
}
kernel void kernel_step_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = step(0.0f, src0[tpig]);
}
kernel void kernel_hardswish_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
const float x = src0[tpig];
dst[tpig] = x * fmin(1.0f, fmax(0.0f, (x + 3.0f) / 6.0f));
}
kernel void kernel_hardswish_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
const float4 x = src0[tpig];
dst[tpig] = x * fmin(1.0f, fmax(0.0f, (x + 3.0f) / 6.0f));
}
kernel void kernel_hardsigmoid_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
const float x = src0[tpig];
dst[tpig] = fmin(1.0f, fmax(0.0f, (x + 3.0f) / 6.0f));
}
kernel void kernel_hardsigmoid_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
const float4 x = src0[tpig];
dst[tpig] = fmin(1.0f, fmax(0.0f, (x + 3.0f) / 6.0f));
}
kernel void kernel_exp_f32(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = exp(src0[tpig]);
}
kernel void kernel_exp_f32_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = exp(src0[tpig]);
}
kernel void kernel_reglu_f32(
constant ggml_metal_kargs_glu & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * src0_row = (device const float *) ((device const char *) src0 + tgpig*args.nb01) + args.i00;
device const float * src1_row = (device const float *) ((device const char *) src1 + tgpig*args.nb11) + args.i10;
device float * dst_row = (device float *) ((device char *) dst + tgpig*args.nb1);
for (int i0 = tpitg; i0 < args.ne0; i0 += ntg) {
const float x0 = src0_row[i0];
const float x1 = src1_row[i0];
dst_row[i0] = x0*x1*(x0 > 0.0f);
}
}
kernel void kernel_geglu_f32(
constant ggml_metal_kargs_glu & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * src0_row = (device const float *) ((device const char *) src0 + tgpig*args.nb01) + args.i00;
device const float * src1_row = (device const float *) ((device const char *) src1 + tgpig*args.nb11) + args.i10;
device float * dst_row = (device float *) ((device char *) dst + tgpig*args.nb1);
for (int i0 = tpitg; i0 < args.ne0; i0 += ntg) {
const float x0 = src0_row[i0];
const float x1 = src1_row[i0];
const float gelu = 0.5f*x0*(1.0f + precise::tanh(SQRT_2_OVER_PI*x0*(1.0f + GELU_COEF_A*x0*x0)));
dst_row[i0] = gelu*x1;
}
}
kernel void kernel_swiglu_f32(
constant ggml_metal_kargs_glu & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * src0_row = (device const float *) ((device const char *) src0 + tgpig*args.nb01) + args.i00;
device const float * src1_row = (device const float *) ((device const char *) src1 + tgpig*args.nb11) + args.i10;
device float * dst_row = (device float *) ((device char *) dst + tgpig*args.nb1);
for (int i0 = tpitg; i0 < args.ne0; i0 += ntg) {
const float x0 = src0_row[i0];
const float x1 = src1_row[i0];
const float silu = x0 / (1.0f + exp(-x0));
dst_row[i0] = silu*x1;
}
}
kernel void kernel_swiglu_oai_f32(
constant ggml_metal_kargs_glu & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * src0_row = (device const float *) ((device const char *) src0 + tgpig*args.nb01) + args.i00;
device const float * src1_row = (device const float *) ((device const char *) src1 + tgpig*args.nb11) + args.i10;
device float * dst_row = (device float *) ((device char *) dst + tgpig*args.nb1);
for (int i0 = tpitg; i0 < args.ne0; i0 += ntg) {
float x0 = src0_row[i0];
float x1 = src1_row[i0];
x0 = min(x0, args.limit);
x1 = max(min(x1, args.limit), -args.limit);
float out_glu = x0 / (1.0f + exp(-x0 * args.alpha));
out_glu = out_glu * (1.0f + x1);
dst_row[i0] = out_glu;
}
}
kernel void kernel_geglu_erf_f32(
constant ggml_metal_kargs_glu & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * src0_row = (device const float *) ((device const char *) src0 + tgpig*args.nb01) + args.i00;
device const float * src1_row = (device const float *) ((device const char *) src1 + tgpig*args.nb11) + args.i10;
device float * dst_row = (device float *) ((device char *) dst + tgpig*args.nb1);
for (int i0 = tpitg; i0 < args.ne0; i0 += ntg) {
const float x0 = src0_row[i0];
const float x1 = src1_row[i0];
const float gelu_erf = 0.5f*x0*(1.0f+erf_approx<float>(x0*SQRT_2_INV));
dst_row[i0] = gelu_erf*x1;
}
}
kernel void kernel_geglu_quick_f32(
constant ggml_metal_kargs_glu & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * src0_row = (device const float *) ((device const char *) src0 + tgpig*args.nb01) + args.i00;
device const float * src1_row = (device const float *) ((device const char *) src1 + tgpig*args.nb11) + args.i10;
device float * dst_row = (device float *) ((device char *) dst + tgpig*args.nb1);
for (int i0 = tpitg; i0 < args.ne0; i0 += ntg) {
const float x0 = src0_row[i0];
const float x1 = src1_row[i0];
const float gelu_quick = x0*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x0)));
dst_row[i0] = gelu_quick*x1;
}
}
template <bool norm>
kernel void kernel_sum_rows(
constant ggml_metal_kargs_sum_rows & args,
device const float * src0,
device float * dst,
threadgroup float * shmem_f32 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
int64_t i3 = tgpig.z;
int64_t i2 = tgpig.y;
int64_t i1 = tgpig.x;
if (i3 >= args.ne03 || i2 >= args.ne02 || i1 >= args.ne01) {
return;
}
if (sgitg == 0) {
shmem_f32[tiisg] = 0.0f;
}
device const float * src_row = (device const float *) ((device const char *) src0 + i1*args.nb01 + i2*args.nb02 + i3*args.nb03);
device float * dst_row = (device float *) ((device char *) dst + i1*args.nb1 + i2*args.nb2 + i3*args.nb3);
float sumf = 0;
for (int64_t i0 = tpitg.x; i0 < args.ne00; i0 += ntg.x) {
sumf += src_row[i0];
}
sumf = simd_sum(sumf);
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
shmem_f32[sgitg] = sumf;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sumf = shmem_f32[tiisg];
sumf = simd_sum(sumf);
if (tpitg.x == 0) {
dst_row[0] = norm ? sumf / args.ne00 : sumf;
}
}
typedef decltype(kernel_sum_rows<false>) kernel_sum_rows_t;
template [[host_name("kernel_sum_rows_f32")]] kernel kernel_sum_rows_t kernel_sum_rows<false>;
template [[host_name("kernel_mean_f32")]] kernel kernel_sum_rows_t kernel_sum_rows<true>;
template<typename T>
kernel void kernel_soft_max(
constant ggml_metal_kargs_soft_max & args,
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
threadgroup float * buf [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint3 tptg[[threads_per_threadgroup]]) {
const int32_t i03 = tgpig.z;
const int32_t i02 = tgpig.y;
const int32_t i01 = tgpig.x;
const int32_t i13 = i03%args.ne13;
const int32_t i12 = i02%args.ne12;
const int32_t i11 = i01;
device const float * psrc0 = (device const float *) (src0 + i01*args.nb01 + i02*args.nb02 + i03*args.nb03);
device const T * pmask = src1 != src0 ? (device const T * ) (src1 + i11*args.nb11 + i12*args.nb12 + i13*args.nb13) : nullptr;
device const float * psrc2 = src2 != src0 ? (device const float *) (src2) : nullptr;
device float * pdst = (device float *) (dst + i01*args.nb1 + i02*args.nb2 + i03*args.nb3);
float slope = 1.0f;
// ALiBi
if (args.max_bias > 0.0f) {
const int32_t h = i02;
const float base = h < args.n_head_log2 ? args.m0 : args.m1;
const int exp = h < args.n_head_log2 ? h + 1 : 2*(h - args.n_head_log2) + 1;
slope = pow(base, exp);
}
// parallel max
float lmax = psrc2 ? psrc2[i02] : -INFINITY;
for (int i00 = tpitg.x; i00 < args.ne00; i00 += tptg.x) {
lmax = MAX(lmax, psrc0[i00]*args.scale + (pmask ? slope*pmask[i00] : 0.0f));
}
// find the max value in the block
float max_val = simd_max(lmax);
if (tptg.x > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = -INFINITY;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = max_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max_val = buf[tiisg];
max_val = simd_max(max_val);
}
// parallel sum
float lsum = 0.0f;
for (int i00 = tpitg.x; i00 < args.ne00; i00 += tptg.x) {
const float exp_psrc0 = exp((psrc0[i00]*args.scale + (pmask ? slope*pmask[i00] : 0.0f)) - max_val);
lsum += exp_psrc0;
pdst[i00] = exp_psrc0;
}
// This barrier fixes a failing test
// ref: https://github.com/ggml-org/ggml/pull/621#discussion_r1425156335
threadgroup_barrier(mem_flags::mem_none);
float sum = simd_sum(lsum);
if (tptg.x > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = sum;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sum = buf[tiisg];
sum = simd_sum(sum);
}
if (psrc2) {
sum += exp(psrc2[i02] - max_val);
}
const float inv_sum = 1.0f/sum;
for (int i00 = tpitg.x; i00 < args.ne00; i00 += tptg.x) {
pdst[i00] *= inv_sum;
}
}
template<typename T>
kernel void kernel_soft_max_4(
constant ggml_metal_kargs_soft_max & args,
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
threadgroup float * buf [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint3 tptg[[threads_per_threadgroup]]) {
const int32_t i03 = tgpig.z;
const int32_t i02 = tgpig.y;
const int32_t i01 = tgpig.x;
const int32_t i13 = i03%args.ne13;
const int32_t i12 = i02%args.ne12;
const int32_t i11 = i01;
device const float4 * psrc4 = (device const float4 *) (src0 + i01*args.nb01 + i02*args.nb02 + i03*args.nb03);
device const T * pmask = src1 != src0 ? (device const T * ) (src1 + i11*args.nb11 + i12*args.nb12 + i13*args.nb13) : nullptr;
device const float * psrc2 = src2 != src0 ? (device const float * ) (src2) : nullptr;
device float4 * pdst4 = (device float4 *) (dst + i01*args.nb1 + i02*args.nb2 + i03*args.nb3);
float slope = 1.0f;
if (args.max_bias > 0.0f) {
const int32_t h = i02;
const float base = h < args.n_head_log2 ? args.m0 : args.m1;
const int exp = h < args.n_head_log2 ? h + 1 : 2*(h - args.n_head_log2) + 1;
slope = pow(base, exp);
}
// parallel max
float4 lmax4 = psrc2 ? psrc2[i02] : -INFINITY;
for (int i00 = tpitg.x; i00 < args.ne00/4; i00 += tptg.x) {
lmax4 = fmax(lmax4, psrc4[i00]*args.scale + (float4)((pmask ? slope*pmask[i00] : 0.0f)));
}
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
float max_val = simd_max(lmax);
if (tptg.x > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = -INFINITY;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = max_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max_val = buf[tiisg];
max_val = simd_max(max_val);
}
// parallel sum
float4 lsum4 = 0.0f;
for (int i00 = tpitg.x; i00 < args.ne00/4; i00 += tptg.x) {
const float4 exp_psrc4 = exp((psrc4[i00]*args.scale + (float4)((pmask ? slope*pmask[i00] : 0.0f))) - max_val);
lsum4 += exp_psrc4;
pdst4[i00] = exp_psrc4;
}
const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
// This barrier fixes a failing test
// ref: https://github.com/ggml-org/ggml/pull/621#discussion_r1425156335
threadgroup_barrier(mem_flags::mem_none);
float sum = simd_sum(lsum);
if (tptg.x > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = sum;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sum = buf[tiisg];
sum = simd_sum(sum);
}
if (psrc2) {
sum += exp(psrc2[i02] - max_val);
}
const float inv_sum = 1.0f/sum;
for (int i00 = tpitg.x; i00 < args.ne00/4; i00 += tptg.x) {
pdst4[i00] *= inv_sum;
}
}
typedef decltype(kernel_soft_max<float>) kernel_soft_max_t;
typedef decltype(kernel_soft_max_4<float4>) kernel_soft_max_4_t;
template [[host_name("kernel_soft_max_f16")]] kernel kernel_soft_max_t kernel_soft_max<half>;
template [[host_name("kernel_soft_max_f32")]] kernel kernel_soft_max_t kernel_soft_max<float>;
template [[host_name("kernel_soft_max_f16_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4<half4>;
template [[host_name("kernel_soft_max_f32_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4<float4>;
// ref: ggml.c:ggml_compute_forward_ssm_conv_f32
kernel void kernel_ssm_conv_f32_f32(
constant ggml_metal_kargs_ssm_conv & args,
device const void * src0,
device const void * src1,
device float * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t ir = tgpig.x;
const int64_t i2 = tgpig.y;
const int64_t i3 = tgpig.z;
const int64_t nc = args.ne10;
//const int64_t ncs = args.ne00;
//const int64_t nr = args.ne01;
//const int64_t n_t = args.ne1;
//const int64_t n_s = args.ne2;
device const float * s = (device const float *) ((device const char *) src0 + ir*args.nb01 + i2*args.nb00 + i3*args.nb02);
device const float * c = (device const float *) ((device const char *) src1 + ir*args.nb11);
device float * x = (device float *) ((device char *) dst + ir*args.nb0 + i2*args.nb1 + i3*args.nb2);
float sumf = 0.0f;
for (int64_t i0 = 0; i0 < nc; ++i0) {
sumf += s[i0] * c[i0];
}
x[0] = sumf;
}
kernel void kernel_ssm_conv_f32_f32_4(
constant ggml_metal_kargs_ssm_conv & args,
device const void * src0,
device const void * src1,
device float * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t ir = tgpig.x;
const int64_t i2 = tgpig.y;
const int64_t i3 = tgpig.z;
const int64_t nc = args.ne10;
//const int64_t ncs = args.ne00;
//const int64_t nr = args.ne01;
//const int64_t n_t = args.ne1;
//const int64_t n_s = args.ne2;
device const float4 * s = (device const float4 *) ((device const char *) src0 + ir*args.nb01 + i2*args.nb00 + i3*args.nb02);
device const float4 * c = (device const float4 *) ((device const char *) src1 + ir*args.nb11);
device float * x = (device float *) ((device char *) dst + ir*args.nb0 + i2*args.nb1 + i3*args.nb2);
float sumf = 0.0f;
for (int64_t i0 = 0; i0 < nc/4; ++i0) {
sumf += dot(s[i0], c[i0]);
}
x[0] = sumf;
}
// ref: ggml.c:ggml_compute_forward_ssm_scan_f32, Mamba-2 part
kernel void kernel_ssm_scan_f32(
constant ggml_metal_kargs_ssm_scan & args,
device const void * src0,
device const void * src1,
device const void * src2,
device const void * src3,
device const void * src4,
device const void * src5,
device const void * src6,
device float * dst,
threadgroup float * shared [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgptg[[simdgroups_per_threadgroup]],
uint3 tgpg[[threadgroups_per_grid]]) {
constexpr short NW = N_SIMDWIDTH;
shared[tpitg.x] = 0.0f;
const int32_t i0 = tpitg.x;
const int32_t i1 = tgpig.x;
const int32_t ir = tgpig.y; // current head
const int32_t i3 = tgpig.z; // current seq
const int32_t nc = args.d_state;
const int32_t nr = args.d_inner;
const int32_t nh = args.n_head;
const int32_t ng = args.n_group;
const int32_t n_t = args.n_seq_tokens;
const int32_t s_off = args.s_off;
device const int32_t * ids = (device const int32_t *) src6;
device const float * s0_buff = (device const float *) ((device const char *) src0 + ir*args.nb02 + ids[i3]*args.nb03);
device float * s_buff = (device float *) ((device char *) dst + ir*args.nb02 + i3*args.nb03 + s_off);
const int32_t i = i0 + i1*nc;
const int32_t g = ir / (nh / ng); // repeat_interleave
float s0 = s0_buff[i];
float s = 0.0f;
device const float * A = (device const float *) ((device const char *) src3 + ir*args.nb31); // {ne30, nh}
const float A0 = A[i0%args.ne30];
device const float * x = (device const float *)((device const char *) src1 + i1*args.nb10 + ir*args.nb11 + i3*args.nb13); // {dim, nh, nt, ns}
device const float * dt = (device const float *)((device const char *) src2 + ir*args.nb20 + i3*args.nb22); // {nh, nt, ns}
device const float * B = (device const float *)((device const char *) src4 + g*args.nb41 + i3*args.nb43); // {d_state, ng, nt, ns}
device const float * C = (device const float *)((device const char *) src5 + g*args.nb51 + i3*args.nb53); // {d_state, ng, nt, ns}
device float * y = dst + (i1 + ir*(nr) + i3*(n_t*nh*nr)); // {dim, nh, nt, ns}
for (int i2 = 0; i2 < n_t; i2 += sgptg) {
threadgroup_barrier(mem_flags::mem_threadgroup);
for (int t = 0; t < sgptg && i2 + t < n_t; t++) {
const float dt0 = dt[0];
const float dtsp = dt0 <= 20.0f ? log(1.0f + exp(dt0)) : dt0;
const float x_dt = x[0] * dtsp;
const float dA = exp(dtsp * A0);
s = (s0 * dA) + (B[i0] * x_dt);
const float sumf = simd_sum(s * C[i0]);
if (tiisg == 0) {
shared[t*NW + sgitg] = sumf;
}
// recurse
s0 = s;
x += args.ns12;
dt += args.ns21;
B += args.ns42;
C += args.ns52;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
const float sumf = simd_sum(shared[sgitg*NW + tiisg]);
if (tiisg == 0 && i2 + sgitg < n_t) {
y[sgitg*nh*nr] = sumf;
}
y += sgptg*nh*nr;
}
s_buff[i] = s;
}
kernel void kernel_rwkv_wkv6_f32(
device const float * k,
device const float * v,
device const float * r,
device const float * tf,
device const float * td,
device const float * state_in,
device float * dst,
constant uint & B,
constant uint & T,
constant uint & C,
constant uint & H,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const uint head_size = 64; // TODO: support head_size = 128
const uint batch_id = tgpig.x / H;
const uint head_id = tgpig.x % H;
const uint tid = tpitg.x;
if (batch_id >= B || head_id >= H) {
return;
}
const uint state_size = C * head_size;
const uint n_seq_tokens = T / B;
threadgroup float _k[head_size];
threadgroup float _r[head_size];
threadgroup float _tf[head_size];
threadgroup float _td[head_size];
float state[head_size];
for (uint i = 0; i < head_size; i++) {
state[i] = state_in[batch_id * state_size + head_id * head_size * head_size
+ i * head_size + tid];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
_tf[tid] = tf[head_id * head_size + tid];
threadgroup_barrier(mem_flags::mem_threadgroup);
const uint start_t = batch_id * n_seq_tokens * C + head_id * head_size + tid;
const uint end_t = (batch_id + 1) * n_seq_tokens * C + head_id * head_size + tid;
for (uint t = start_t; t < end_t; t += C) {
threadgroup_barrier(mem_flags::mem_threadgroup);
_k[tid] = k[t];
_r[tid] = r[t];
_td[tid] = td[t];
threadgroup_barrier(mem_flags::mem_threadgroup);
const float v_val = v[t];
float y = 0.0;
for (uint j = 0; j < head_size; j += 4) {
float4 k_vec = float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
float4 r_vec = float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
float4 tf_vec = float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]);
float4 td_vec = float4(_td[j], _td[j+1], _td[j+2], _td[j+3]);
float4 s_vec = float4(state[j], state[j+1], state[j+2], state[j+3]);
float4 kv = k_vec * v_val;
float4 temp = tf_vec * kv + s_vec;
y += dot(r_vec, temp);
s_vec = s_vec * td_vec + kv;
state[j] = s_vec[0];
state[j+1] = s_vec[1];
state[j+2] = s_vec[2];
state[j+3] = s_vec[3];
}
dst[t] = y;
}
for (uint i = 0; i < head_size; i++) {
dst[T * C + batch_id * state_size + head_id * head_size * head_size
+ i * head_size + tid] = state[i];
}
}
kernel void kernel_rwkv_wkv7_f32(
device const float * r,
device const float * w,
device const float * k,
device const float * v,
device const float * a,
device const float * b,
device const float * state_in,
device float * dst,
constant uint & B,
constant uint & T,
constant uint & C,
constant uint & H,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const uint head_size = 64; // TODO: support head_size = 128
const uint batch_id = tgpig.x / H;
const uint head_id = tgpig.x % H;
const uint tid = tpitg.x;
if (batch_id >= B || head_id >= H) {
return;
}
const uint state_size = C * head_size;
const uint n_seq_tokens = T / B;
threadgroup float _r[head_size];
threadgroup float _w[head_size];
threadgroup float _k[head_size];
threadgroup float _a[head_size];
threadgroup float _b[head_size];
float state[head_size];
for (uint i = 0; i < head_size; i++) {
state[i] = state_in[batch_id * state_size + head_id * head_size * head_size
+ tid * head_size + i];
}
const uint start_t = batch_id * n_seq_tokens * C + head_id * head_size + tid;
const uint end_t = (batch_id + 1) * n_seq_tokens * C + head_id * head_size + tid;
for (uint t = start_t; t < end_t; t += C) {
threadgroup_barrier(mem_flags::mem_threadgroup);
_r[tid] = r[t];
_w[tid] = w[t];
_k[tid] = k[t];
_a[tid] = a[t];
_b[tid] = b[t];
threadgroup_barrier(mem_flags::mem_threadgroup);
const float v_val = v[t];
float y = 0.0, sa = 0.0;
float4 sa_vec(0.0);
for (uint j = 0; j < head_size; j += 4) {
float4 a_vec = float4(_a[j], _a[j+1], _a[j+2], _a[j+3]);
float4 s_vec = float4(state[j], state[j+1], state[j+2], state[j+3]);
sa_vec += a_vec * s_vec;
}
sa = sa_vec[0] + sa_vec[1] + sa_vec[2] + sa_vec[3];
for (uint j = 0; j < head_size; j += 4) {
float4 r_vec = float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
float4 w_vec = float4(_w[j], _w[j+1], _w[j+2], _w[j+3]);
float4 k_vec = float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
float4 b_vec = float4(_b[j], _b[j+1], _b[j+2], _b[j+3]);
float4 s_vec = float4(state[j], state[j+1], state[j+2], state[j+3]);
float4 kv = k_vec * v_val;
s_vec = s_vec * w_vec + kv + sa * b_vec;
y += dot(s_vec, r_vec);
state[j] = s_vec[0];
state[j+1] = s_vec[1];
state[j+2] = s_vec[2];
state[j+3] = s_vec[3];
}
dst[t] = y;
}
for (uint i = 0; i < head_size; i++) {
dst[T * C + batch_id * state_size + head_id * head_size * head_size
+ tid * head_size + i] = state[i];
}
}
kernel void kernel_argmax_f32(
constant ggml_metal_kargs_argmax & args,
device const char * src0,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * x_row = (device const float *) ((device const char *) src0 + tgpig * args.nb01);
float lmax = -INFINITY;
int32_t larg = -1;
for (int i00 = tpitg; i00 < args.ne00; i00 += ntg) {
if (x_row[i00] > lmax) {
lmax = x_row[i00];
larg = i00;
}
}
// find the argmax value in the block
float max_val = simd_max(lmax);
int32_t arg_val = simd_max(select(-1, larg, lmax == max_val));
device int32_t * dst_i32 = (device int32_t *) dst;
threadgroup float * shared_maxval = (threadgroup float *) shmem;
threadgroup int32_t * shared_argmax = (threadgroup int32_t *) shmem + N_SIMDWIDTH;
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
shared_maxval[tiisg] = -INFINITY;
shared_argmax[tiisg] = -1;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
shared_maxval[sgitg] = max_val;
shared_argmax[sgitg] = arg_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max_val = shared_maxval[tiisg];
arg_val = shared_argmax[tiisg];
float max_val_reduced = simd_max(max_val);
int32_t arg_val_reduced = simd_max(select(-1, arg_val, max_val == max_val_reduced));
dst_i32[tgpig] = arg_val_reduced;
return;
}
dst_i32[tgpig] = arg_val;
}
// F == 1 : norm (no fuse)
// F == 2 : norm + mul
// F == 3 : norm + mul + add
template <typename T, short F>
kernel void kernel_norm_fuse_impl(
constant ggml_metal_kargs_norm & args,
device const char * src0,
device const char * src1_0,
device const char * src1_1,
device char * dst,
threadgroup float * shmem_f32 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
if (sgitg == 0) {
shmem_f32[tiisg] = 0.0f;
}
const int i01 = tgpig.x;
const int i02 = tgpig.y;
const int i03 = tgpig.z;
device const T * x = (device const T *) (src0 + i03*args.nbf3[0] + i02*args.nbf2[0] + i01*args.nbf1[0]);
device const T * f0 = (device const T *) (src1_0 + (i03%args.nef3[1])*args.nbf3[1] + (i02%args.nef2[1])*args.nbf2[1] + (i01%args.nef1[1])*args.nbf1[1]);
device const T * f1 = (device const T *) (src1_1 + (i03%args.nef3[2])*args.nbf3[2] + (i02%args.nef2[2])*args.nbf2[2] + (i01%args.nef1[2])*args.nbf1[2]);
T sumft(0.0f);
float sumf = 0.0f;
for (int i00 = tpitg.x; i00 < args.ne00_t; i00 += ntg.x) {
sumft += x[i00];
}
sumf = dot(sumft, T(1.0f));
sumf = simd_sum(sumf);
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
shmem_f32[sgitg] = sumf;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sumf = shmem_f32[tiisg];
sumf = simd_sum(sumf);
const float mean = sumf/args.ne00;
device T * y = (device T *) (dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1);
sumf = 0.0f;
for (int i00 = tpitg.x; i00 < args.ne00_t; i00 += ntg.x) {
y[i00] = x[i00] - mean;
sumf += dot(y[i00], y[i00]);
}
sumf = simd_sum(sumf);
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
shmem_f32[sgitg] = sumf;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sumf = shmem_f32[tiisg];
sumf = simd_sum(sumf);
const float variance = sumf/args.ne00;
const float scale = 1.0f/sqrt(variance + args.eps);
for (int i00 = tpitg.x; i00 < args.ne00_t; i00 += ntg.x) {
if (F == 1) {
y[i00] = (y[i00]*scale);
}
if (F == 2) {
y[i00] = (y[i00]*scale)*f0[i00];
}
if (F == 3) {
y[i00] = (y[i00]*scale)*f0[i00] + f1[i00];
}
}
}
typedef decltype(kernel_norm_fuse_impl<float4, 1>) kernel_norm_fuse_t;
template [[host_name("kernel_norm_f32")]] kernel kernel_norm_fuse_t kernel_norm_fuse_impl<float, 1>;
template [[host_name("kernel_norm_mul_f32")]] kernel kernel_norm_fuse_t kernel_norm_fuse_impl<float, 2>;
template [[host_name("kernel_norm_mul_add_f32")]] kernel kernel_norm_fuse_t kernel_norm_fuse_impl<float, 3>;
template [[host_name("kernel_norm_f32_4")]] kernel kernel_norm_fuse_t kernel_norm_fuse_impl<float4, 1>;
template [[host_name("kernel_norm_mul_f32_4")]] kernel kernel_norm_fuse_t kernel_norm_fuse_impl<float4, 2>;
template [[host_name("kernel_norm_mul_add_f32_4")]] kernel kernel_norm_fuse_t kernel_norm_fuse_impl<float4, 3>;
// F == 1 : rms_norm (no fuse)
// F == 2 : rms_norm + mul
// F == 3 : rms_norm + mul + add
template <typename T, short F>
kernel void kernel_rms_norm_fuse_impl(
constant ggml_metal_kargs_norm & args,
device const char * src0,
device const char * src1_0,
device const char * src1_1,
device char * dst,
threadgroup float * shmem_f32 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
if (sgitg == 0) {
shmem_f32[tiisg] = 0.0f;
}
const int i01 = tgpig.x;
const int i02 = tgpig.y;
const int i03 = tgpig.z;
device const T * x = (device const T *) (src0 + i03*args.nbf3[0] + i02*args.nbf2[0] + i01*args.nbf1[0]);
device const T * f0 = (device const T *) (src1_0 + (i03%args.nef3[1])*args.nbf3[1] + (i02%args.nef2[1])*args.nbf2[1] + (i01%args.nef1[1])*args.nbf1[1]);
device const T * f1 = (device const T *) (src1_1 + (i03%args.nef3[2])*args.nbf3[2] + (i02%args.nef2[2])*args.nbf2[2] + (i01%args.nef1[2])*args.nbf1[2]);
float sumf = 0.0f;
// parallel sum
for (int i00 = tpitg.x; i00 < args.ne00_t; i00 += ntg.x) {
sumf += dot(x[i00], x[i00]);
}
sumf = simd_sum(sumf);
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
shmem_f32[sgitg] = sumf;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sumf = shmem_f32[tiisg];
sumf = simd_sum(sumf);
const float mean = sumf/args.ne00;
const float scale = 1.0f/sqrt(mean + args.eps);
device T * y = (device T *) (dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1);
for (int i00 = tpitg.x; i00 < args.ne00_t; i00 += ntg.x) {
if (F == 1) {
y[i00] = (x[i00]*scale);
}
if (F == 2) {
y[i00] = (x[i00]*scale)*f0[i00];
}
if (F == 3) {
y[i00] = (x[i00]*scale)*f0[i00] + f1[i00];
}
}
}
typedef decltype(kernel_rms_norm_fuse_impl<float4, 1>) kernel_rms_norm_fuse_t;
template [[host_name("kernel_rms_norm_f32")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<float, 1>;
template [[host_name("kernel_rms_norm_mul_f32")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<float, 2>;
template [[host_name("kernel_rms_norm_mul_add_f32")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<float, 3>;
template [[host_name("kernel_rms_norm_f32_4")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<float4, 1>;
template [[host_name("kernel_rms_norm_mul_f32_4")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<float4, 2>;
template [[host_name("kernel_rms_norm_mul_add_f32_4")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<float4, 3>;
kernel void kernel_l2_norm_f32(
constant ggml_metal_kargs_l2_norm & args,
device const char * src0,
device char * dst,
threadgroup float * shmem_f32 [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
ushort tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort ntg[[threads_per_threadgroup]]) {
if (sgitg == 0) {
shmem_f32[tiisg] = 0.0f;
}
device const float4 * x = (device const float4 *) (src0 + tgpig*args.nb01);
float sumf = 0.0f;
// parallel sum
for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) {
sumf += dot(x[i00], x[i00]);
}
sumf = simd_sum(sumf);
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
shmem_f32[sgitg] = sumf;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sumf = shmem_f32[tiisg];
sumf = simd_sum(sumf);
const float scale = 1.0f/sqrt(max(sumf, args.eps));
device float4 * y = (device float4 *) dst + tgpig*args.ne00_4;
for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) {
y[i00] = x[i00] * scale;
}
}
kernel void kernel_group_norm_f32(
constant ggml_metal_kargs_group_norm & args,
device const float * src0,
device float * dst,
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t ne = args.ne00*args.ne01*args.ne02;
const int64_t gs = args.ne00*args.ne01*((args.ne02 + args.ngrp - 1) / args.ngrp);
int start = tgpig * gs;
int end = start + gs;
start += tpitg;
if (end >= ne) {
end = ne;
}
float tmp = 0.0f; // partial sum for thread in warp
for (int j = start; j < end; j += ntg) {
tmp += src0[j];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
tmp = simd_sum(tmp);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = tmp;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
tmp = buf[tiisg];
tmp = simd_sum(tmp);
}
const float mean = tmp / gs;
tmp = 0.0f;
for (int j = start; j < end; j += ntg) {
float xi = src0[j] - mean;
dst[j] = xi;
tmp += xi * xi;
}
tmp = simd_sum(tmp);
if (ntg > N_SIMDWIDTH) {
if (sgitg == 0) {
buf[tiisg] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
buf[sgitg] = tmp;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
tmp = buf[tiisg];
tmp = simd_sum(tmp);
}
const float variance = tmp / gs;
const float scale = 1.0f/sqrt(variance + args.eps);
for (int j = start; j < end; j += ntg) {
dst[j] *= scale;
}
}
// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q4 quants begin (0 or QK4_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float acc[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
device const uint16_t * qs = ((device const uint16_t *) qb_curr + 1 + il/2);
for (int i = 0; i < 8; i += 2) {
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F);
acc[1] += yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[2] += yl[i + 8] * (qs[i / 2] & 0x00F0);
acc[3] += yl[i + 9] * (qs[i / 2] & 0xF000);
}
return d * (sumy * -8.f + acc[0] + acc[1] + acc[2] + acc[3]);
}
// function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q4 quants begin (0 or QK4_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float m = qb_curr->m;
float acc[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
device const uint16_t * qs = ((device const uint16_t *) qb_curr + 2 + il/2);
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F);
acc[1] += yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[2] += yl[i + 8] * (qs[i / 2] & 0x00F0);
acc[3] += yl[i + 9] * (qs[i / 2] & 0xF000);
}
return d * (acc[0] + acc[1] + acc[2] + acc[3]) + sumy * m;
}
// function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q5 quants begin (0 or QK5_0/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float acc[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2);
const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010));
acc[1] += yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
acc[2] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100));
acc[3] += yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
}
return d * (sumy * -16.f + acc[0] + acc[1] + acc[2] + acc[3]);
}
// function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i])
// il indicates where the q5 quants begin (0 or QK5_1/4)
// we assume that the yl's have been multiplied with the appropriate scale factor
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) {
float d = qb_curr->d;
float m = qb_curr->m;
float acc[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2);
const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
for (int i = 0; i < 8; i+=2) {
acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010));
acc[1] += yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
acc[2] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100));
acc[3] += yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
}
return d * (acc[0] + acc[1] + acc[2] + acc[3]) + sumy * m;
}
template<short NR0>
static inline void helper_mv_reduce_and_write(
device float * dst_f32,
float sumf[NR0],
const int r0,
const int ne01,
ushort tiisg,
ushort sgitg,
threadgroup char * shmem) {
constexpr short NW = N_SIMDWIDTH;
threadgroup float * shmem_f32[NR0];
for (short row = 0; row < NR0; ++row) {
shmem_f32[row] = (threadgroup float *) shmem + NW*row;
if (sgitg == 0) {
shmem_f32[row][tiisg] = 0.0f;
}
sumf[row] = simd_sum(sumf[row]);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
for (short row = 0; row < NR0; ++row) {
if (tiisg == 0) {
shmem_f32[row][sgitg] = sumf[row];
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
for (short row = 0; row < NR0 && r0 + row < ne01; ++row) {
float tot = simd_sum(shmem_f32[row][tiisg]);
if (tiisg == 0 && sgitg == 0) {
dst_f32[r0 + row] = tot;
}
}
}
constant short FC_mul_mv_nsg [[function_constant(FC_MUL_MV + 0)]];
constant short FC_mul_mv_nxpsg [[function_constant(FC_MUL_MV + 1)]];
template<typename block_q_type, short NR0, typename args_t>
void mul_vec_q_n_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
constexpr short NW = N_SIMDWIDTH;
constexpr short NQ = 16;
const int nb = args.ne00/QK4_0;
const int r0 = (tgpig.x*NSG + sgitg)*NR0;
//const int r0 = tgpig.x*NR0;
const int r1 = tgpig.y;
const int im = tgpig.z;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
//const uint64_t offset0 = r0*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
//device const block_q_type * x = (device const block_q_type *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
// pointers to src0 rows
device const block_q_type * ax[NR0];
FOR_UNROLL (int row = 0; row < NR0; ++row) {
const uint64_t offset0 = (r0 + row)*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
ax[row] = (device const block_q_type *) ((device char *) src0 + offset0);
}
float sumf[NR0] = {0.f};
const short ix = (tiisg/(NW/NQ));
const short il = (tiisg%(NW/NQ))*8;
//const int ib0 = sgitg*NQ + ix;
const int ib0 = ix;
float yl[16]; // src1 vector cache
//device const float * yb = y + ix*QK4_0 + il;
device const float * yb = y + ib0*QK4_0 + il;
// each thread in a SIMD group deals with half a block.
//for (int ib = ib0; ib < nb; ib += NSG*NQ) {
for (int ib = ib0; ib < nb; ib += NQ) {
float sumy[2] = { 0.f, 0.f };
FOR_UNROLL (short i = 0; i < 8; i += 2) {
sumy[0] += yb[i + 0] + yb[i + 1];
yl[i + 0] = yb[i + 0];
yl[i + 1] = yb[i + 1]/256.f;
sumy[1] += yb[i + 16] + yb[i + 17];
yl[i + 8] = yb[i + 16]/16.f;
yl[i + 9] = yb[i + 17]/4096.f;
}
FOR_UNROLL (short row = 0; row < NR0; row++) {
sumf[row] += block_q_n_dot_y(ax[row] + ib, sumy[0] + sumy[1], yl, il);
}
yb += QK4_0 * 16;
//yb += NSG*NQ*QK4_0;
}
device float * dst_f32 = (device float *) dst + im*args.ne0*args.ne1 + r1*args.ne0;
//helper_mv_reduce_and_write<NR0>(dst_f32, sumf, r0, args.ne01, tiisg, sgitg, shmem);
for (int row = 0; row < NR0; ++row) {
const float tot = simd_sum(sumf[row]);
if (tiisg == 0 && r0 + row < args.ne01) {
dst_f32[r0 + row] = tot;
}
}
}
kernel void kernel_mul_mv_q4_0_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32_impl<block_q4_0, N_R0_Q4_0, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
kernel void kernel_mul_mv_q4_1_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32_impl<block_q4_1, N_R0_Q4_1, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
kernel void kernel_mul_mv_q5_0_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32_impl<block_q5_0, N_R0_Q5_0, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
kernel void kernel_mul_mv_q5_1_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32_impl<block_q5_1, N_R0_Q5_1, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<short NR0, typename args_t>
void kernel_mul_mv_q8_0_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
constexpr short NW = N_SIMDWIDTH;
constexpr short NQ = 8;
const int nb = args.ne00/QK8_0;
const int r0 = tgpig.x*NR0;
const int r1 = tgpig.y;
const int im = tgpig.z;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
//const uint64_t offset0 = r0*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
//device const block_q8_0 * x = (device const block_q8_0 *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
// pointers to src0 rows
device const block_q8_0 * ax[NR0];
FOR_UNROLL (short row = 0; row < NR0; ++row) {
const uint64_t offset0 = (r0 + row)*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
ax[row] = (device const block_q8_0 *) ((device char *) src0 + offset0);
}
float sumf[NR0] = { 0.f };
const short ix = tiisg/(NW/NQ);
const short il = tiisg%(NW/NQ);
const int ib0 = sgitg*NQ + ix;
float yl[NQ];
device const float * yb = y + ib0*QK8_0 + il*NQ;
// each thread in a SIMD group deals with NQ quants at a time
for (int ib = ib0; ib < nb; ib += NSG*NQ) {
for (short i = 0; i < NQ; ++i) {
yl[i] = yb[i];
}
for (short row = 0; row < NR0; row++) {
device const int8_t * qs = ax[row][ib].qs + il*NQ;
float sumq = 0.f;
FOR_UNROLL (short i = 0; i < NQ; ++i) {
sumq += qs[i] * yl[i];
}
sumf[row] += sumq*ax[row][ib].d;
}
yb += NSG*NQ*QK8_0;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
helper_mv_reduce_and_write<NR0>(dst_f32, sumf, r0, args.ne01, tiisg, sgitg, shmem);
}
[[host_name("kernel_mul_mv_q8_0_f32")]]
kernel void kernel_mul_mv_q8_0_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_q8_0_f32_impl<N_R0_Q8_0, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
// mat-vec kernel processing in chunks of float4
// chpb - chunks per quantization block
template<short r1ptg, typename q_t, short chpb, void (*deq_t4)(device const q_t *, short, thread float4 &) >
void kernel_mul_mv_ext_q4_f32_impl(
constant ggml_metal_kargs_mul_mv_ext & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
const short NSG = FC_mul_mv_nsg;
const short nxpsg = FC_mul_mv_nxpsg;
const short chpt = 4; // chunks per thread
//const short nxpsg = (32);
const short nypsg = (32/nxpsg);
const short tx = tiisg%nxpsg;
const short ty = tiisg/nxpsg;
const int i01 = tgpig.x*(nypsg*NSG) + nypsg*sgitg + ty;
const int i11 = tgpig.y*r1ptg;
const int i1m = tgpig.z;
const int i12 = i1m%args.ne12;
const int i13 = i1m/args.ne12;
const uint64_t offset0 = i01*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = i11*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const q_t * xq = (i01 < args.ne01) ? (device const q_t *) (src0 + offset0) + tx/chpb : (device const q_t *) src0;
device const float4 * y4[r1ptg];
for (int ir1 = 0; ir1 < r1ptg; ++ir1) {
y4[ir1] = (i11 + ir1 < args.ne11) ? (device const float4 *) (src1 + offset1 + ir1*args.nb11) + tx : (device const float4 *) src1;
}
float sumf[r1ptg] = { [ 0 ... r1ptg - 1 ] = 0.0f };
short cch = tx%chpb; // current chunk index
for (int ich = tx; 4*ich < args.ne00; ich += chpt*nxpsg) {
float4 lx[chpt];
#pragma unroll(chpt)
for (short ch = 0; ch < chpt; ++ch) {
deq_t4(xq, cch, lx[ch]);
cch += nxpsg;
if (cch >= chpb) {
xq += cch/chpb;
cch %= chpb;
}
}
#pragma unroll(chpt)
for (short ch = 0; ch < chpt; ++ch) {
#pragma unroll(r1ptg)
for (short ir1 = 0; ir1 < r1ptg; ++ir1) {
sumf[ir1] += dot(lx[ch], y4[ir1][ch*nxpsg]);
}
}
#pragma unroll(r1ptg)
for (short ir1 = 0; ir1 < r1ptg; ++ir1) {
y4[ir1] += chpt*nxpsg;
}
}
// reduce only the threads in each row
for (short ir1 = 0; ir1 < r1ptg; ++ir1) {
if (nxpsg >= 32) {
sumf[ir1] += simd_shuffle_down(sumf[ir1], 16);
}
if (nxpsg >= 16) {
sumf[ir1] += simd_shuffle_down(sumf[ir1], 8);
}
if (nxpsg >= 8) {
sumf[ir1] += simd_shuffle_down(sumf[ir1], 4);
}
if (nxpsg >= 4) {
sumf[ir1] += simd_shuffle_down(sumf[ir1], 2);
}
if (nxpsg >= 2) {
sumf[ir1] += simd_shuffle_down(sumf[ir1], 1);
}
//sumf[ir1] = simd_sum(sumf[ir1]);
}
if (tx == 0) {
for (short ir1 = 0; ir1 < r1ptg && i11 + ir1 < args.ne11; ++ir1) {
device float * dst_f32 = (device float *) dst + (uint64_t)i1m*args.ne0*args.ne1 + (uint64_t)(i11 + ir1)*args.ne0;
if (i01 < args.ne01) {
dst_f32[i01] = sumf[ir1];
}
}
}
}
// mat-vec kernel processing in chunks of float4x4
template<short r1ptg, typename q_t, short chpb, void (*deq_t4x4)(device const q_t *, short, thread float4x4 &) >
void kernel_mul_mv_ext_q4x4_f32_impl(
constant ggml_metal_kargs_mul_mv_ext & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
const short NSG = FC_mul_mv_nsg;
const short nxpsg = FC_mul_mv_nxpsg;
const short chpt = 1;
//const short nxpsg = (32);
const short nypsg = (32/nxpsg);
const short tx = tiisg%nxpsg;
const short ty = tiisg/nxpsg;
const int i01 = tgpig.x*(nypsg*NSG) + nypsg*sgitg + ty;
const int i11 = tgpig.y*r1ptg;
const int i1m = tgpig.z;
const int i12 = i1m%args.ne12;
const int i13 = i1m/args.ne12;
const uint64_t offset0 = i01*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = i11*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const q_t * xq = (i01 < args.ne01) ? (device const q_t *) (src0 + offset0) + tx/chpb : (device const q_t *) src0;
device const float4x4 * y4x4[r1ptg];
for (int ir1 = 0; ir1 < r1ptg; ++ir1) {
y4x4[ir1] = (i11 + ir1 < args.ne11) ? (device const float4x4 *) (src1 + offset1 + ir1*args.nb11) + tx : (device const float4x4 *) src1;
}
float sumf[r1ptg] = { [ 0 ... r1ptg - 1 ] = 0.0f };
short cch = tx%chpb;
for (int ich = tx; 16*ich < args.ne00; ich += chpt*nxpsg) {
float4x4 lx[chpt];
#pragma unroll(chpt)
for (short ch = 0; ch < chpt; ++ch) {
deq_t4x4(xq, cch, lx[ch]);
cch += nxpsg;
if (cch >= chpb) {
xq += cch/chpb;
cch %= chpb;
}
}
#pragma unroll(chpt)
for (short ch = 0; ch < chpt; ++ch) {
#pragma unroll(r1ptg)
for (short ir1 = 0; ir1 < r1ptg; ++ir1) {
sumf[ir1] +=
dot(lx[ch][0], y4x4[ir1][ch*nxpsg][0]) +
dot(lx[ch][1], y4x4[ir1][ch*nxpsg][1]) +
dot(lx[ch][2], y4x4[ir1][ch*nxpsg][2]) +
dot(lx[ch][3], y4x4[ir1][ch*nxpsg][3]);
}
}
#pragma unroll(r1ptg)
for (short ir1 = 0; ir1 < r1ptg; ++ir1) {
y4x4[ir1] += chpt*nxpsg;
}
}
for (short ir1 = 0; ir1 < r1ptg; ++ir1) {
if (nxpsg >= 32) {
sumf[ir1] += simd_shuffle_down(sumf[ir1], 16);
}
if (nxpsg >= 16) {
sumf[ir1] += simd_shuffle_down(sumf[ir1], 8);
}
if (nxpsg >= 8) {
sumf[ir1] += simd_shuffle_down(sumf[ir1], 4);
}
if (nxpsg >= 4) {
sumf[ir1] += simd_shuffle_down(sumf[ir1], 2);
}
if (nxpsg >= 2) {
sumf[ir1] += simd_shuffle_down(sumf[ir1], 1);
}
//sumf[ir1] = simd_sum(sumf[ir1]);
}
if (tx == 0) {
for (short ir1 = 0; ir1 < r1ptg && i11 + ir1 < args.ne11; ++ir1) {
device float * dst_f32 = (device float *) dst + (uint64_t)i1m*args.ne0*args.ne1 + (uint64_t)(i11 + ir1)*args.ne0;
if (i01 < args.ne01) {
dst_f32[i01] = sumf[ir1];
}
}
}
}
// dispatchers needed for compile-time nxpsg
// epb - elements per quantization block
template<short r1ptg, typename q_t, short epb, void (*deq_t4)(device const q_t *, short, thread float4 &)>
kernel void kernel_mul_mv_ext_q4_f32_disp(
constant ggml_metal_kargs_mul_mv_ext & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_ext_q4_f32_impl<r1ptg, q_t, epb/4, deq_t4>(args, src0, src1, dst, tgpig, tiisg, sgitg);
}
template<short r1ptg, typename q_t, short epb, void (*deq_t4x4)(device const q_t *, short, thread float4x4 &)>
kernel void kernel_mul_mv_ext_q4x4_f32_disp(
constant ggml_metal_kargs_mul_mv_ext & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_ext_q4x4_f32_impl<r1ptg, q_t, epb/16, deq_t4x4>(args, src0, src1, dst, tgpig, tiisg, sgitg);
}
typedef decltype(kernel_mul_mv_ext_q4_f32_disp <2, block_q8_0, 32, dequantize_q8_0_t4>) mul_mv_ext_q4_f32_t;
typedef decltype(kernel_mul_mv_ext_q4x4_f32_disp<2, block_q4_K, 256, dequantize_q4_K>) mul_mv_ext_q4x4_f32_t;
template [[host_name("kernel_mul_mv_ext_f32_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, float4, 4, dequantize_f32_t4>;
template [[host_name("kernel_mul_mv_ext_f32_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, float4, 4, dequantize_f32_t4>;
template [[host_name("kernel_mul_mv_ext_f32_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, float4, 4, dequantize_f32_t4>;
template [[host_name("kernel_mul_mv_ext_f32_f32_r1_5")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<5, float4, 4, dequantize_f32_t4>;
template [[host_name("kernel_mul_mv_ext_f16_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, half4, 4, dequantize_f16_t4>;
template [[host_name("kernel_mul_mv_ext_f16_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, half4, 4, dequantize_f16_t4>;
template [[host_name("kernel_mul_mv_ext_f16_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, half4, 4, dequantize_f16_t4>;
template [[host_name("kernel_mul_mv_ext_f16_f32_r1_5")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<5, half4, 4, dequantize_f16_t4>;
template [[host_name("kernel_mul_mv_ext_q4_0_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, block_q4_0, 32, dequantize_q4_0_t4>;
template [[host_name("kernel_mul_mv_ext_q4_0_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, block_q4_0, 32, dequantize_q4_0_t4>;
template [[host_name("kernel_mul_mv_ext_q4_0_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, block_q4_0, 32, dequantize_q4_0_t4>;
template [[host_name("kernel_mul_mv_ext_q4_0_f32_r1_5")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<5, block_q4_0, 32, dequantize_q4_0_t4>;
template [[host_name("kernel_mul_mv_ext_q4_1_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, block_q4_1, 32, dequantize_q4_1_t4>;
template [[host_name("kernel_mul_mv_ext_q4_1_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, block_q4_1, 32, dequantize_q4_1_t4>;
template [[host_name("kernel_mul_mv_ext_q4_1_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, block_q4_1, 32, dequantize_q4_1_t4>;
template [[host_name("kernel_mul_mv_ext_q4_1_f32_r1_5")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<5, block_q4_1, 32, dequantize_q4_1_t4>;
template [[host_name("kernel_mul_mv_ext_q5_0_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, block_q5_0, 32, dequantize_q5_0_t4>;
template [[host_name("kernel_mul_mv_ext_q5_0_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, block_q5_0, 32, dequantize_q5_0_t4>;
template [[host_name("kernel_mul_mv_ext_q5_0_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, block_q5_0, 32, dequantize_q5_0_t4>;
template [[host_name("kernel_mul_mv_ext_q5_0_f32_r1_5")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<5, block_q5_0, 32, dequantize_q5_0_t4>;
template [[host_name("kernel_mul_mv_ext_q5_1_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, block_q5_1, 32, dequantize_q5_1_t4>;
template [[host_name("kernel_mul_mv_ext_q5_1_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, block_q5_1, 32, dequantize_q5_1_t4>;
template [[host_name("kernel_mul_mv_ext_q5_1_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, block_q5_1, 32, dequantize_q5_1_t4>;
template [[host_name("kernel_mul_mv_ext_q5_1_f32_r1_5")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<5, block_q5_1, 32, dequantize_q5_1_t4>;
template [[host_name("kernel_mul_mv_ext_q8_0_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, block_q8_0, 32, dequantize_q8_0_t4>;
template [[host_name("kernel_mul_mv_ext_q8_0_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, block_q8_0, 32, dequantize_q8_0_t4>;
template [[host_name("kernel_mul_mv_ext_q8_0_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, block_q8_0, 32, dequantize_q8_0_t4>;
template [[host_name("kernel_mul_mv_ext_q8_0_f32_r1_5")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<5, block_q8_0, 32, dequantize_q8_0_t4>;
template [[host_name("kernel_mul_mv_ext_mxfp4_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, block_mxfp4, 32, dequantize_mxfp4_t4>;
template [[host_name("kernel_mul_mv_ext_mxfp4_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, block_mxfp4, 32, dequantize_mxfp4_t4>;
template [[host_name("kernel_mul_mv_ext_mxfp4_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, block_mxfp4, 32, dequantize_mxfp4_t4>;
template [[host_name("kernel_mul_mv_ext_mxfp4_f32_r1_5")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<5, block_mxfp4, 32, dequantize_mxfp4_t4>;
template [[host_name("kernel_mul_mv_ext_iq4_nl_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, block_iq4_nl, 32, dequantize_iq4_nl_t4>;
template [[host_name("kernel_mul_mv_ext_iq4_nl_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, block_iq4_nl, 32, dequantize_iq4_nl_t4>;
template [[host_name("kernel_mul_mv_ext_iq4_nl_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, block_iq4_nl, 32, dequantize_iq4_nl_t4>;
template [[host_name("kernel_mul_mv_ext_iq4_nl_f32_r1_5")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<5, block_iq4_nl, 32, dequantize_iq4_nl_t4>;
template [[host_name("kernel_mul_mv_ext_q4_K_f32_r1_2")]] kernel mul_mv_ext_q4x4_f32_t kernel_mul_mv_ext_q4x4_f32_disp<2, block_q4_K, 256, dequantize_q4_K>;
template [[host_name("kernel_mul_mv_ext_q4_K_f32_r1_3")]] kernel mul_mv_ext_q4x4_f32_t kernel_mul_mv_ext_q4x4_f32_disp<3, block_q4_K, 256, dequantize_q4_K>;
template [[host_name("kernel_mul_mv_ext_q4_K_f32_r1_4")]] kernel mul_mv_ext_q4x4_f32_t kernel_mul_mv_ext_q4x4_f32_disp<4, block_q4_K, 256, dequantize_q4_K>;
template [[host_name("kernel_mul_mv_ext_q4_K_f32_r1_5")]] kernel mul_mv_ext_q4x4_f32_t kernel_mul_mv_ext_q4x4_f32_disp<5, block_q4_K, 256, dequantize_q4_K>;
template [[host_name("kernel_mul_mv_ext_q5_K_f32_r1_2")]] kernel mul_mv_ext_q4x4_f32_t kernel_mul_mv_ext_q4x4_f32_disp<2, block_q5_K, 256, dequantize_q5_K>;
template [[host_name("kernel_mul_mv_ext_q5_K_f32_r1_3")]] kernel mul_mv_ext_q4x4_f32_t kernel_mul_mv_ext_q4x4_f32_disp<3, block_q5_K, 256, dequantize_q5_K>;
template [[host_name("kernel_mul_mv_ext_q5_K_f32_r1_4")]] kernel mul_mv_ext_q4x4_f32_t kernel_mul_mv_ext_q4x4_f32_disp<4, block_q5_K, 256, dequantize_q5_K>;
template [[host_name("kernel_mul_mv_ext_q5_K_f32_r1_5")]] kernel mul_mv_ext_q4x4_f32_t kernel_mul_mv_ext_q4x4_f32_disp<5, block_q5_K, 256, dequantize_q5_K>;
template [[host_name("kernel_mul_mv_ext_q6_K_f32_r1_2")]] kernel mul_mv_ext_q4x4_f32_t kernel_mul_mv_ext_q4x4_f32_disp<2, block_q6_K, 256, dequantize_q6_K>;
template [[host_name("kernel_mul_mv_ext_q6_K_f32_r1_3")]] kernel mul_mv_ext_q4x4_f32_t kernel_mul_mv_ext_q4x4_f32_disp<3, block_q6_K, 256, dequantize_q6_K>;
template [[host_name("kernel_mul_mv_ext_q6_K_f32_r1_4")]] kernel mul_mv_ext_q4x4_f32_t kernel_mul_mv_ext_q4x4_f32_disp<4, block_q6_K, 256, dequantize_q6_K>;
template [[host_name("kernel_mul_mv_ext_q6_K_f32_r1_5")]] kernel mul_mv_ext_q4x4_f32_t kernel_mul_mv_ext_q4x4_f32_disp<5, block_q6_K, 256, dequantize_q6_K>;
template<typename T0, typename T1, short NR0, typename args_t>
void kernel_mul_mv_t_t_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
constexpr short NW = N_SIMDWIDTH;
constexpr short NB = 32;
constexpr short NF = 8;
const int nb = args.ne00/NB;
const int r0 = tgpig.x*NR0;
const int r1 = tgpig.y;
const int im = tgpig.z;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
//const uint64_t offset0 = r0*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
//device const T0 * x = (device const T0 *) (src0 + offset0);
device const T1 * y = (device const T1 *) (src1 + offset1);
// pointers to src0 rows
device const T0 * ax [NR0];
FOR_UNROLL (short row = 0; row < NR0; ++row) {
const uint64_t offset0 = (r0 + row)*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
ax[row] = (device const T0 *) ((device char *) src0 + offset0);
}
float sumf[NR0] = { 0.f };
const short ix = tiisg/(NW/NF);
const short il = tiisg%(NW/NF);
const int ib0 = sgitg*NF + ix;
T1 yl[NF];
device const T1 * yb = y + (ib0*NB + il*NF);
for (int ib = ib0; ib < nb; ib += NSG*NF) {
for (short i = 0; i < NF; ++i) {
yl[i] = yb[i];
}
for (short row = 0; row < NR0; row++) {
device const T0 * xb = ax[row] + (ib*NB + il*NF);
float sumq = 0.f;
FOR_UNROLL (short i = 0; i < NF; ++i) {
sumq += xb[i] * yl[i];
}
sumf[row] += sumq;
}
yb += NSG*NF*NW;
}
for (int i = nb*NB + sgitg*NW + tiisg; i < args.ne00; i += NW*NSG) {
for (short row = 0; row < NR0; row++) {
sumf[row] += ax[row][i] * y[i];
}
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
helper_mv_reduce_and_write<NR0>(dst_f32, sumf, r0, args.ne01, tiisg, sgitg, shmem);
}
template<typename T0, typename T1, typename args_t>
void kernel_mul_mv_t_t_disp(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
switch (args.nr0) {
//case 1: kernel_mul_mv_t_t_impl<T0, T1, 1, args_t>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); break;
case 2: kernel_mul_mv_t_t_impl<T0, T1, 2, args_t>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); break;
//case 3: kernel_mul_mv_t_t_impl<T0, T1, 3, args_t>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); break;
//case 4: kernel_mul_mv_t_t_impl<T0, T1, 4, args_t>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); break;
}
}
template<typename T0, typename T1>
kernel void kernel_mul_mv_t_t(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_t_t_disp<T0, T1, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
typedef decltype(kernel_mul_mv_t_t<half, half>) mul_mv_t_t;
template [[host_name("kernel_mul_mv_f32_f32")]] kernel mul_mv_t_t kernel_mul_mv_t_t<float, float>;
template [[host_name("kernel_mul_mv_f16_f32")]] kernel mul_mv_t_t kernel_mul_mv_t_t<half, float>;
template [[host_name("kernel_mul_mv_f16_f16")]] kernel mul_mv_t_t kernel_mul_mv_t_t<half, half>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mv_bf16_f32")]] kernel mul_mv_t_t kernel_mul_mv_t_t<bfloat, float>;
template [[host_name("kernel_mul_mv_bf16_bf16")]] kernel mul_mv_t_t kernel_mul_mv_t_t<bfloat, bfloat>;
#endif
template<typename T0, typename T04, typename T1, typename T14, short NR0, typename args_t>
void kernel_mul_mv_t_t_4_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
constexpr short NW = N_SIMDWIDTH;
constexpr short NB = 32;
constexpr short NF = 16;
constexpr short NF4 = NF/4;
const int nb = args.ne00/NB;
const int r0 = tgpig.x*NR0;
const int r1 = tgpig.y;
const int im = tgpig.z;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
//const uint64_t offset0 = r0*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const T1 * y = (device const T1 *) (src1 + offset1);
device const T14 * y4 = (device const T14 *) (src1 + offset1);
// pointers to src0 rows
device const T0 * ax [NR0];
device const T04 * ax4[NR0];
FOR_UNROLL (short row = 0; row < NR0; ++row) {
const uint64_t offset0 = (r0 + row)*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
ax [row] = (device const T0 *) ((device char *) src0 + offset0);
ax4[row] = (device const T04 *) ((device char *) src0 + offset0);
}
float sumf[NR0] = { 0.f };
const short ix = tiisg/(NW/NF);
const short il = tiisg%(NW/NF);
const int ib0 = sgitg*NF + ix;
T14 yl4[NF4];
device const T14 * yb4 = y4 + (ib0*NB + il*NF)/4;
for (int ib = ib0; ib < nb; ib += NSG*NF) {
for (short i = 0; i < NF4; ++i) {
yl4[i] = yb4[i];
}
for (short row = 0; row < NR0; row++) {
device const T04 * xb4 = ax4[row] + (ib*NB + il*NF)/4;
float sumq = 0.f;
FOR_UNROLL (short i = 0; i < NF4; ++i) {
sumq += dot(float4(xb4[i]), float4(yl4[i]));
}
sumf[row] += sumq;
}
yb4 += NSG*NF*NW/4;
}
for (int i = nb*NB + sgitg*NW + tiisg; i < args.ne00; i += NW*NSG) {
for (short row = 0; row < NR0; row++) {
sumf[row] += ax[row][i] * y[i];
}
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
helper_mv_reduce_and_write<NR0>(dst_f32, sumf, r0, args.ne01, tiisg, sgitg, shmem);
}
template<typename T0, typename T04, typename T1, typename T14, typename args_t>
void kernel_mul_mv_t_t_4_disp(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
switch (args.nr0) {
//case 1: kernel_mul_mv_t_t_4_impl<T0, T04, T1, T14, 1, args_t>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); break;
case 2: kernel_mul_mv_t_t_4_impl<T0, T04, T1, T14, 2, args_t>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); break;
//case 3: kernel_mul_mv_t_t_4_impl<T0, T04, T1, T14, 3, args_t>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); break;
//case 4: kernel_mul_mv_t_t_4_impl<T0, T04, T1, T14, 4, args_t>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg); break;
};
}
template<typename T0, typename T04, typename T1, typename T14>
kernel void kernel_mul_mv_t_t_4(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_t_t_4_disp<T0, T04, T1, T14, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
typedef decltype(kernel_mul_mv_t_t_4<half, half4, half, half4>) mul_mv_t_t_4;
template [[host_name("kernel_mul_mv_f32_f32_4")]] kernel mul_mv_t_t_4 kernel_mul_mv_t_t_4<float, float4, float, float4>;
template [[host_name("kernel_mul_mv_f16_f32_4")]] kernel mul_mv_t_t_4 kernel_mul_mv_t_t_4<half, half4, float, float4>;
template [[host_name("kernel_mul_mv_f16_f16_4")]] kernel mul_mv_t_t_4 kernel_mul_mv_t_t_4<half, half4, half, half4>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mv_bf16_f32_4")]] kernel mul_mv_t_t_4 kernel_mul_mv_t_t_4<bfloat, bfloat4, float, float4>;
template [[host_name("kernel_mul_mv_bf16_bf16_4")]] kernel mul_mv_t_t_4 kernel_mul_mv_t_t_4<bfloat, bfloat4, bfloat, bfloat4>;
#endif
template<typename T0, typename T1, typename args_t>
void kernel_mul_mv_t_t_short_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig,
ushort tiisg) {
const int r0 = tgpig.x*32 + tiisg;
const int r1 = tgpig.y;
const int im = tgpig.z;
if (r0 >= args.ne01) {
return;
}
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = r0*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
device const T0 * x = (device const T0 *) (src0 + offset0);
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const T1 * y = (device const T1 *) (src1 + offset1);
float res = 0.0f;
for (int i = 0; i < args.ne00; ++i) {
res += (float) x[i] * (float) y[i];
}
dst_f32[(uint64_t)r1*args.ne0 + r0] = res;
}
template<typename T0, typename T1>
kernel void kernel_mul_mv_t_t_short(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]]) {
kernel_mul_mv_t_t_short_impl<T0, T1, constant ggml_metal_kargs_mul_mv &>(
args,
src0,
src1,
dst,
tgpig,
tiisg);
}
typedef decltype(kernel_mul_mv_t_t_short<half, half>) mul_mv_t_t_short_t;
template [[host_name("kernel_mul_mv_f32_f32_short")]] kernel mul_mv_t_t_short_t kernel_mul_mv_t_t_short<float, float>;
template [[host_name("kernel_mul_mv_f16_f32_short")]] kernel mul_mv_t_t_short_t kernel_mul_mv_t_t_short<half, float>;
template [[host_name("kernel_mul_mv_f16_f16_short")]] kernel mul_mv_t_t_short_t kernel_mul_mv_t_t_short<half, half>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mv_bf16_f32_short")]] kernel mul_mv_t_t_short_t kernel_mul_mv_t_t_short<bfloat, float>;
template [[host_name("kernel_mul_mv_bf16_bf16_short")]] kernel mul_mv_t_t_short_t kernel_mul_mv_t_t_short<bfloat, bfloat>;
#endif
static float rope_yarn_ramp(const float low, const float high, const int i0) {
const float y = (i0 / 2 - low) / max(0.001f, high - low);
return 1.0f - min(1.0f, max(0.0f, y));
}
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static void rope_yarn(
float theta_extrap, float freq_scale, float corr_dims[2], int i0, float ext_factor, float mscale,
thread float * cos_theta, thread float * sin_theta) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
if (ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
}
*cos_theta = cos(theta) * mscale;
*sin_theta = sin(theta) * mscale;
}
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
static float rope_yarn_corr_factor(int n_dims, int n_ctx_orig, float n_rot, float base) {
return n_dims * log(n_ctx_orig / (n_rot * 2 * M_PI_F)) / (2 * log(base));
}
static void rope_yarn_corr_dims(
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
) {
// start and end correction dims
dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_fast, freq_base)));
dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_slow, freq_base)));
}
template<typename T>
kernel void kernel_rope_norm(
constant ggml_metal_kargs_rope & args,
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
ushort tiitg[[thread_index_in_threadgroup]],
ushort3 tptg [[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]) {
const int i3 = tgpig[2];
const int i2 = tgpig[1];
const int i1 = tgpig[0];
float corr_dims[2];
rope_yarn_corr_dims(args.n_dims, args.n_ctx_orig, args.freq_base, args.beta_fast, args.beta_slow, corr_dims);
device const int32_t * pos = (device const int32_t *) src1;
const float theta_base = (float) pos[i2];
const float inv_ndims = -1.f/args.n_dims;
float cos_theta;
float sin_theta;
for (int i0 = 2*tiitg; i0 < args.ne0; i0 += 2*tptg.x) {
if (i0 < args.n_dims) {
const int ic = i0/2;
const float theta = theta_base * pow(args.freq_base, inv_ndims*i0);
const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f;
rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta);
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + i0*args.nb00);
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0);
const float x0 = src[0];
const float x1 = src[1];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[1] = x0*sin_theta + x1*cos_theta;
} else {
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + i0*args.nb00);
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
template<typename T>
kernel void kernel_rope_neox(
constant ggml_metal_kargs_rope & args,
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
ushort tiitg[[thread_index_in_threadgroup]],
ushort3 tptg [[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]) {
const int i3 = tgpig[2];
const int i2 = tgpig[1];
const int i1 = tgpig[0];
float corr_dims[2];
rope_yarn_corr_dims(args.n_dims, args.n_ctx_orig, args.freq_base, args.beta_fast, args.beta_slow, corr_dims);
device const int32_t * pos = (device const int32_t *) src1;
const float theta_base = (float) pos[i2];
const float inv_ndims = -1.f/args.n_dims;
float cos_theta;
float sin_theta;
for (int i0 = 2*tiitg; i0 < args.ne0; i0 += 2*tptg.x) {
if (i0 < args.n_dims) {
const int ic = i0/2;
const float theta = theta_base * pow(args.freq_base, inv_ndims*i0);
const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f;
rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta);
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + ic*args.nb00);
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + ic*args.nb0);
const float x0 = src[0];
const float x1 = src[args.n_dims/2];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[args.n_dims/2] = x0*sin_theta + x1*cos_theta;
} else {
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + i0*args.nb00);
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
template<typename T>
kernel void kernel_rope_multi(
constant ggml_metal_kargs_rope & args,
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
ushort tiitg[[thread_index_in_threadgroup]],
ushort3 tptg [[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]) {
const int i3 = tgpig[2];
const int i2 = tgpig[1];
const int i1 = tgpig[0];
float corr_dims[2];
rope_yarn_corr_dims(args.n_dims, args.n_ctx_orig, args.freq_base, args.beta_fast, args.beta_slow, corr_dims);
device const int32_t * pos = (device const int32_t *) src1;
const float inv_ndims = -1.f/args.n_dims;
float cos_theta;
float sin_theta;
for (int i0 = 2*tiitg; i0 < args.ne0; i0 += 2*tptg.x) {
if (i0 < args.n_dims) {
const int ic = i0/2;
// mrope theta calculations
// note: the rest is the same as kernel_rope_neox
const int sect_dims = args.sect_0 + args.sect_1 + args.sect_2 + args.sect_3;
const int sec_w01 = args.sect_0 + args.sect_1; // end of section 1
const int sec_w012 = args.sect_0 + args.sect_1 + args.sect_2; // end of section 2
const int sector = ic % sect_dims;
float theta_base;
if (sector < args.sect_0) {
theta_base = (float) pos[i2];
} else if (sector < sec_w01) {
theta_base = (float) pos[i2 + args.ne02];
} else if (sector < sec_w012) {
theta_base = (float) pos[i2 + args.ne02 * 2];
} else {
theta_base = (float) pos[i2 + args.ne02 * 3];
}
// end of mrope
const float theta = theta_base * pow(args.freq_base, inv_ndims*i0);
const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f;
rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta);
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + ic*args.nb00);
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + ic*args.nb0);
const float x0 = src[0];
const float x1 = src[args.n_dims/2];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[args.n_dims/2] = x0*sin_theta + x1*cos_theta;
} else {
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + i0*args.nb00);
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
template<typename T>
kernel void kernel_rope_vision(
constant ggml_metal_kargs_rope & args,
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
ushort tiitg[[thread_index_in_threadgroup]],
ushort3 tptg [[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]) {
const int i3 = tgpig[2];
const int i2 = tgpig[1];
const int i1 = tgpig[0];
float corr_dims[2];
rope_yarn_corr_dims(args.n_dims, args.n_ctx_orig, args.freq_base, args.beta_fast, args.beta_slow, corr_dims);
device const int32_t * pos = (device const int32_t *) src1;
const float inv_ndims = -1.f/args.n_dims;
float cos_theta;
float sin_theta;
for (int i0 = 2*tiitg; i0 < args.ne0; i0 += 2*tptg.x) {
if (i0 < 2*args.n_dims) { // different from kernel_rope_multi
const int ic = i0/2;
// mrope theta calculations (only support 2 dimensions)
const int sect_dims = args.sect_0 + args.sect_1;
const int sector = ic % sect_dims;
float p;
float theta_base;
if (sector < args.sect_1) {
p = (float) sector;
theta_base = (float) pos[i2];
} else {
p = (float) sector - args.sect_0;
theta_base = (float) pos[i2 + args.ne02];
}
const float theta = theta_base * pow(args.freq_base, 2.0f * inv_ndims * p);
// end of mrope
const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f;
rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta);
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + ic*args.nb00);
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + ic*args.nb0);
const float x0 = src[0];
const float x1 = src[args.n_dims]; // different from kernel_rope_multi
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[args.n_dims] = x0*sin_theta + x1*cos_theta; // different from kernel_rope_multi
} else {
device const T * const src = (device T *)(src0 + i3*args.nb03 + i2*args.nb02 + i1*args.nb01 + i0*args.nb00);
device T * dst_data = (device T *)( dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
typedef decltype(kernel_rope_norm<float>) kernel_rope_norm_t;
typedef decltype(kernel_rope_neox<float>) kernel_rope_neox_t;
typedef decltype(kernel_rope_multi<float>) kernel_rope_multi_t;
typedef decltype(kernel_rope_vision<float>) kernel_rope_vision_t;
template [[host_name("kernel_rope_norm_f32")]] kernel kernel_rope_norm_t kernel_rope_norm<float>;
template [[host_name("kernel_rope_norm_f16")]] kernel kernel_rope_norm_t kernel_rope_norm<half>;
template [[host_name("kernel_rope_neox_f32")]] kernel kernel_rope_neox_t kernel_rope_neox<float>;
template [[host_name("kernel_rope_neox_f16")]] kernel kernel_rope_neox_t kernel_rope_neox<half>;
template [[host_name("kernel_rope_multi_f32")]] kernel kernel_rope_multi_t kernel_rope_multi<float>;
template [[host_name("kernel_rope_multi_f16")]] kernel kernel_rope_multi_t kernel_rope_multi<half>;
template [[host_name("kernel_rope_vision_f32")]] kernel kernel_rope_vision_t kernel_rope_vision<float>;
template [[host_name("kernel_rope_vision_f16")]] kernel kernel_rope_vision_t kernel_rope_vision<half>;
typedef void (im2col_t)(
constant ggml_metal_kargs_im2col & args,
device const float * x,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]);
template <typename T>
kernel void kernel_im2col(
constant ggml_metal_kargs_im2col & args,
device const float * x,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
// const int64_t IC = tgpg[0];
const int64_t OH = tgpg[1];
const int64_t OW = tgpg[2];
const int64_t KH = ntg[1];
const int64_t KW = ntg[2];
int64_t in = tpitg[0];
const int64_t ikh = tpitg[1];
const int64_t ikw = tpitg[2];
const int64_t iic = tgpig[0];
const int64_t ioh = tgpig[1];
const int64_t iow = tgpig[2];
const int64_t iiw = iow*args.s0 + ikw*args.d0 - args.p0;
const int64_t iih = ioh*args.s1 + ikh*args.d1 - args.p1;
int64_t offset_dst = (in*OH*OW + ioh*OW + iow)*args.CHW + (iic*(KH*KW) + ikh*KW + ikw);
device T * pdst = (device T *) (dst);
if (iih < 0 || iih >= args.IH || iiw < 0 || iiw >= args.IW) {
while (in < args.N) {
pdst[offset_dst] = 0.0f;
offset_dst += ntg[0]*args.CHW*OH*OW;
in += ntg[0];
}
} else {
int64_t offset_src = in*args.ofs0 + iic*args.ofs1 + iih*args.IW + iiw;
while (in < args.N) {
pdst[offset_dst] = x[offset_src];
offset_dst += ntg[0]*args.CHW*OH*OW;
offset_src += ntg[0]*args.ofs0;
in += ntg[0];
}
}
}
template [[host_name("kernel_im2col_f32")]] kernel im2col_t kernel_im2col<float>;
template [[host_name("kernel_im2col_f16")]] kernel im2col_t kernel_im2col<half>;
// TODO: obolete -- remove
//typedef void (im2col_ext_t)(
// constant ggml_metal_kargs_im2col & args,
// device const float * x,
// device char * dst,
// uint3 tgpig[[threadgroup_position_in_grid]],
// uint3 tgpg[[threadgroups_per_grid]],
// uint3 tpitg[[thread_position_in_threadgroup]],
// uint3 ntg[[threads_per_threadgroup]]);
//
//template <typename T>
//kernel void kernel_im2col_ext(
// constant ggml_metal_kargs_im2col & args,
// device const float * x,
// device char * dst,
// uint3 tgpig[[threadgroup_position_in_grid]],
// uint3 tgpg[[threadgroups_per_grid]], // tgpg[0] = D x IC x KH x KW, CHW = IC x KH x KW
// uint3 tpitg[[thread_position_in_threadgroup]],
// uint3 ntg[[threads_per_threadgroup]]) { // [M, 1, 1]
// const int64_t KHW = (int64_t)args.KHW;
//
// const int64_t d = tgpig[0] / args.CHW;
// const int64_t chw = tgpig[0] % args.CHW;
// const int64_t tgpig_0 = chw / KHW; // 0 ~ (IC - 1)
// const int64_t HW = tgpig[0] % KHW;
//
// const int64_t tpitg_0 = (d * ntg[0]) + tpitg[0];
// if (tpitg_0 >= args.N) {
// return;
// }
//
// const int64_t tpitg_1 = HW / args.KW;
// const int64_t tpitg_2 = HW % args.KW;
//
// const int64_t iiw = tgpig[2] * args.s0 + tpitg_2 * args.d0 - args.p0;
// const int64_t iih = tgpig[1] * args.s1 + tpitg_1 * args.d1 - args.p1;
//
// const int64_t offset_dst =
// (tpitg_0 * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * args.CHW +
// (tgpig_0 * KHW + tpitg_1 * args.KW + tpitg_2);
//
// device T * pdst = (device T *) (dst);
//
// if (iih < 0 || iih >= args.IH || iiw < 0 || iiw >= args.IW) {
// pdst[offset_dst] = 0.0f;
// } else {
// const int64_t offset_src = tpitg_0 * args.ofs0 + tgpig_0 * args.ofs1;
// pdst[offset_dst] = x[offset_src + iih * args.IW + iiw];
// }
//}
//
//template [[host_name("kernel_im2col_ext_f32")]] kernel im2col_ext_t kernel_im2col_ext<float>;
//template [[host_name("kernel_im2col_ext_f16")]] kernel im2col_ext_t kernel_im2col_ext<half>;
typedef void (conv_transpose_1d_t)(
constant ggml_metal_kargs_conv_transpose_1d & args,
device const float * src0,
device const float * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]]);
template <typename T>
kernel void kernel_conv_transpose_1d(
constant ggml_metal_kargs_conv_transpose_1d & args,
device const T * src0,
device const float * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]]) {
float v = 0.0f;
for (int64_t c = 0; c < args.IC; c++) {
const int32_t kernel_offset = c * tgpg[1] * args.K + args.K * tgpig[1];
const int32_t input_offset = c * args.IL;
for (int64_t i = 0; i < args.IL; i++) {
if (tgpig[0] >= i * args.s0 && tgpig[0] < i * args.s0 + args.K) {
v += src0[kernel_offset + tgpig[0] - i * args.s0] * src1[input_offset + i];
}
}
}
device float * dst_ptr = (device float *) (dst + tgpig[0] * args.nb0 + tgpig[1] * args.nb1);
dst_ptr[0] = v;
}
template [[host_name("kernel_conv_transpose_1d_f32_f32")]]
kernel void kernel_conv_transpose_1d<float>(
constant ggml_metal_kargs_conv_transpose_1d & args,
device const float * src0,
device const float * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]]);
template [[host_name("kernel_conv_transpose_1d_f16_f32")]]
kernel void kernel_conv_transpose_1d<half>(
constant ggml_metal_kargs_conv_transpose_1d & args,
device const half * src0,
device const float * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]]);
kernel void kernel_upscale_f32(
constant ggml_metal_kargs_upscale & args,
device const char * src0,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i3 = tgpig.z;
const int64_t i2 = tgpig.y;
const int64_t i1 = tgpig.x;
const int64_t i03 = i3/args.sf3;
const int64_t i02 = i2/args.sf2;
const int64_t i01 = i1/args.sf1;
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int64_t i00 = i0/args.sf0;
device const float * src0_ptr = (device const float *) (src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00);
device float * dst_ptr = (device float *) (dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0);
dst_ptr[0] = src0_ptr[0];
}
}
kernel void kernel_pad_f32(
constant ggml_metal_kargs_pad & args,
device const char * src0,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i3 = tgpig.z;
const int64_t i2 = tgpig.y;
const int64_t i1 = tgpig.x;
const int64_t i03 = i3;
const int64_t i02 = i2;
const int64_t i01 = i1;
device const float * src0_ptr = (device const float *) (src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01);
device float * dst_ptr = (device float *) (dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1);
if (i1 < args.ne01 && i2 < args.ne02 && i3 < args.ne03) {
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
if (i0 < args.ne00) {
dst_ptr[i0] = src0_ptr[i0];
} else {
dst_ptr[i0] = 0.0f;
}
}
return;
}
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
dst_ptr[i0] = 0.0f;
}
}
kernel void kernel_pad_reflect_1d_f32(
constant ggml_metal_kargs_pad_reflect_1d & args,
device const char * src0,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i3 = tgpig.z;
const int64_t i2 = tgpig.y;
const int64_t i1 = tgpig.x;
const int64_t i03 = i3;
const int64_t i02 = i2;
const int64_t i01 = i1;
device const float * src0_ptr = (device const float *) (src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01);
device float * dst_ptr = (device float *) (dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1);
if (i1 < args.ne01 && i2 < args.ne02 && i3 < args.ne03) {
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
if (i0 < args.p0) {
dst_ptr[i0] = src0_ptr[args.p0 - i0];
} else if (i0 < args.ne0 - args.p1) {
dst_ptr[i0] = src0_ptr[i0 - args.p0];
} else {
dst_ptr[i0] = src0_ptr[(args.ne0 - args.p1 - args.p0) - (args.p1 + 1 - (args.ne0 - i0)) - 1];
}
}
}
}
kernel void kernel_arange_f32(
constant ggml_metal_kargs_arange & args,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
device float * dst_ptr = (device float *) dst;
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
dst_ptr[i0] = args.start + args.step * i0;
}
}
kernel void kernel_timestep_embedding_f32(
constant ggml_metal_kargs_timestep_embedding & args,
device const char * src0,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
int i = tgpig.x;
device float * embed_data = (device float *)(dst + i*args.nb1);
int half_ = args.dim / 2;
for (int j = tpitg.x; j < half_; j += ntg.x) {
float timestep = ((device float *)src0)[i];
float freq = (float)exp(-log((float)args.max_period) * j / half_);
float arg = timestep * freq;
embed_data[j ] = cos(arg);
embed_data[j + half_] = sin(arg);
}
if (args.dim % 2 != 0 && tpitg.x == 0) {
embed_data[2 * half_] = 0.f;
}
}
// bitonic sort implementation following the CUDA kernels as reference
typedef void (argsort_t)(
constant ggml_metal_kargs_argsort & args,
device const float * x,
device int32_t * dst,
threadgroup int32_t * shared_values [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]]);
template<ggml_sort_order order>
kernel void kernel_argsort_f32_i32(
constant ggml_metal_kargs_argsort & args,
device const float * x,
device int32_t * dst,
threadgroup int32_t * shared_values [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]]) {
// bitonic sort
int col = tpitg[0];
int row = tgpig[1];
if (col >= args.ncols_pad) return;
device const float * x_row = x + row * args.ncols;
threadgroup int32_t * dst_row = shared_values;
// initialize indices
dst_row[col] = col;
threadgroup_barrier(mem_flags::mem_threadgroup);
for (int k = 2; k <= args.ncols_pad; k *= 2) {
for (int j = k / 2; j > 0; j /= 2) {
int ixj = col ^ j;
if (ixj > col) {
if ((col & k) == 0) {
if (dst_row[col] >= args.ncols ||
(dst_row[ixj] < args.ncols && (order == GGML_SORT_ORDER_ASC ?
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
) {
SWAP(dst_row[col], dst_row[ixj]);
}
} else {
if (dst_row[ixj] >= args.ncols ||
(dst_row[col] < args.ncols && (order == GGML_SORT_ORDER_ASC ?
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
) {
SWAP(dst_row[col], dst_row[ixj]);
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
}
// copy the result to dst without the padding
if (col < args.ncols) {
dst[row * args.ncols + col] = dst_row[col];
}
}
template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ORDER_ASC>;
template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ORDER_DESC>;
kernel void kernel_leaky_relu_f32(
constant ggml_metal_kargs_leaky_relu & args,
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
const float x = src0[tpig];
dst[tpig] = x > 0.0f ? x : x * args.slope;
}
kernel void kernel_leaky_relu_f32_4(
constant ggml_metal_kargs_leaky_relu & args,
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
const float4 x = src0[tpig];
dst[tpig] = float4(x > 0.0f)*x + float4(x <= 0.0f)*(x * args.slope);
}
constant bool FC_flash_attn_ext_pad_has_mask [[function_constant(FC_FLASH_ATTN_EXT_PAD + 0)]];
constant int32_t FC_flash_attn_ext_pad_ncpsg [[function_constant(FC_FLASH_ATTN_EXT_PAD + 25)]];
// pad the last chunk of C elements of k and v into a an extra pad buffer
kernel void kernel_flash_attn_ext_pad(
constant ggml_metal_kargs_flash_attn_ext_pad & args,
device const char * k,
device const char * v,
device const char * mask,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiitg[[thread_index_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int32_t C = FC_flash_attn_ext_pad_ncpsg;
device char * k_pad = dst;
device char * v_pad = k_pad + args.nb11*C*args.ne_12_2*args.ne_12_3;
device char * mask_pad = v_pad + args.nb21*C*args.ne_12_2*args.ne_12_3;
const int32_t icp = args.ne11 % C;
const int32_t ic0 = args.ne11 - icp;
const int32_t i1 = tgpig[0];
const int32_t i2 = tgpig[1];
const int32_t i3 = tgpig[2];
if (i2 < args.ne_12_2 && i3 < args.ne_12_3) {
device const char * k_src = k + args.nb11*(ic0 + i1) + args.nb12*i2 + args.nb13*i3;
device const char * v_src = v + args.nb21*(ic0 + i1) + args.nb22*i2 + args.nb23*i3;
device char * k_dst = k_pad + args.nb11*i1 + args.nb11*C*i2 + args.nb11*C*args.ne_12_2*i3;
device char * v_dst = v_pad + args.nb21*i1 + args.nb21*C*i2 + args.nb21*C*args.ne_12_2*i3;
if (i1 >= icp) {
// here it is not important the exact value that will be used as we rely on masking out the scores in the attention
for (uint64_t i = tiitg; i < args.nb11; i += ntg.x) {
k_dst[i] = 0;
}
for (uint64_t i = tiitg; i < args.nb21; i += ntg.x) {
v_dst[i] = 0;
}
} else {
for (uint64_t i = tiitg; i < args.nb11; i += ntg.x) {
k_dst[i] = k_src[i];
}
for (uint64_t i = tiitg; i < args.nb21; i += ntg.x) {
v_dst[i] = v_src[i];
}
}
}
if (FC_flash_attn_ext_pad_has_mask) {
if (i2 < args.ne32 && i3 < args.ne33) {
for (int ib = i1; ib < args.ne31; ib += C) {
device const half * mask_src = (device const half *)(mask + args.nb31*ib + args.nb32*i2 + args.nb33*i3) + ic0;
device half * mask_dst = (device half *)(mask_pad) + C*ib + C*args.ne31*i2 + C*args.ne31*args.ne32*i3;
for (int i = tiitg; i < C; i += ntg.x) {
if (i >= icp) {
mask_dst[i] = -MAXHALF;
} else {
mask_dst[i] = mask_src[i];
}
}
}
}
}
}
constant int32_t FC_flash_attn_ext_blk_nqptg [[function_constant(FC_FLASH_ATTN_EXT_BLK + 24)]];
constant int32_t FC_flash_attn_ext_blk_ncpsg [[function_constant(FC_FLASH_ATTN_EXT_BLK + 25)]];
// scan the blocks of the mask that are not masked
// 0 - masked (i.e. full of -INF, skip)
// 1 - not masked (i.e. at least one element of the mask is not -INF)
kernel void kernel_flash_attn_ext_blk(
constant ggml_metal_kargs_flash_attn_ext_blk & args,
device const char * mask,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]]) {
// block size C x Q
const int32_t Q = FC_flash_attn_ext_blk_nqptg;
const int32_t C = FC_flash_attn_ext_blk_ncpsg;
constexpr short NW = N_SIMDWIDTH;
const int32_t i3 = tgpig[2]/args.ne32;
const int32_t i2 = tgpig[2]%args.ne32;
const int32_t i1 = tgpig[1];
const int32_t i0 = tgpig[0];
char res = i0*C + C > args.ne30 ? 1 : 0;
device const half * mask_src = (device const half *) (mask + (i1*Q)*args.nb31 + i2*args.nb32 + i3*args.nb33) + i0*C + tiisg;
// fast route
if (res == 0) {
if (simd_max(*mask_src) > -MAXHALF/2) {
res = 1;
}
}
// detailed check of the elements of the block
if ((C > NW || Q > 1) && res == 0) {
half m = -MAXHALF;
FOR_UNROLL (short j = 0; j < Q; ++j) {
FOR_UNROLL (short ii = 0; ii < C/NW; ++ii) {
m = max(m, mask_src[ii*NW]);
}
mask_src += args.nb31/2;
}
if (simd_max(m) > -MAXHALF/2) {
res = 1;
}
}
const int32_t nblk1 = ((args.ne01 + Q - 1)/Q);
const int32_t nblk0 = ((args.ne30 + C - 1)/C);
if (tiisg == 0) {
dst[((i3*args.ne32 + i2)*nblk1 + i1)*nblk0 + i0] = res;
}
}
constant bool FC_flash_attn_ext_has_mask [[function_constant(FC_FLASH_ATTN_EXT + 0)]];
constant bool FC_flash_attn_ext_has_sinks [[function_constant(FC_FLASH_ATTN_EXT + 1)]];
constant bool FC_flash_attn_ext_has_bias [[function_constant(FC_FLASH_ATTN_EXT + 2)]];
constant bool FC_flash_attn_ext_has_scap [[function_constant(FC_FLASH_ATTN_EXT + 3)]];
constant bool FC_flash_attn_ext_has_kvpad [[function_constant(FC_FLASH_ATTN_EXT + 4)]];
constant bool FC_flash_attn_ext_bc_mask [[function_constant(FC_FLASH_ATTN_EXT + 10)]];
//constant float FC_flash_attn_ext_scale [[function_constant(FC_FLASH_ATTN_EXT + 10)]];
//constant float FC_flash_attn_ext_max_bias [[function_constant(FC_FLASH_ATTN_EXT + 11)]];
//constant float FC_flash_attn_ext_logit_softcap [[function_constant(FC_FLASH_ATTN_EXT + 12)]];
constant int32_t FC_flash_attn_ext_ns10 [[function_constant(FC_FLASH_ATTN_EXT + 20)]];
constant int32_t FC_flash_attn_ext_ns20 [[function_constant(FC_FLASH_ATTN_EXT + 21)]];
constant int32_t FC_flash_attn_ext_nsg [[function_constant(FC_FLASH_ATTN_EXT + 22)]];
// ref: https://arxiv.org/pdf/2307.08691.pdf
template<
typename q_t, // query types in shared memory
typename q4_t,
typename q8x8_t,
typename k_t, // key types in shared memory
typename k4x4_t,
typename k8x8_t,
typename v_t, // value types in shared memory
typename v4x4_t,
typename v8x8_t,
typename qk_t, // Q*K types
typename qk8x8_t,
typename s_t, // soft-max types
typename s2_t,
typename s8x8_t,
typename o_t, // attention accumulation types
typename o4_t,
typename o8x8_t,
typename kd4x4_t, // key type in device memory
short nl_k,
void (*deq_k)(device const kd4x4_t *, short, thread k4x4_t &),
typename vd4x4_t, // value type in device memory
short nl_v,
void (*deq_v)(device const vd4x4_t *, short, thread v4x4_t &),
short DK, // K head size
short DV, // V head size
short Q, // queries per threadgroup
short C, // cache items per threadgroup
short NSG> // number of simd groups
void kernel_flash_attn_ext_impl(
constant ggml_metal_kargs_flash_attn_ext & args,
device const char * q,
device const char * k,
device const char * v,
device const char * mask,
device const char * sinks,
device const char * pad,
device const char * blk,
device char * dst,
threadgroup half * shmem_f16,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const ushort iq3 = tgpig[2];
const ushort iq2 = tgpig[1];
const ushort iq1 = tgpig[0]*Q;
#define NS10 (FC_flash_attn_ext_ns10)
#define NS20 (FC_flash_attn_ext_ns20)
// note: I had some concerns that using this instead of the ugly macros above was affecting performance
// need to re-check carefully and if no regressions are observerd - remove the macros
// the concerns is that maybe using const variables requires extra registers? but not sure if the compiler
// is clever enough to avoid this. unfortunately, using constexpr is not possible with FC
//const short NS10 = FC_flash_attn_ext_ns10;
//const short NS20 = FC_flash_attn_ext_ns20;
constexpr short KV = 8;
constexpr short DK4 = DK/4;
constexpr short DK8 = DK/8;
constexpr short DK16 = DK/16;
constexpr short DV4 = DV/4;
//constexpr short DV8 = DV/8;
constexpr short DV16 = DV/16;
constexpr short PV = PAD2(DV, 64);
constexpr short PV4 = PV/4;
constexpr short PV8 = PV/8;
//constexpr short PV16 = PV/16;
constexpr short NW = N_SIMDWIDTH;
constexpr short NQ = Q/NSG;
constexpr short SH = 2*C; // shared memory per simdgroup (s_t == float)
constexpr short TS = 2*SH;
constexpr short T = DK + 2*PV; // shared memory size per query in (half)
threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*T); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*T); // same as above but in q4_t
threadgroup o_t * so = (threadgroup o_t *) (shmem_f16 + 0*T + Q*DK); // the result for all queries in 8x8 matrices (the O matrix from the paper)
threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 0*T + Q*DK);
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + Q*T); // scratch buffer for attention, mask and diagonal matrix
threadgroup s2_t * ss2 = (threadgroup s2_t *) (shmem_f16 + Q*T); // same as above but in s2_t
threadgroup k_t * sk = (threadgroup k_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T + Q*TS); // scratch buffer to load K in shared memory
threadgroup k4x4_t * sk4x4 = (threadgroup k4x4_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T + Q*TS); // same as above but in k4x4_t
threadgroup v_t * sv = (threadgroup v_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T + Q*TS); // scratch buffer to load V in shared memory
threadgroup v4x4_t * sv4x4 = (threadgroup v4x4_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T + Q*TS); // same as above but in v4x4_t
// mask storage in shared mem
threadgroup half2 * sm2 = (threadgroup half2 *) (shmem_f16 + Q*T + 2*C);
// per-query mask pointers
device const half2 * pm2[NQ];
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
const short j = jj*NSG + sgitg;
pm2[jj] = (device const half2 *) ((device const char *) mask + (iq1 + j)*args.nb31 + (iq2%args.ne32)*args.nb32 + (iq3%args.ne33)*args.nb33);
}
{
const int32_t nblk1 = ((args.ne01 + Q - 1)/Q);
const int32_t nblk0 = ((args.ne11 + C - 1)/C);
blk += (((iq3%args.ne33)*args.ne32 + (iq2%args.ne32))*nblk1 + iq1/Q)*nblk0;
}
{
q += iq1*args.nb01 + iq2*args.nb02 + iq3*args.nb03;
const short ikv2 = iq2/(args.ne02/args.ne_12_2);
const short ikv3 = iq3/(args.ne03/args.ne_12_3);
k += ikv2*args.nb12 + ikv3*args.nb13;
v += ikv2*args.nb22 + ikv3*args.nb23;
}
// load heads from Q to shared memory
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
const short j = jj*NSG + sgitg;
device const float4 * q4 = (device const float4 *) ((device const char *) q + j*args.nb01);
for (short i = tiisg; i < DK4; i += NW) {
if (iq1 + j < args.ne01) {
sq4[j*DK4 + i] = (q4_t) q4[i];
} else {
sq4[j*DK4 + i] = 0;
}
}
}
// zero out
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
const short j = jj*NSG + sgitg;
for (short i = tiisg; i < DV4; i += NW) {
so4[j*PV4 + i] = 0;
}
for (short i = tiisg; i < SH; i += NW) {
ss[j*SH + i] = 0.0f;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float S[NQ] = { [0 ... NQ-1] = 0.0f };
{
float M[NQ] = { [0 ... NQ-1] = -FLT_MAX/2 };
float slope = 1.0f;
// ALiBi
if (FC_flash_attn_ext_has_bias) {
const short h = iq2;
const float base = h < args.n_head_log2 ? args.m0 : args.m1;
const short exph = h < args.n_head_log2 ? h + 1 : 2*(h - args.n_head_log2) + 1;
slope = pow(base, exph);
}
// loop over the KV cache
// each simdgroup handles blocks of Q rows and C columns
for (int ic0 = 0; ; ++ic0) {
int ic = ic0*C;
if (ic >= args.ne11) {
break;
}
// the last partial chunk uses the pad buffer as source
if (FC_flash_attn_ext_has_kvpad && ic + C > args.ne11) {
k = pad;
v = k + args.nb11*C*args.ne_12_2*args.ne_12_3;
mask = v + args.nb21*C*args.ne_12_2*args.ne_12_3;
const short ikv2 = iq2/(args.ne02/args.ne_12_2);
const short ikv3 = iq3/(args.ne03/args.ne_12_3);
k += (ikv2 + ikv3*args.ne_12_2)*args.nb11*C;
v += (ikv2 + ikv3*args.ne_12_2)*args.nb21*C;
if (!FC_flash_attn_ext_has_mask) {
threadgroup half * sm = (threadgroup half *) (sm2);
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
const short j = jj*NSG + sgitg;
for (short i = tiisg; i < C; i += NW) {
if (ic + i >= args.ne11) {
sm[2*j*SH + i] = -MAXHALF;
}
}
}
} else {
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
const short j = jj*NSG + sgitg;
pm2[jj] = (device const half2 *) ((device const half *) mask +
(iq1 + j)*C +
(iq2%args.ne32)*(C*args.ne31) +
(iq3%args.ne33)*(C*args.ne31*args.ne32));
}
}
ic = 0;
}
// read the mask into shared mem
if (FC_flash_attn_ext_has_mask) {
if (blk[ic0] == 0) {
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
pm2[jj] += NW;
}
continue;
}
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
const short j = jj*NSG + sgitg;
if (FC_flash_attn_ext_bc_mask) {
sm2[j*SH + tiisg] = (iq1 + j) < args.ne31 ? pm2[jj][tiisg] : half2(-MAXHALF, -MAXHALF);
} else {
sm2[j*SH + tiisg] = pm2[jj][tiisg];
}
pm2[jj] += NW;
}
#if 0
// note: old -INF block optimization - obsoleted by pre-computing non-masked blocks
threadgroup_barrier(mem_flags::mem_threadgroup);
// used to detect blocks full of -INF
// skip only when the entire threadgroup is masked
half2 smax2(-MAXHALF/2, -MAXHALF/2);
FOR_UNROLL (short j = 0; j < Q; ++j) {
smax2 = max(smax2, sm2[j*SH + tiisg]);
}
smax2 = simd_max(smax2);
if (max(smax2[0], smax2[1]) <= -MAXHALF/2) {
// this barrier is important
threadgroup_barrier(mem_flags::mem_threadgroup);
continue;
}
#endif
}
// Q*K^T
// this is compile-time check, so it does not have runtime overhead
if (is_same<kd4x4_t, k4x4_t>::value) {
// we can read directly from global memory
device const k_t * pk = (device const k_t *) (k + ic*args.nb11);
threadgroup const q_t * pq = sq;
threadgroup s_t * ps = ss;
pk += sgitg*(8*NS10);
ps += sgitg*(8*1);
static_assert((C/8) % NSG == 0, "");
constexpr short NC = (C/8)/NSG;
// note: do not unroll for large heads
#pragma unroll (DK <= 64 ? NC : 1)
for (short cc = 0; cc < NC; ++cc) {
qk8x8_t mqk = make_filled_simdgroup_matrix<qk_t, 8>((qk_t) 0.0f);
if (DK % 16 != 0) {
k8x8_t mk;
q8x8_t mq;
FOR_UNROLL (short i = 0; i < DK8; ++i) {
simdgroup_barrier(mem_flags::mem_none);
simdgroup_load(mk, pk + 8*i, NS10, 0, true);
simdgroup_load(mq, pq + 8*i, DK);
simdgroup_barrier(mem_flags::mem_none);
simdgroup_multiply_accumulate(mqk, mq, mk, mqk);
}
} else {
k8x8_t mk[2];
q8x8_t mq[2];
FOR_UNROLL (short i = 0; i < DK8/2; ++i) {
simdgroup_barrier(mem_flags::mem_none);
simdgroup_load(mq[0], pq + 0*8 + 16*i, DK);
simdgroup_load(mq[1], pq + 1*8 + 16*i, DK);
simdgroup_load(mk[0], pk + 0*8 + 16*i, NS10, 0, true);
simdgroup_load(mk[1], pk + 1*8 + 16*i, NS10, 0, true);
simdgroup_barrier(mem_flags::mem_none);
simdgroup_multiply_accumulate(mqk, mq[0], mk[0], mqk);
simdgroup_multiply_accumulate(mqk, mq[1], mk[1], mqk);
}
}
simdgroup_store(mqk, ps, SH, 0, false);
pk += 8*(NSG*NS10);
ps += 8*(NSG);
}
} else {
// TODO: this is the quantized K cache branch - not optimized yet
for (short ccc = 0; ccc < (C/8)/NSG; ++ccc) {
const short cc = ccc*NSG + sgitg;
const short tx = tiisg%4;
const short ty = tiisg/4;
qk8x8_t mqk = make_filled_simdgroup_matrix<qk_t, 8>((qk_t) 0.0f);
for (short ii = 0; ii < DK16; ii += 4) {
device const kd4x4_t * pk4x4 = (device const kd4x4_t *) (k + ((ic + 8*cc + ty)*args.nb11));
if (DK16%4 == 0) {
// the head is evenly divisible by 4*16 = 64, so no need for bound checks
{
k4x4_t tmp;
deq_k(pk4x4 + (ii + tx)/nl_k, (ii + tx)%nl_k, tmp);
sk4x4[4*ty + tx] = tmp;
}
simdgroup_barrier(mem_flags::mem_threadgroup);
FOR_UNROLL (short k = 0; k < 4; ++k) {
k8x8_t mk;
q8x8_t mq;
simdgroup_load(mk, sk + 16*k + 0*8, 4*16, 0, true); // transpose
simdgroup_load(mq, sq + (2*(ii + k) + 0)*8, DK);
simdgroup_multiply_accumulate(mqk, mq, mk, mqk);
simdgroup_load(mk, sk + 16*k + 1*8, 4*16, 0, true); // transpose
simdgroup_load(mq, sq + (2*(ii + k) + 1)*8, DK);
simdgroup_multiply_accumulate(mqk, mq, mk, mqk);
}
} else {
if (ii + tx < DK16) {
k4x4_t tmp;
deq_k(pk4x4 + (ii + tx)/nl_k, (ii + tx)%nl_k, tmp);
sk4x4[4*ty + tx] = tmp;
}
simdgroup_barrier(mem_flags::mem_threadgroup);
for (short k = 0; k < 4 && ii + k < DK16; ++k) {
k8x8_t mk;
q8x8_t mq;
simdgroup_load(mk, sk + 16*k + 0*8, 4*16, 0, true); // transpose
simdgroup_load(mq, sq + (2*(ii + k) + 0)*8, DK);
simdgroup_multiply_accumulate(mqk, mq, mk, mqk);
simdgroup_load(mk, sk + 16*k + 1*8, 4*16, 0, true); // transpose
simdgroup_load(mq, sq + (2*(ii + k) + 1)*8, DK);
simdgroup_multiply_accumulate(mqk, mq, mk, mqk);
}
}
}
simdgroup_store(mqk, ss + 8*cc, SH, 0, false);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// online softmax
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
const short j = jj*NSG + sgitg;
const float m = M[jj];
// scale and apply the logitcap / mask
float2 s2 = ss2[j*SH/2 + tiisg]*args.scale;
if (FC_flash_attn_ext_has_scap) {
s2 = args.logit_softcap*precise::tanh(s2);
}
// mqk = mqk + slope*mask
if (FC_flash_attn_ext_has_bias) {
s2 += s2_t(sm2[j*SH + tiisg])*slope;
} else {
s2 += s2_t(sm2[j*SH + tiisg]);
}
M[jj] = simd_max(max(M[jj], max(s2[0], s2[1])));
const float ms = exp(m - M[jj]);
const float2 vs2 = exp(s2 - M[jj]);
S[jj] = S[jj]*ms + simd_sum(vs2[0] + vs2[1]);
// the P matrix from the paper (Q rows, C columns)
ss2[j*SH/2 + tiisg] = vs2;
if (DV4 % NW == 0) {
FOR_UNROLL (short ii = 0; ii < DV4/NW; ++ii) {
const short i = ii*NW + tiisg;
so4[j*PV4 + i] *= ms;
}
} else {
for (short i = tiisg; i < DV4; i += NW) {
so4[j*PV4 + i] *= ms;
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// O = O + (Q*K^T)*V
{
// we can read directly from global memory
if (is_same<vd4x4_t, v4x4_t>::value) {
static_assert(PV8 % NSG == 0, "");
constexpr short NO = PV8/NSG;
o8x8_t lo[NO];
{
auto sot = so + 8*sgitg;
FOR_UNROLL (short ii = 0; ii < NO; ++ii) {
simdgroup_load(lo[ii], sot, PV, 0, false);
sot += 8*NSG;
}
}
{
device const v_t * pv = (device const v_t *) (v + ic*args.nb21);
pv += 8*sgitg;
if (DV <= 64) {
FOR_UNROLL (short cc = 0; cc < C/8; ++cc) {
s8x8_t vs;
simdgroup_load(vs, ss + 8*cc, SH, 0, false);
FOR_UNROLL (short ii = 0; ii < NO/2; ++ii) {
v8x8_t mv[2];
simdgroup_load(mv[0], pv + 0*NSG + 16*ii*NSG, NS20, 0, false);
simdgroup_load(mv[1], pv + 8*NSG + 16*ii*NSG, NS20, 0, false);
simdgroup_multiply_accumulate(lo[2*ii + 0], vs, mv[0], lo[2*ii + 0]);
simdgroup_multiply_accumulate(lo[2*ii + 1], vs, mv[1], lo[2*ii + 1]);
}
pv += 8*NS20;
}
} else {
FOR_UNROLL (short cc = 0; cc < (C/8)/2; ++cc) {
s8x8_t vs[2];
simdgroup_load(vs[0], ss + 16*cc + 0, SH, 0, false);
simdgroup_load(vs[1], ss + 16*cc + 8, SH, 0, false);
FOR_UNROLL (short ii = 0; ii < NO/2; ++ii) {
v8x8_t mv[4];
simdgroup_load(mv[0], pv + 0*NSG + 16*ii*NSG + 0*8*NS20, NS20, 0, false);
simdgroup_load(mv[1], pv + 8*NSG + 16*ii*NSG + 0*8*NS20, NS20, 0, false);
simdgroup_load(mv[2], pv + 0*NSG + 16*ii*NSG + 1*8*NS20, NS20, 0, false);
simdgroup_load(mv[3], pv + 8*NSG + 16*ii*NSG + 1*8*NS20, NS20, 0, false);
simdgroup_multiply_accumulate(lo[2*ii + 0], vs[0], mv[0], lo[2*ii + 0]);
simdgroup_multiply_accumulate(lo[2*ii + 1], vs[0], mv[1], lo[2*ii + 1]);
simdgroup_multiply_accumulate(lo[2*ii + 0], vs[1], mv[2], lo[2*ii + 0]);
simdgroup_multiply_accumulate(lo[2*ii + 1], vs[1], mv[3], lo[2*ii + 1]);
}
pv += 2*8*NS20;
}
}
}
{
auto sot = so + 8*sgitg;
FOR_UNROLL (short ii = 0; ii < NO; ++ii) {
simdgroup_store(lo[ii], sot, PV, 0, false);
sot += 8*NSG;
}
}
} else {
// TODO: this is the quantized V cache branch - not optimized yet
const short tx = tiisg%4;
const short ty = tiisg/4;
for (short cc = 0; cc < C/8; ++cc) {
s8x8_t vs;
simdgroup_load(vs, ss + 8*cc, SH, 0, false);
for (short ii = 4*sgitg; ii < DV16; ii += 4*NSG) {
device const vd4x4_t * pv4x4 = (device const vd4x4_t *) (v + ((ic + 8*cc + ty)*args.nb21));
if (DV16%4 == 0) {
// no need for bound checks
{
v4x4_t tmp;
deq_v(pv4x4 + (ii + tx)/nl_v, (ii + tx)%nl_v, tmp);
sv4x4[4*ty + tx] = tmp;
}
simdgroup_barrier(mem_flags::mem_threadgroup);
FOR_UNROLL (short k = 0; k < 4; ++k) {
v8x8_t mv[2];
o8x8_t lo[2];
simdgroup_load(mv[0], sv + 16*k + 0*8, 4*16, 0, false);
simdgroup_load(mv[1], sv + 16*k + 1*8, 4*16, 0, false);
simdgroup_load(lo[0], so + 8*(2*(ii + k) + 0), PV, 0, false);
simdgroup_load(lo[1], so + 8*(2*(ii + k) + 1), PV, 0, false);
simdgroup_multiply_accumulate(lo[0], vs, mv[0], lo[0]);
simdgroup_multiply_accumulate(lo[1], vs, mv[1], lo[1]);
simdgroup_store(lo[0], so + 8*(2*(ii + k) + 0), PV, 0, false);
simdgroup_store(lo[1], so + 8*(2*(ii + k) + 1), PV, 0, false);
}
} else {
if (ii + tx < DV16) {
v4x4_t tmp;
deq_v(pv4x4 + (ii + tx)/nl_v, (ii + tx)%nl_v, tmp);
sv4x4[4*ty + tx] = tmp;
}
simdgroup_barrier(mem_flags::mem_threadgroup);
for (short k = 0; k < 4 && ii + k < DV16; ++k) {
v8x8_t mv[2];
o8x8_t lo[2];
simdgroup_load(mv[0], sv + 16*k + 0*8, 4*16, 0, false);
simdgroup_load(mv[1], sv + 16*k + 1*8, 4*16, 0, false);
simdgroup_load(lo[0], so + 8*(2*(ii + k) + 0), PV, 0, false);
simdgroup_load(lo[1], so + 8*(2*(ii + k) + 1), PV, 0, false);
simdgroup_multiply_accumulate(lo[0], vs, mv[0], lo[0]);
simdgroup_multiply_accumulate(lo[1], vs, mv[1], lo[1]);
simdgroup_store(lo[0], so + 8*(2*(ii + k) + 0), PV, 0, false);
simdgroup_store(lo[1], so + 8*(2*(ii + k) + 1), PV, 0, false);
}
}
}
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
if (FC_flash_attn_ext_has_sinks) {
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
const short j = jj*NSG + sgitg;
const float m = M[jj];
const float s = tiisg == 0 ? ((device const float *) sinks)[iq2] : -FLT_MAX/2;
M[jj] = simd_max(max(M[jj], s));
const float ms = exp(m - M[jj]);
const float vs = exp(s - M[jj]);
S[jj] = S[jj]*ms + simd_sum(vs);
for (short i = tiisg; i < DV4; i += NW) {
so4[j*PV4 + i] *= ms;
}
}
}
}
// store to global memory
for (short jj = 0; jj < NQ; ++jj) {
const short j = jj*NSG + sgitg;
if (iq1 + j >= args.ne01) {
break;
}
device float4 * dst4 = (device float4 *) dst + ((uint64_t)iq3*args.ne2*args.ne1 + iq2 + (uint64_t)(iq1 + j)*args.ne1)*DV4;
const float scale = S[jj] == 0.0 ? 0.0f : 1.0f/S[jj];
if (DV4 % NW == 0) {
FOR_UNROLL (short ii = 0; ii < DV4/NW; ++ii) {
const short i = ii*NW + tiisg;
dst4[i] = (float4) so4[j*PV4 + i]*scale;
}
} else {
for (short i = tiisg; i < DV4; i += NW) {
dst4[i] = (float4) so4[j*PV4 + i]*scale;
}
}
}
#undef NS10
#undef NS20
}
template<
typename q_t, // query types in shared memory
typename q4_t,
typename q8x8_t,
typename k_t, // key types in shared memory
typename k4x4_t,
typename k8x8_t,
typename v_t, // value types in shared memory
typename v4x4_t,
typename v8x8_t,
typename qk_t, // Q*K types
typename qk8x8_t,
typename s_t, // soft-max types
typename s2_t,
typename s8x8_t,
typename o_t, // attention accumulation types
typename o4_t,
typename o8x8_t,
typename kd4x4_t, // key type in device memory
short nl_k,
void (*deq_k)(device const kd4x4_t *, short, thread k4x4_t &),
typename vd4x4_t, // value type in device memory
short nl_v,
void (*deq_v)(device const vd4x4_t *, short, thread v4x4_t &),
short DK, // K head size
short DV, // V head size
short Q = OP_FLASH_ATTN_EXT_NQPTG, // queries per threadgroup
short C = OP_FLASH_ATTN_EXT_NCPSG> // cache items per threadgroup
kernel void kernel_flash_attn_ext(
constant ggml_metal_kargs_flash_attn_ext & args,
device const char * q,
device const char * k,
device const char * v,
device const char * mask,
device const char * sinks,
device const char * pad,
device const char * blk,
device char * dst,
threadgroup half * shmem_f16 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
#define FWD_TMPL q_t, q4_t, q8x8_t, k_t, k4x4_t, k8x8_t, v_t, v4x4_t, v8x8_t, qk_t, qk8x8_t, s_t, s2_t, s8x8_t, o_t, o4_t, o8x8_t, kd4x4_t, nl_k, deq_k, vd4x4_t, nl_v, deq_v, DK, DV, Q, C
#define FWD_ARGS args, q, k, v, mask, sinks, pad, blk, dst, shmem_f16, tgpig, tiisg, sgitg
switch (FC_flash_attn_ext_nsg) {
// note: disabled cases to reduce library load time
//case 1: kernel_flash_attn_ext_impl<FWD_TMPL, 1>(FWD_ARGS); break;
//case 2: kernel_flash_attn_ext_impl<FWD_TMPL, 2>(FWD_ARGS); break;
case 4: kernel_flash_attn_ext_impl<FWD_TMPL, 4>(FWD_ARGS); break;
}
#undef FWD_TMPL
#undef FWD_ARGS
}
// TODO: this is quite ugly. in the future these types will be hardcoded in the kernel, but for now keep them as
// template to be able to explore different combinations
//
#define FA_TYPES \
half, half4, simdgroup_half8x8, \
half, half4x4, simdgroup_half8x8, \
half, half4x4, simdgroup_half8x8, \
float, simdgroup_float8x8, \
float, float2, simdgroup_float8x8, \
float, float4, simdgroup_float8x8
//half, half4, simdgroup_half8x8
#define FA_TYPES_BF \
bfloat, bfloat4, simdgroup_bfloat8x8, \
bfloat, bfloat4x4, simdgroup_bfloat8x8, \
bfloat, bfloat4x4, simdgroup_bfloat8x8, \
float, simdgroup_float8x8, \
float, float2, simdgroup_float8x8, \
half, half4, simdgroup_half8x8
//float, float4, simdgroup_float8x8
typedef decltype(kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 64, 64>) flash_attn_ext_t;
template [[host_name("kernel_flash_attn_ext_f16_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 40, 40>;
template [[host_name("kernel_flash_attn_ext_f16_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 64, 64>;
template [[host_name("kernel_flash_attn_ext_f16_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 80, 80>;
template [[host_name("kernel_flash_attn_ext_f16_dk96_dv96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 96, 96>;
template [[host_name("kernel_flash_attn_ext_f16_dk112_dv112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 112, 112>;
template [[host_name("kernel_flash_attn_ext_f16_dk128_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 128, 128>;
template [[host_name("kernel_flash_attn_ext_f16_dk192_dv192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 192, 192>;
template [[host_name("kernel_flash_attn_ext_f16_dk192_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 192, 128>;
template [[host_name("kernel_flash_attn_ext_f16_dk256_dv256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 256, 256>;
template [[host_name("kernel_flash_attn_ext_f16_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 576, 512>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_bf16_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 40, 40>;
template [[host_name("kernel_flash_attn_ext_bf16_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 64, 64>;
template [[host_name("kernel_flash_attn_ext_bf16_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 80, 80>;
template [[host_name("kernel_flash_attn_ext_bf16_dk96_dv96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 96, 96>;
template [[host_name("kernel_flash_attn_ext_bf16_dk112_dv112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 112, 112>;
template [[host_name("kernel_flash_attn_ext_bf16_dk128_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 128, 128>;
template [[host_name("kernel_flash_attn_ext_bf16_dk192_dv192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 192, 192>;
template [[host_name("kernel_flash_attn_ext_bf16_dk192_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 192, 128>;
template [[host_name("kernel_flash_attn_ext_bf16_dk256_dv256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 256, 256>;
template [[host_name("kernel_flash_attn_ext_bf16_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 576, 512>;
#endif
template [[host_name("kernel_flash_attn_ext_q4_0_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 80, 80>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk96_dv96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 96, 96>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk112_dv112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 112, 112>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk128_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 128, 128>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk192_dv192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk192_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk256_dv256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 80, 80>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk96_dv96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 96, 96>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk112_dv112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 112, 112>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk128_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 128, 128>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk192_dv192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk192_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk256_dv256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 80, 80>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk96_dv96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 96, 96>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk112_dv112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 112, 112>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk128_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 128, 128>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk192_dv192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk192_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk256_dv256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 80, 80>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk96_dv96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 96, 96>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk112_dv112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 112, 112>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk128_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 128, 128>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk192_dv192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk192_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk256_dv256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 80, 80>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk96_dv96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 96, 96>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk112_dv112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 112, 112>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk128_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 128, 128>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk192_dv192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 192, 192>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk192_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 192, 128>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk256_dv256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 576, 512>;
#undef FA_TYPES
#undef FA_TYPES_BF
constant bool FC_flash_attn_ext_vec_has_mask [[function_constant(FC_FLASH_ATTN_EXT_VEC + 0)]];
constant bool FC_flash_attn_ext_vec_has_sinks [[function_constant(FC_FLASH_ATTN_EXT_VEC + 1)]];
constant bool FC_flash_attn_ext_vec_has_bias [[function_constant(FC_FLASH_ATTN_EXT_VEC + 2)]];
constant bool FC_flash_attn_ext_vec_has_scap [[function_constant(FC_FLASH_ATTN_EXT_VEC + 3)]];
constant bool FC_flash_attn_ext_vec_has_kvpad [[function_constant(FC_FLASH_ATTN_EXT_VEC + 4)]];
//constant float FC_flash_attn_ext_vec_scale [[function_constant(FC_FLASH_ATTN_EXT_VEC + 10)]];
//constant float FC_flash_attn_ext_vec_max_bias [[function_constant(FC_FLASH_ATTN_EXT_VEC + 11)]];
//constant float FC_flash_attn_ext_vec_logit_softcap [[function_constant(FC_FLASH_ATTN_EXT_VEC + 12)]];
constant int32_t FC_flash_attn_ext_vec_ns10 [[function_constant(FC_FLASH_ATTN_EXT_VEC + 20)]];
constant int32_t FC_flash_attn_ext_vec_ns20 [[function_constant(FC_FLASH_ATTN_EXT_VEC + 21)]];
constant int32_t FC_flash_attn_ext_vec_nsg [[function_constant(FC_FLASH_ATTN_EXT_VEC + 22)]];
constant int32_t FC_flash_attn_ext_vec_nwg [[function_constant(FC_FLASH_ATTN_EXT_VEC + 23)]];
template<
typename q4_t, // query types in shared memory
typename k4_t, // key types in shared memory
typename v4_t, // value types in shared memory
typename qk_t, // Q*K types
typename s_t, // soft-max types
typename s4_t,
typename o4_t, // attention accumulation types
typename kd4_t, // key type in device memory
short nl_k,
void (*deq_k_t4)(device const kd4_t *, short, thread k4_t &),
typename vd4_t, // value type in device memory
short nl_v,
void (*deq_v_t4)(device const vd4_t *, short, thread v4_t &),
short DK, // K head size
short DV, // V head size
short NE, // head elements per thread
short Q, // queries per threadgroup
short C, // cache items per threadgroup
short NSG> // number of simd groups
void kernel_flash_attn_ext_vec_impl(
constant ggml_metal_kargs_flash_attn_ext_vec & args,
device const char * q,
device const char * k,
device const char * v,
device const char * mask,
device const char * sinks,
device const char * pad,
device char * dst,
threadgroup half * shmem_f16 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
static_assert(DK % 32 == 0, "DK must be divisible by 32");
static_assert(DV % 32 == 0, "DV must be divisible by 32");
#define NWG (FC_flash_attn_ext_vec_nwg)
#define NS10 (FC_flash_attn_ext_vec_ns10)
#define NS20 (FC_flash_attn_ext_vec_ns20)
const short iwg = tgpig[2]%NWG;
const ushort iq3 = tgpig[2]/NWG;
const ushort iq2 = tgpig[1];
const ushort iq1 = tgpig[0];
constexpr short DK4 = DK/4;
constexpr short DV4 = DV/4;
constexpr short PK = PAD2(DK, 128);
constexpr short PK4 = PK/4;
constexpr short PV = PAD2(DV, 128);
constexpr short PV4 = PV/4;
constexpr short NW = N_SIMDWIDTH;
constexpr short NL = NW/NE; // note: this can be adjusted to support different head sizes and simdgroup work loads
constexpr short SH = 4*C; // shared memory per simdgroup
static_assert(DK4 % NL == 0, "DK4 must be divisible by NL");
static_assert(DV4 % NL == 0, "DV4 must be divisible by NL");
const short T = PK + NSG*SH; // shared memory size per query in (half)
//threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*PK); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*PK); // same as above but in q4_t
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*PK); // scratch buffer for attention
threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*PK); // same as above but in s4_t
threadgroup half * sm = (threadgroup half *) (shmem_f16 + sgitg*SH + 2*C + Q*PK); // scratch buffer for mask
threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 2*sgitg*PV + Q*T); // scratch buffer for the results
// store the result for all queries in shared memory (the O matrix from the paper)
so4 += tiisg;
{
q += iq1*args.nb01 + iq2*args.nb02 + iq3*args.nb03;
const short ikv2 = iq2/(args.ne02/args.ne_12_2);
const short ikv3 = iq3/(args.ne03/args.ne_12_3);
k += ikv2*args.nb12 + ikv3*args.nb13;
v += ikv2*args.nb22 + ikv3*args.nb23;
}
// load heads from Q to shared memory
device const float4 * q4 = (device const float4 *) ((device const char *) q);
for (short i = tiisg; i < PK4; i += NW) {
if (iq1 < args.ne01 && i < DK4) {
sq4[i] = (q4_t) q4[i];
} else {
sq4[i] = (q4_t) 0.0f;
}
}
// zero out so
for (short i = 0; i < DV4/NL; ++i) {
so4[i*NL] = (o4_t) 0.0f;
}
// zero out shared memory SH
for (short i = tiisg; i < SH/4; i += NW) {
ss4[i] = (s4_t) 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
{
float S = 0.0f;
float M = -FLT_MAX/2;
// thread indices inside the simdgroup
const short tx = tiisg%NL;
const short ty = tiisg/NL;
// pointer to the mask
device const half * pm = (device const half *) (mask + iq1*args.nb31 + (iq2%args.ne32)*args.nb32 + (iq3%args.ne33)*args.nb33);
float slope = 1.0f;
// ALiBi
if (FC_flash_attn_ext_vec_has_bias) {
const short h = iq2;
const float base = h < args.n_head_log2 ? args.m0 : args.m1;
const short exph = h < args.n_head_log2 ? h + 1 : 2*(h - args.n_head_log2) + 1;
slope = pow(base, exph);
}
// loop over the KV cache
// each simdgroup handles blocks of Q rows and C columns
for (int ic0 = iwg*NSG + sgitg; ; ic0 += NWG*NSG) {
int ic = ic0*C;
if (ic >= args.ne11) {
break;
}
// the last partial chunk uses the pad buffer as source
if (FC_flash_attn_ext_vec_has_kvpad && ic + C > args.ne11) {
k = pad;
v = k + args.nb11*C*args.ne_12_2*args.ne_12_3;
mask = v + args.nb21*C*args.ne_12_2*args.ne_12_3;
const short ikv2 = iq2/(args.ne02/args.ne_12_2);
const short ikv3 = iq3/(args.ne03/args.ne_12_3);
k += (ikv2 + ikv3*args.ne_12_2)*args.nb11*C;
v += (ikv2 + ikv3*args.ne_12_2)*args.nb21*C;
if (!FC_flash_attn_ext_vec_has_mask) {
if (ic + tiisg >= args.ne11) {
sm[tiisg] = -MAXHALF;
}
} else {
pm = (device const half *) (mask) +
iq1*C +
(iq2%args.ne32)*(C*args.ne31) +
(iq3%args.ne33)*(C*args.ne31*args.ne32);
}
ic = 0;
}
if (FC_flash_attn_ext_vec_has_mask) {
sm[tiisg] = pm[ic + tiisg];
}
// skip -INF blocks
if (simd_max(sm[tiisg]) == -INFINITY) {
continue;
}
// Q*K^T
{
device const k4_t * pk4 = (device const k4_t *) (k + ic*args.nb11);
threadgroup const q4_t * pq4 = sq4;
pk4 += ty*NS10/4 + tx;
pq4 += tx;
qk_t mqk[C/NE] = { [ 0 ... C/NE - 1] = 0.0f };
// each simdgroup processes 1 query and NE (NW/NL) cache elements
FOR_UNROLL (short cc = 0; cc < C/NE; ++cc) {
if (is_same<kd4_t, k4_t>::value) {
FOR_UNROLL (short ii = 0; ii < DK4/NL; ++ii) {
mqk[cc] += dot((float4) pk4[cc*NE*NS10/4 + ii*NL], (float4) pq4[ii*NL]);
}
} else {
device const kd4_t * pk = (device const kd4_t *) (k + ((ic + NE*cc + ty)*args.nb11));
k4_t mk;
FOR_UNROLL (short ii = 0; ii < DK4/NL; ++ii) {
const short i = ii*NL + tx;
deq_k_t4(pk + i/nl_k, i%nl_k, mk);
mqk[cc] += dot((float4) mk, (float4) sq4[i]);
}
}
if (NE == 1) {
mqk[cc] = simd_sum(mqk[cc]);
} else {
// simdgroup reduce (NE = 4)
// [ 0 .. 7] -> [ 0]
// [ 8 .. 15] -> [ 8]
// [16 .. 23] -> [16]
// [24 .. 31] -> [24]
if (NE <= 1) {
mqk[cc] += simd_shuffle_down(mqk[cc], 16);
}
if (NE <= 2) {
mqk[cc] += simd_shuffle_down(mqk[cc], 8);
}
if (NE <= 4) {
mqk[cc] += simd_shuffle_down(mqk[cc], 4);
}
if (NE <= 8) {
mqk[cc] += simd_shuffle_down(mqk[cc], 2);
}
if (NE <= 16) {
mqk[cc] += simd_shuffle_down(mqk[cc], 1);
}
// broadcast
mqk[cc] = simd_shuffle(mqk[cc], NL*ty);
}
}
if (FC_flash_attn_ext_vec_has_mask &&
!FC_flash_attn_ext_vec_has_scap &&
!FC_flash_attn_ext_vec_has_bias) {
ss[NE*tx + ty] = fma(mqk[tx], args.scale, (qk_t) sm[NE*tx + ty]);
} else {
mqk[tx] *= args.scale;
if (FC_flash_attn_ext_vec_has_scap) {
mqk[tx] = args.logit_softcap*precise::tanh(mqk[tx]);
}
if (FC_flash_attn_ext_vec_has_bias) {
mqk[tx] += (qk_t) sm[NE*tx + ty]*slope;
} else {
mqk[tx] += (qk_t) sm[NE*tx + ty];
}
ss[NE*tx + ty] = mqk[tx];
}
}
simdgroup_barrier(mem_flags::mem_threadgroup);
// online softmax
{
const float m = M;
const float s = ss[tiisg];
M = simd_max(max(M, s));
const float ms = exp(m - M);
const float vs = exp(s - M);
S = S*ms + simd_sum(vs);
// the P matrix from the paper (Q rows, C columns)
ss[tiisg] = vs;
// O = diag(ms)*O
if ((DV4/NL % NW == 0) || ty == 0) {
FOR_UNROLL (short ii = 0; ii < DV4/NL; ++ii) {
so4[ii*NL] *= ms;
}
}
}
simdgroup_barrier(mem_flags::mem_threadgroup);
// O = O + (Q*K^T)*V
{
o4_t lo[DV4/NL];
FOR_UNROLL (short ii = 0; ii < DV4/NL; ++ii) {
lo[ii] = 0.0f;
}
if (is_same<vd4_t, v4_t>::value) {
device const v4_t * pv4 = (device const v4_t *) (v + ic*args.nb21);
pv4 += ty*NS20/4 + tx;
const auto sst = ss + ty;
FOR_UNROLL (short cc = 0; cc < C/NE; ++cc) {
FOR_UNROLL (short ii = 0; ii < DV4/NL; ++ii) {
lo[ii] += o4_t(float4(pv4[cc*NE*NS20/4 + ii*NL])*float4(sst[cc*NE]));
}
}
} else {
FOR_UNROLL (short cc = 0; cc < C/NE; ++cc) {
device const vd4_t * pv4 = (device const vd4_t *) (v + ((ic + NE*cc + ty)*args.nb21));
FOR_UNROLL (short ii = 0; ii < DV4/NL; ++ii) {
const short i = ii*NL + tx;
v4_t mv;
deq_v_t4(pv4 + i/nl_v, i%nl_v, mv);
lo[ii] += o4_t(float4(mv)*float4(ss[NE*cc + ty]));
}
}
}
FOR_UNROLL (short ii = 0; ii < DV4/NL; ++ii) {
if (NE > 1) {
lo[ii][0] += simd_shuffle_down(lo[ii][0], 16);
lo[ii][1] += simd_shuffle_down(lo[ii][1], 16);
lo[ii][2] += simd_shuffle_down(lo[ii][2], 16);
lo[ii][3] += simd_shuffle_down(lo[ii][3], 16);
}
if (NE > 2) {
lo[ii][0] += simd_shuffle_down(lo[ii][0], 8);
lo[ii][1] += simd_shuffle_down(lo[ii][1], 8);
lo[ii][2] += simd_shuffle_down(lo[ii][2], 8);
lo[ii][3] += simd_shuffle_down(lo[ii][3], 8);
}
if (NE > 4) {
lo[ii][0] += simd_shuffle_down(lo[ii][0], 4);
lo[ii][1] += simd_shuffle_down(lo[ii][1], 4);
lo[ii][2] += simd_shuffle_down(lo[ii][2], 4);
lo[ii][3] += simd_shuffle_down(lo[ii][3], 4);
}
if (NE > 8) {
lo[ii][0] += simd_shuffle_down(lo[ii][0], 2);
lo[ii][1] += simd_shuffle_down(lo[ii][1], 2);
lo[ii][2] += simd_shuffle_down(lo[ii][2], 2);
lo[ii][3] += simd_shuffle_down(lo[ii][3], 2);
}
if (NE > 16) {
lo[ii][0] += simd_shuffle_down(lo[ii][0], 1);
lo[ii][1] += simd_shuffle_down(lo[ii][1], 1);
lo[ii][2] += simd_shuffle_down(lo[ii][2], 1);
lo[ii][3] += simd_shuffle_down(lo[ii][3], 1);
}
}
if ((DV4/NL % NW == 0) || ty == 0) {
FOR_UNROLL (short ii = 0; ii < DV4/NL; ++ii) {
so4[ii*NL] += lo[ii];
}
}
}
}
if (FC_flash_attn_ext_vec_has_sinks && sgitg == 0 && iwg == 0) {
const float m = M;
const float s = tiisg == 0 ? ((device const float *) sinks)[iq2] : -FLT_MAX/2;
M = simd_max(max(M, s));
const float ms = exp(m - M);
const float vs = exp(s - M);
S = S*ms + simd_sum(vs);
if ((DV4/NL % NW == 0) || ty == 0) {
FOR_UNROLL (short ii = 0; ii < DV4/NL; ++ii) {
so4[ii*NL] *= ms;
}
}
}
// these are needed for reducing the results from the simdgroups (reuse the ss buffer)
if (tiisg == 0) {
ss[0] = (s_t) S;
ss[1] = (s_t) M;
}
}
so4 -= tiisg;
threadgroup_barrier(mem_flags::mem_threadgroup);
// parallel reduce
for (short r = NSG/2; r > 0; r >>= 1) {
if (sgitg < r) {
const float S0 = ss[ 0];
const float S1 = ss[r*(SH/2) + 0];
const float M0 = ss[ 1];
const float M1 = ss[r*(SH/2) + 1];
const float M = max(M0, M1);
const float ms0 = exp(M0 - M);
const float ms1 = exp(M1 - M);
const float S = S0*ms0 + S1*ms1;
if (tiisg == 0) {
ss[0] = S;
ss[1] = M;
}
// O_0 = diag(ms0)*O_0 + diag(ms1)*O_1
for (short i = tiisg; i < DV4; i += NW) {
so4[i] = so4[i]*ms0 + so4[i + r*PV4]*ms1;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// final rescale with 1/S and store to global memory
if (sgitg == 0) {
const int64_t nrows = args.ne3*args.ne2*args.ne1;
const int64_t rid = iq3*args.ne2*args.ne1 + iq2 + iq1*args.ne1;
device float4 * dst4 = (device float4 *) dst;
device float * dst1 = (device float *) dst + nrows*DV*NWG; // the S and M are stored after the results
const float S = NWG == 1 ? (ss[0] == 0.0f ? 0.0f : 1.0f/ss[0]) : 1.0f;
// interleave the workgroup data
for (short i = tiisg; i < DV4; i += NW) {
dst4[rid*DV4*NWG + NWG*i + iwg] = (float4) so4[i]*S;
}
// store S and M
if (NWG > 1) {
if (tiisg == 0) {
dst1[rid*(2*NWG) + 2*iwg + 0] = ss[0];
dst1[rid*(2*NWG) + 2*iwg + 1] = ss[1];
}
}
}
#undef NWG
#undef NS10
#undef NS20
}
template<
typename q4_t, // query types in shared memory
typename k4_t, // key types in shared memory
typename v4_t, // value types in shared memory
typename qk_t, // Q*K types
typename s_t, // soft-max types
typename s4_t,
typename o4_t, // attention accumulation types
typename kd4_t, // key type in device memory
short nl_k,
void (*deq_k_t4)(device const kd4_t *, short, thread k4_t &),
typename vd4_t, // value type in device memory
short nl_v,
void (*deq_v_t4)(device const vd4_t *, short, thread v4_t &),
short DK, // K head size
short DV, // V head size
short NE = 4, // head elements per thread
short Q = OP_FLASH_ATTN_EXT_VEC_NQPTG, // queries per threadgroup
short C = OP_FLASH_ATTN_EXT_VEC_NCPSG> // cache items per threadgroup
kernel void kernel_flash_attn_ext_vec(
constant ggml_metal_kargs_flash_attn_ext_vec & args,
device const char * q,
device const char * k,
device const char * v,
device const char * mask,
device const char * sinks,
device const char * pad,
device char * dst,
threadgroup half * shmem_f16 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
#define FWD_TMPL q4_t, k4_t, v4_t, qk_t, s_t, s4_t, o4_t, kd4_t, nl_k, deq_k_t4, vd4_t, nl_v, deq_v_t4, DK, DV, NE, Q, C
#define FWD_ARGS args, q, k, v, mask, sinks, pad, dst, shmem_f16, tgpig, tiisg, sgitg
switch (FC_flash_attn_ext_vec_nsg) {
// note: disabled cases to reduce library load time
case 1: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 1>(FWD_ARGS); break;
case 2: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 2>(FWD_ARGS); break;
case 4: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 4>(FWD_ARGS); break;
//case 8: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 8>(FWD_ARGS); break;
//case 16: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 16>(FWD_ARGS); break;
//case 32: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 32>(FWD_ARGS); break;
}
#undef FWD_TMPL
#undef FWD_ARGS
}
// note: I think the s_t can be half instead of float, because the Q*K scaling is done before storing to shared mem
// in the other (non-vec) kernel, we need s_t to also be float because we scale during the soft_max
//
#define FA_TYPES \
half4, \
half4, \
half4, \
float, \
float, float4, \
float4
typedef decltype(kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>) flash_attn_ext_vec_t;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 64, 64, 2>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 64, 64, 2>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 96, 96, 4>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 96, 96, 4>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 1>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 128, 128, 1>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 192, 192, 2>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 192, 192, 2>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 192, 128, 2>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 192, 128, 2>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 256, 256, 1>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 256, 256, 1>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 576, 512, 2>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 576, 512, 2>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 576, 512, 2>;
#undef FA_TYPES
constant int32_t FC_flash_attn_ext_vec_reduce_DV [[function_constant(FC_FLASH_ATTN_EXT_VEC_REDUCE + 0)]];
constant int32_t FC_flash_attn_ext_vec_reduce_NWG [[function_constant(FC_FLASH_ATTN_EXT_VEC_REDUCE + 1)]];
kernel void kernel_flash_attn_ext_vec_reduce(
constant ggml_metal_kargs_flash_attn_ext_vec_reduce & args,
device const char * htmp,
device char * dst,
uint tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
#define NWG (FC_flash_attn_ext_vec_reduce_NWG)
#define DV (FC_flash_attn_ext_vec_reduce_DV)
const uint64_t rid = tgpig;
const short iwg = tiisg;
device const float * ss = (device const float *) htmp + (uint64_t)args.nrows*DV*NWG;
float S = ss[rid*(2*NWG) + 2*iwg + 0];
float M = ss[rid*(2*NWG) + 2*iwg + 1];
const float m = simd_max(M);
const float ms = exp(M - m);
S = simd_sum(S*ms);
S = S == 0.0f ? 0.0f : 1.0f/S;
const short DV4 = DV/4;
device const float4 * htmp4 = (device const float4 *) htmp + rid*DV4*NWG;
device float4 * dst4 = (device float4 *) dst + rid*DV4;
for (short i = sgitg; i < DV4; i += NWG) {
const float4 v = simd_sum(htmp4[i*NWG + iwg]*ms);
if (iwg == 0) {
dst4[i] = v*S;
}
}
#undef NWG
#undef DV
}
template<typename T0, typename T1>
kernel void kernel_cpy_t_t(
constant ggml_metal_kargs_cpy & args,
device const char * src0,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiitg[[thread_index_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig[2];
const int i02 = tgpig[1];
const int i01 = ntg[1] == 1 ? tgpig[0]%args.ne01 : tgpig[0]*ntg[1] + tiitg/ntg[0];
const int iw0 = ntg[1] == 1 ? tgpig[0]/args.ne01 : 0;
const int64_t n = i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00;
const int64_t i3 = n/(args.ne2*args.ne1*args.ne0);
const int64_t i2 = (n - i3*args.ne2*args.ne1*args.ne0)/(args.ne1*args.ne0);
const int64_t i1 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0)/args.ne0;
const int64_t i0 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0 - i1*args.ne0);
device T1 * dst_data = (device T1 *) (dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0);
for (int64_t i00 = iw0*ntg[0] + tiitg%ntg[0]; i00 < args.ne00; ) {
device const T0 * src = (device T0 *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + i00*args.nb00);
dst_data[i00] = (T1) src[0];
break;
}
}
typedef decltype(kernel_cpy_t_t<float, float>) kernel_cpy_t;
template [[host_name("kernel_cpy_f32_f32")]] kernel kernel_cpy_t kernel_cpy_t_t<float, float>;
template [[host_name("kernel_cpy_f32_f16")]] kernel kernel_cpy_t kernel_cpy_t_t<float, half>;
template [[host_name("kernel_cpy_f32_i32")]] kernel kernel_cpy_t kernel_cpy_t_t<float, int32_t>;
template [[host_name("kernel_cpy_i32_f32")]] kernel kernel_cpy_t kernel_cpy_t_t<int32_t, float>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_cpy_f32_bf16")]] kernel kernel_cpy_t kernel_cpy_t_t<float, bfloat>;
#endif
template [[host_name("kernel_cpy_f16_f32")]] kernel kernel_cpy_t kernel_cpy_t_t<half, float>;
template [[host_name("kernel_cpy_f16_f16")]] kernel kernel_cpy_t kernel_cpy_t_t<half, half>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_cpy_bf16_f32")]] kernel kernel_cpy_t kernel_cpy_t_t<bfloat, float>;
template [[host_name("kernel_cpy_bf16_bf16")]] kernel kernel_cpy_t kernel_cpy_t_t<bfloat, bfloat>;
#endif
template<short QK,
typename block_q,
void (*quantize_func)(device const float *, device block_q &)>
kernel void kernel_cpy_f32_q(
constant ggml_metal_kargs_cpy & args,
device const char * src0,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiitg[[thread_index_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig[2];
const int i02 = tgpig[1];
const int i01 = ntg[1] == 1 ? tgpig[0]%args.ne01 : tgpig[0]*ntg[1] + tiitg/ntg[0];
const int iw0 = ntg[1] == 1 ? tgpig[0]/args.ne01 : 0;
const int64_t n = i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00;
const int64_t i3 = n / (args.ne2*args.ne1*args.ne0);
const int64_t i2 = (n - i3*args.ne2*args.ne1*args.ne0) / (args.ne1*args.ne0);
const int64_t i1 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0) / args.ne0;
const int64_t i0 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0 - i1*args.ne0)/QK;
device block_q * dst_data = (device block_q *)(dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0);
for (int64_t i00 = iw0*ntg[0] + tiitg%ntg[0]; i00 < args.nk0; ) {
device const float * src = (device const float *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + (i00*QK)*args.nb00);
quantize_func(src, dst_data[i00]);
break;
}
}
typedef decltype(kernel_cpy_f32_q<QK8_0, block_q8_0, quantize_q8_0>) cpy_f_q_t;
template [[host_name("kernel_cpy_f32_q8_0")]] kernel cpy_f_q_t kernel_cpy_f32_q<QK8_0, block_q8_0, quantize_q8_0>;
template [[host_name("kernel_cpy_f32_q4_0")]] kernel cpy_f_q_t kernel_cpy_f32_q<QK4_0, block_q4_0, quantize_q4_0>;
template [[host_name("kernel_cpy_f32_q4_1")]] kernel cpy_f_q_t kernel_cpy_f32_q<QK4_1, block_q4_1, quantize_q4_1>;
template [[host_name("kernel_cpy_f32_q5_0")]] kernel cpy_f_q_t kernel_cpy_f32_q<QK5_0, block_q5_0, quantize_q5_0>;
template [[host_name("kernel_cpy_f32_q5_1")]] kernel cpy_f_q_t kernel_cpy_f32_q<QK5_1, block_q5_1, quantize_q5_1>;
template [[host_name("kernel_cpy_f32_iq4_nl")]] kernel cpy_f_q_t kernel_cpy_f32_q<QK4_NL, block_iq4_nl, quantize_iq4_nl>;
template<typename T4x4, typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread T4x4 &)>
kernel void kernel_cpy_q_f32(
constant ggml_metal_kargs_cpy & args,
device const char * src0,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiitg[[thread_index_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig[2];
const int i02 = tgpig[1];
const int i01 = ntg[1] == 1 ? tgpig[0]%args.ne01 : tgpig[0]*ntg[1] + tiitg/ntg[0];
const int iw0 = ntg[1] == 1 ? tgpig[0]/args.ne01 : 0;
const int64_t n = i03*args.ne02*args.ne01*args.ne00 + i02*args.ne01*args.ne00 + i01*args.ne00;
const int64_t i3 = n/(args.ne2*args.ne1*args.ne0);
const int64_t i2 = (n - i3*args.ne2*args.ne1*args.ne0)/(args.ne1*args.ne0);
const int64_t i1 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0)/args.ne0;
const int64_t i0 = (n - i3*args.ne2*args.ne1*args.ne0 - i2*args.ne1*args.ne0 - i1*args.ne0);
device const block_q * src_data = (device const block_q *)(src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01);
device T4x4 * dst_data = (device T4x4 *)(dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0);
for (int64_t i00 = iw0*ntg[0] + tiitg%ntg[0]; i00 < args.nk0; ) {
T4x4 temp;
dequantize_func(src_data + i00/nl, i00%nl, temp);
dst_data[i00] = temp;
break;
}
}
typedef decltype(kernel_cpy_q_f32<float4x4, block_q4_0, 2, dequantize_q4_0>) cpy_q_f_t;
template [[host_name("kernel_cpy_q4_0_f32")]] kernel cpy_q_f_t kernel_cpy_q_f32<float4x4, block_q4_0, 2, dequantize_q4_0>;
template [[host_name("kernel_cpy_q4_1_f32")]] kernel cpy_q_f_t kernel_cpy_q_f32<float4x4, block_q4_1, 2, dequantize_q4_1>;
template [[host_name("kernel_cpy_q5_0_f32")]] kernel cpy_q_f_t kernel_cpy_q_f32<float4x4, block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_cpy_q5_1_f32")]] kernel cpy_q_f_t kernel_cpy_q_f32<float4x4, block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_cpy_q8_0_f32")]] kernel cpy_q_f_t kernel_cpy_q_f32<float4x4, block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_cpy_q4_0_f16")]] kernel cpy_q_f_t kernel_cpy_q_f32<half4x4, block_q4_0, 2, dequantize_q4_0>;
template [[host_name("kernel_cpy_q4_1_f16")]] kernel cpy_q_f_t kernel_cpy_q_f32<half4x4, block_q4_1, 2, dequantize_q4_1>;
template [[host_name("kernel_cpy_q5_0_f16")]] kernel cpy_q_f_t kernel_cpy_q_f32<half4x4, block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_cpy_q5_1_f16")]] kernel cpy_q_f_t kernel_cpy_q_f32<half4x4, block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_cpy_q8_0_f16")]] kernel cpy_q_f_t kernel_cpy_q_f32<half4x4, block_q8_0, 2, dequantize_q8_0>;
kernel void kernel_concat(
constant ggml_metal_kargs_concat & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i3 = tgpig.z;
const int i2 = tgpig.y;
const int i1 = tgpig.x;
int o[4] = {0, 0, 0, 0};
o[args.dim] = args.dim == 0 ? args.ne00 : (args.dim == 1 ? args.ne01 : (args.dim == 2 ? args.ne02 : args.ne03));
device const float * x;
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
if (i0 < args.ne00 && i1 < args.ne01 && i2 < args.ne02 && i3 < args.ne03) {
x = (device const float *)(src0 + (i3 )*args.nb03 + (i2 )*args.nb02 + (i1 )*args.nb01 + (i0 )*args.nb00);
} else {
x = (device const float *)(src1 + (i3 - o[3])*args.nb13 + (i2 - o[2])*args.nb12 + (i1 - o[1])*args.nb11 + (i0 - o[0])*args.nb10);
}
device float * y = (device float *)(dst + i3*args.nb3 + i2*args.nb2 + i1*args.nb1 + i0*args.nb0);
*y = *x;
}
}
template<int nr0, typename args_t>
void kernel_mul_mv_q2_K_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
const int nb = args.ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_q2_K * x = (device const block_q2_K *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
float yl[32];
float sumf[nr0]={0.f};
const short ix = tiisg/8; // 0...3
const short it = tiisg%8; // 0...7
const short iq = it/4; // 0 or 1
const short ir = it%4; // 0...3
const short is = (8*ir)/16;// 0 or 1
device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir;
for (int ib = ix; ib < nb; ib += 4) {
float4 sumy = {0.f, 0.f, 0.f, 0.f};
for (short i = 0; i < 8; ++i) {
yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8];
yl[i+16] = y4[i+64]; sumy[2] += yl[i+16];
yl[i+24] = y4[i+96]; sumy[3] += yl[i+24];
}
device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*iq + is;
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
device const half * dh = &x[ib].d;
for (short row = 0; row < nr0; row++) {
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
}
float dall = dh[0];
float dmin = dh[1] * 1.f/16.f;
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
(acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f +
(acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f +
(acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) -
dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0));
qs += args.nb01/2;
sc += args.nb01;
dh += args.nb01/2;
}
y4 += 4 * QK_K;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}
[[host_name("kernel_mul_mv_q2_K_f32")]]
kernel void kernel_mul_mv_q2_K_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_q2_K_f32_impl<N_R0_Q2_K, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
void kernel_mul_mv_q3_K_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
const int nb = args.ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_q3_K * x = (device const block_q3_K *) (src0 + offset0);
device const float * yy = (device const float *) (src1 + offset1);
float yl[32];
//const uint16_t kmask1 = 0x3030;
//const uint16_t kmask2 = 0x0f0f;
const short tid = tiisg/4;
const short ix = tiisg%4;
const short ip = tid/4; // 0 or 1
const short il = 2*((tid%4)/2); // 0 or 2
const short ir = tid%2;
const short l0 = 8*ir;
// One would think that the Metal compiler would figure out that ip and il can only have
// 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
// with these two tales.
//
// Possible masks for the high bit
const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
{0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
{0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
{0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2
// Possible masks for the low 2 bits
const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};
const ushort4 hm = mm[2*ip + il/2];
const short shift = 2*il;
const float v1 = il == 0 ? 4.f : 64.f;
const float v2 = 4.f * v1;
const uint16_t s_shift1 = 4*ip;
const uint16_t s_shift2 = s_shift1 + il;
const short q_offset = 32*ip + l0;
const short y_offset = 128*ip + 32*il + l0;
device const float * y1 = yy + ix*QK_K + y_offset;
uint32_t scales32, aux32;
thread uint16_t * scales16 = (thread uint16_t *)&scales32;
thread const int8_t * scales = (thread const int8_t *)&scales32;
float sumf1[nr0] = {0.f};
float sumf2[nr0] = {0.f};
for (int i = ix; i < nb; i += 4) {
for (short l = 0; l < 8; ++l) {
yl[l+ 0] = y1[l+ 0];
yl[l+ 8] = y1[l+16];
yl[l+16] = y1[l+32];
yl[l+24] = y1[l+48];
}
device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
device const uint16_t * a = (device const uint16_t *)(x[i].scales);
device const half * dh = &x[i].d;
for (short row = 0; row < nr0; ++row) {
const float d_all = (float)dh[0];
scales16[0] = a[4];
scales16[1] = a[5];
aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
scales16[0] = a[il+0];
scales16[1] = a[il+1];
scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;
float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
for (short l = 0; l < 8; l += 2) {
const int32_t qs = q[l/2];
s1 += yl[l+0] * (qs & qm[il/2][0]);
s2 += yl[l+1] * (qs & qm[il/2][1]);
s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
s4 += yl[l+16] * (qs & qm[il/2][2]);
s5 += yl[l+17] * (qs & qm[il/2][3]);
s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
}
float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
sumf1[row] += d1 * (scales[0] - 32);
sumf2[row] += d2 * (scales[2] - 32);
s1 = s2 = s3 = s4 = s5 = s6 = 0;
for (short l = 0; l < 8; l += 2) {
const int32_t qs = q[l/2+8];
s1 += yl[l+8] * (qs & qm[il/2][0]);
s2 += yl[l+9] * (qs & qm[il/2][1]);
s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
s4 += yl[l+24] * (qs & qm[il/2][2]);
s5 += yl[l+25] * (qs & qm[il/2][3]);
s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
}
d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
sumf1[row] += d1 * (scales[1] - 32);
sumf2[row] += d2 * (scales[3] - 32);
q += args.nb01/2;
h += args.nb01/2;
a += args.nb01/2;
dh += args.nb01/2;
}
y1 += 4 * QK_K;
}
for (int row = 0; row < nr0; ++row) {
const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
sumf1[row] = simd_sum(sumf);
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
if (tiisg == 0) {
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
dst_f32[first_row + row] = sumf1[row];
}
}
}
[[host_name("kernel_mul_mv_q3_K_f32")]]
kernel void kernel_mul_mv_q3_K_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_q3_K_f32_impl<N_R0_Q3_K, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
void kernel_mul_mv_q4_K_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
constexpr uint16_t kmask1 = 0x3f3f;
constexpr uint16_t kmask2 = 0x0f0f;
constexpr uint16_t kmask3 = 0xc0c0;
const short ix = tiisg/8; // 0...3
const short it = tiisg%8; // 0...7
const short iq = it/4; // 0 or 1
const short ir = it%4; // 0...3
const int nb = args.ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_q4_K * x = (device const block_q4_K *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
float yl[16];
float yh[16];
float sumf[nr0]={0.f};
device const float * y4 = y + ix * QK_K + 64 * iq + 8 * ir;
uint16_t sc16[4];
thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
for (int ib = ix; ib < nb; ib += 4) {
float4 sumy = {0.f, 0.f, 0.f, 0.f};
for (short i = 0; i < 8; ++i) {
yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0];
yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8];
yh[i+0] = y4[i+128]; sumy[2] += yh[i+0];
yh[i+8] = y4[i+160]; sumy[3] += yh[i+8];
}
device const uint16_t * sc = (device const uint16_t *)x[ib].scales + iq;
device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
device const half * dh = &x[ib].d;
for (short row = 0; row < nr0; row++) {
sc16[0] = sc[0] & kmask1;
sc16[1] = sc[2] & kmask1;
sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2);
sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2);
device const uint16_t * q2 = q1 + 32;
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
FOR_UNROLL (short i = 0; i < 4; ++i) {
acc1[0] += yl[2*i + 0] * (q1[i] & 0x000F);
acc1[1] += yl[2*i + 1] * (q1[i] & 0x0F00);
acc1[2] += yl[2*i + 8] * (q1[i] & 0x00F0);
acc1[3] += yl[2*i + 9] * (q1[i] & 0xF000);
acc2[0] += yh[2*i + 0] * (q2[i] & 0x000F);
acc2[1] += yh[2*i + 1] * (q2[i] & 0x0F00);
acc2[2] += yh[2*i + 8] * (q2[i] & 0x00F0);
acc2[3] += yh[2*i + 9] * (q2[i] & 0xF000);
}
sumf[row] += dh[0] * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] +
(acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f +
(acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] +
(acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) -
dh[1] * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
q1 += args.nb01/2;
sc += args.nb01/2;
dh += args.nb01/2;
}
y4 += 4 * QK_K;
}
device float * dst_f32 = (device float *) dst + (int64_t)im*args.ne0*args.ne1 + (int64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}
[[host_name("kernel_mul_mv_q4_K_f32")]]
kernel void kernel_mul_mv_q4_K_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_q4_K_f32_impl<N_R0_Q4_K, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
void kernel_mul_mv_q5_K_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
const int nb = args.ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_q5_K * x = (device const block_q5_K *) (src0 + offset0);
device const float * yy = (device const float *) (src1 + offset1);
float sumf[nr0]={0.f};
float yl[16], yh[16];
constexpr uint16_t kmask1 = 0x3f3f;
constexpr uint16_t kmask2 = 0x0f0f;
constexpr uint16_t kmask3 = 0xc0c0;
const short tid = tiisg/4;
const short ix = tiisg%4;
const short iq = tid/4;
const short ir = tid%4;
const short l0 = 8*ir;
const short q_offset = 32*iq + l0;
const short y_offset = 64*iq + l0;
const uint8_t hm1 = 1u << (2*iq);
const uint8_t hm2 = hm1 << 1;
const uint8_t hm3 = hm1 << 4;
const uint8_t hm4 = hm2 << 4;
uint16_t sc16[4];
thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
device const float * y1 = yy + ix*QK_K + y_offset;
for (int i = ix; i < nb; i += 4) {
device const uint8_t * q1 = x[i].qs + q_offset;
device const uint8_t * qh = x[i].qh + l0;
device const half * dh = &x[i].d;
device const uint16_t * a = (device const uint16_t *)x[i].scales + iq;
device const float * y2 = y1 + 128;
float4 sumy = {0.f, 0.f, 0.f, 0.f};
for (short l = 0; l < 8; ++l) {
yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0];
yl[l+8] = y1[l+32]; sumy[1] += yl[l+8];
yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0];
yh[l+8] = y2[l+32]; sumy[3] += yh[l+8];
}
for (short row = 0; row < nr0; ++row) {
device const uint8_t * q2 = q1 + 64;
sc16[0] = a[0] & kmask1;
sc16[1] = a[2] & kmask1;
sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
float4 acc1 = {0.f};
float4 acc2 = {0.f};
FOR_UNROLL (short l = 0; l < 8; ++l) {
uint8_t h = qh[l];
acc1[0] += yl[l+0] * (q1[l] & 0x0F);
acc1[1] += yl[l+8] * (q1[l] & 0xF0);
acc1[2] += yh[l+0] * (q2[l] & 0x0F);
acc1[3] += yh[l+8] * (q2[l] & 0xF0);
acc2[0] += h & hm1 ? yl[l+0] : 0.f;
acc2[1] += h & hm2 ? yl[l+8] : 0.f;
acc2[2] += h & hm3 ? yh[l+0] : 0.f;
acc2[3] += h & hm4 ? yh[l+8] : 0.f;
}
sumf[row] += dh[0] * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
sc8[4] * (acc1[2] + 16.f*acc2[2]) +
sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
dh[1] * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
q1 += args.nb01;
qh += args.nb01;
dh += args.nb01/2;
a += args.nb01/2;
}
y1 += 4 * QK_K;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
const float tot = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = tot;
}
}
}
[[host_name("kernel_mul_mv_q5_K_f32")]]
kernel void kernel_mul_mv_q5_K_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_q5_K_f32_impl<N_R0_Q5_K, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
void kernel_mul_mv_q6_K_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
constexpr uint8_t kmask1 = 0x03;
constexpr uint8_t kmask2 = 0x0C;
constexpr uint8_t kmask3 = 0x30;
constexpr uint8_t kmask4 = 0xC0;
const int nb = args.ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_q6_K * x = (device const block_q6_K *) (src0 + offset0);
device const float * yy = (device const float *) (src1 + offset1);
float sumf[nr0] = { 0.f };
float yl[16];
const short tid = tiisg/2;
const short ix = tiisg%2;
const short ip = tid/8; // 0 or 1
const short il = tid%8;
const short l0 = 4*il;
const short is = 8*ip + l0/16;
const short y_offset = 128*ip + l0;
const short q_offset_l = 64*ip + l0;
const short q_offset_h = 32*ip + l0;
for (int i = ix; i < nb; i += 2) {
device const uint8_t * q1 = x[i].ql + q_offset_l;
device const uint8_t * q2 = q1 + 32;
device const uint8_t * qh = x[i].qh + q_offset_h;
device const int8_t * sc = x[i].scales + is;
device const half * dh = &x[i].d;
device const float * y = yy + i * QK_K + y_offset;
for (short l = 0; l < 4; ++l) {
yl[4*l + 0] = y[l + 0];
yl[4*l + 1] = y[l + 32];
yl[4*l + 2] = y[l + 64];
yl[4*l + 3] = y[l + 96];
}
for (short row = 0; row < nr0; ++row) {
float4 sums = {0.f, 0.f, 0.f, 0.f};
FOR_UNROLL (short l = 0; l < 4; ++l) {
sums[0] += yl[4*l + 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
sums[1] += yl[4*l + 1] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
sums[2] += yl[4*l + 2] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
sums[3] += yl[4*l + 3] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
}
sumf[row] += dh[0] * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
q1 += args.nb01;
q2 += args.nb01;
qh += args.nb01;
sc += args.nb01;
dh += args.nb01/2;
}
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}
[[host_name("kernel_mul_mv_q6_K_f32")]]
kernel void kernel_mul_mv_q6_K_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_q6_K_f32_impl<N_R0_Q6_K, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg);
}
// ======================= "True" 2-bit
template<int nr0, typename args_t>
void kernel_mul_mv_iq2_xxs_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
const int nb = args.ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_iq2_xxs * x = (device const block_iq2_xxs *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
float yl[32];
float sumf[nr0]={0.f};
const int nb32 = nb * (QK_K / 32);
threadgroup uint64_t * svalues = (threadgroup uint64_t *)(shmem);
threadgroup uint8_t * ssigns = (threadgroup uint8_t *)(svalues + 256);
{
int nval = 4;
int pos = (32*sgitg + tiisg)*nval;
for (int i = 0; i < nval; ++i) svalues[pos + i] = iq2xxs_grid[pos + i];
nval = 2;
pos = (32*sgitg + tiisg)*nval;
for (int i = 0; i < nval; ++i) ssigns[pos+i] = ksigns_iq2xs[pos+i];
threadgroup_barrier(mem_flags::mem_threadgroup);
}
const int ix = tiisg;
device const float * y4 = y + 32 * ix;
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
for (short i = 0; i < 32; ++i) {
yl[i] = y4[i];
}
const int ibl = ib32 / (QK_K / 32);
const int ib = ib32 % (QK_K / 32);
device const block_iq2_xxs * xr = x + ibl;
device const uint16_t * q2 = xr->qs + 4 * ib;
device const half * dh = &xr->d;
for (short row = 0; row < nr0; row++) {
const float db = dh[0];
device const uint8_t * aux8 = (device const uint8_t *)q2;
const uint32_t aux32 = q2[2] | (q2[3] << 16);
const float d = db * (0.5f + (aux32 >> 28));
float sum = 0;
for (short l = 0; l < 4; ++l) {
const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(svalues + aux8[l]);
const uint8_t signs = ssigns[(aux32 >> 7*l) & 127];
for (short j = 0; j < 8; ++j) {
sum += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
}
}
sumf[row] += d * sum;
dh += args.nb01/2;
q2 += args.nb01/2;
}
y4 += 32 * 32;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all * 0.25f;
}
}
}
[[host_name("kernel_mul_mv_iq2_xxs_f32")]]
kernel void kernel_mul_mv_iq2_xxs_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_iq2_xxs_f32_impl<N_R0_IQ2_XXS, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
void kernel_mul_mv_iq2_xs_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
const int nb = args.ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_iq2_xs * x = (device const block_iq2_xs *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
float yl[32];
float sumf[nr0]={0.f};
const int nb32 = nb * (QK_K / 32);
threadgroup uint64_t * svalues = (threadgroup uint64_t *)(shmem);
threadgroup uint8_t * ssigns = (threadgroup uint8_t *)(svalues + 512);
{
int nval = 8;
int pos = (32*sgitg + tiisg)*nval;
for (int i = 0; i < nval; ++i) svalues[pos + i] = iq2xs_grid[pos + i];
nval = 2;
pos = (32*sgitg + tiisg)*nval;
for (int i = 0; i < nval; ++i) ssigns[pos+i] = ksigns_iq2xs[pos+i];
threadgroup_barrier(mem_flags::mem_threadgroup);
}
const int ix = tiisg;
device const float * y4 = y + 32 * ix;
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
for (short i = 0; i < 32; ++i) {
yl[i] = y4[i];
}
const int ibl = ib32 / (QK_K / 32);
const int ib = ib32 % (QK_K / 32);
device const block_iq2_xs * xr = x + ibl;
device const uint16_t * q2 = xr->qs + 4 * ib;
device const uint8_t * sc = xr->scales + ib;
device const half * dh = &xr->d;
for (short row = 0; row < nr0; row++) {
const float db = dh[0];
const uint8_t ls1 = sc[0] & 0xf;
const uint8_t ls2 = sc[0] >> 4;
const float d1 = db * (0.5f + ls1);
const float d2 = db * (0.5f + ls2);
float sum1 = 0, sum2 = 0;
for (short l = 0; l < 2; ++l) {
const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(svalues + (q2[l] & 511));
const uint8_t signs = ssigns[(q2[l] >> 9)];
for (short j = 0; j < 8; ++j) {
sum1 += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
}
}
for (short l = 2; l < 4; ++l) {
const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(svalues + (q2[l] & 511));
const uint8_t signs = ssigns[(q2[l] >> 9)];
for (short j = 0; j < 8; ++j) {
sum2 += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
}
}
sumf[row] += d1 * sum1 + d2 * sum2;
dh += args.nb01/2;
q2 += args.nb01/2;
sc += args.nb01;
}
y4 += 32 * 32;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all * 0.25f;
}
}
}
[[host_name("kernel_mul_mv_iq2_xs_f32")]]
kernel void kernel_mul_mv_iq2_xs_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_iq2_xs_f32_impl<N_R0_IQ2_XS, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
void kernel_mul_mv_iq3_xxs_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
const int nb = args.ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_iq3_xxs * x = (device const block_iq3_xxs *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
float yl[32];
float sumf[nr0]={0.f};
const int nb32 = nb * (QK_K / 32);
threadgroup uint32_t * svalues = (threadgroup uint32_t *)(shmem);
threadgroup uint8_t * ssigns = (threadgroup uint8_t *)(svalues + 256);
{
int nval = 4;
int pos = (32*sgitg + tiisg)*nval;
for (int i = 0; i < nval; ++i) svalues[pos + i] = iq3xxs_grid[pos + i];
nval = 2;
pos = (32*sgitg + tiisg)*nval;
for (int i = 0; i < nval; ++i) ssigns[pos+i] = ksigns_iq2xs[pos+i];
threadgroup_barrier(mem_flags::mem_threadgroup);
}
const int ix = tiisg;
device const float * y4 = y + 32 * ix;
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
for (short i = 0; i < 32; ++i) {
yl[i] = y4[i];
}
const int ibl = ib32 / (QK_K / 32);
const int ib = ib32 % (QK_K / 32);
device const block_iq3_xxs * xr = x + ibl;
device const uint8_t * q3 = xr->qs + 8 * ib;
device const uint16_t * gas = (device const uint16_t *)(xr->qs + QK_K/4) + 2 * ib;
device const half * dh = &xr->d;
for (short row = 0; row < nr0; row++) {
const float db = dh[0];
const uint32_t aux32 = gas[0] | (gas[1] << 16);
const float d = db * (0.5f + (aux32 >> 28));
float2 sum = {0};
for (short l = 0; l < 4; ++l) {
const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(svalues + q3[2*l+0]);
const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(svalues + q3[2*l+1]);
const uint8_t signs = ssigns[(aux32 >> 7*l) & 127];
for (short j = 0; j < 4; ++j) {
sum[0] += yl[8*l + j + 0] * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
sum[1] += yl[8*l + j + 4] * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
}
}
sumf[row] += d * (sum[0] + sum[1]);
dh += args.nb01/2;
q3 += args.nb01;
gas += args.nb01/2;
}
y4 += 32 * 32;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all * 0.5f;
}
}
}
[[host_name("kernel_mul_mv_iq3_xxs_f32")]]
kernel void kernel_mul_mv_iq3_xxs_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_iq3_xxs_f32_impl<N_R0_IQ3_XXS, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
void kernel_mul_mv_iq3_s_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
const int nb = args.ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_iq3_s * x = (device const block_iq3_s *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
float yl[32];
float sumf[nr0]={0.f};
const int nb32 = nb * (QK_K / 32);
threadgroup uint32_t * svalues = (threadgroup uint32_t *) shmem;
{
int nval = 8;
int pos = (32*sgitg + tiisg)*nval;
for (int i = 0; i < nval; ++i) svalues[pos + i] = iq3s_grid[pos + i];
threadgroup_barrier(mem_flags::mem_threadgroup);
}
const int ix = tiisg;
device const float * y4 = y + 32 * ix;
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
for (short i = 0; i < 32; ++i) {
yl[i] = y4[i];
}
const int ibl = ib32 / (QK_K / 32);
const int ib = ib32 % (QK_K / 32);
device const block_iq3_s * xr = x + ibl;
device const uint8_t * qs = xr->qs + 8 * ib;
device const uint8_t * qh = xr->qh + ib;
device const uint8_t * sc = xr->scales + (ib/2);
device const uint8_t * signs = xr->signs + 4 * ib;
device const half * dh = &xr->d;
for (short row = 0; row < nr0; row++) {
const float db = dh[0];
const float d = db * (1 + 2*((sc[0] >> 4*(ib%2)) & 0xf));
float2 sum = {0};
for (short l = 0; l < 4; ++l) {
const threadgroup uint32_t * table1 = qh[0] & kmask_iq2xs[2*l+0] ? svalues + 256 : svalues;
const threadgroup uint32_t * table2 = qh[0] & kmask_iq2xs[2*l+1] ? svalues + 256 : svalues;
const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(table1 + qs[2*l+0]);
const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(table2 + qs[2*l+1]);
for (short j = 0; j < 4; ++j) {
sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l] & kmask_iq2xs[j+0]);
sum[1] += yl[8*l + j + 4] * grid2[j] * select(1, -1, signs[l] & kmask_iq2xs[j+4]);
}
}
sumf[row] += d * (sum[0] + sum[1]);
dh += args.nb01/2;
qs += args.nb01;
qh += args.nb01;
sc += args.nb01;
signs += args.nb01;
}
y4 += 32 * 32;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}
[[host_name("kernel_mul_mv_iq3_s_f32")]]
kernel void kernel_mul_mv_iq3_s_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_iq3_s_f32_impl<N_R0_IQ3_S, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
void kernel_mul_mv_iq2_s_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
const int nb = args.ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_iq2_s * x = (device const block_iq2_s *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
float yl[32];
float sumf[nr0]={0.f};
const int nb32 = nb * (QK_K / 32);
//threadgroup uint64_t * svalues = (threadgroup uint64_t *) shmem;
//{
// int nval = 32;
// int pos = (32*sgitg + tiisg)*nval;
// for (int i = 0; i < nval; ++i) svalues[pos + i] = iq2s_grid[pos + i];
// threadgroup_barrier(mem_flags::mem_threadgroup);
//}
const short ix = tiisg;
device const float * y4 = y + 32 * ix;
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
for (short i = 0; i < 32; ++i) {
yl[i] = y4[i];
}
const int ibl = ib32 / (QK_K / 32);
const int ib = ib32 % (QK_K / 32);
device const block_iq2_s * xr = x + ibl;
device const uint8_t * qs = xr->qs + 4 * ib;
device const uint8_t * qh = xr->qh + ib;
device const uint8_t * sc = xr->scales + ib;
device const uint8_t * signs = qs + QK_K/8;
device const half * dh = &xr->d;
for (short row = 0; row < nr0; row++) {
const float db = dh[0];
const float d1 = db * (0.5f + (sc[0] & 0xf));
const float d2 = db * (0.5f + (sc[0] >> 4));
float2 sum = {0};
for (short l = 0; l < 2; ++l) {
//const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(svalues + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300)));
//const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(svalues + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300)));
constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300)));
constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300)));
for (short j = 0; j < 8; ++j) {
sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l+0] & kmask_iq2xs[j]);
sum[1] += yl[8*l + j + 16] * grid2[j] * select(1, -1, signs[l+2] & kmask_iq2xs[j]);
}
}
sumf[row] += d1 * sum[0] + d2 * sum[1];
dh += args.nb01/2;
qs += args.nb01;
qh += args.nb01;
sc += args.nb01;
signs += args.nb01;
}
y4 += 32 * 32;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all * 0.25f;
}
}
}
[[host_name("kernel_mul_mv_iq2_s_f32")]]
kernel void kernel_mul_mv_iq2_s_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_iq2_s_f32_impl<N_R0_IQ2_S, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
void kernel_mul_mv_iq1_s_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
const int nb = args.ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_iq1_s * x = (device const block_iq1_s *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
float yl[32];
float sumf[nr0]={0.f};
const int nb32 = nb * (QK_K / 32);
const short ix = tiisg;
device const float * y4 = y + 32 * ix;
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
float sumy = 0;
for (short i = 0; i < 32; ++i) {
yl[i] = y4[i];
sumy += yl[i];
}
const int ibl = ib32 / (QK_K / 32);
const int ib = ib32 % (QK_K / 32);
device const block_iq1_s * xr = x + ibl;
device const uint8_t * qs = xr->qs + 4 * ib;
device const uint16_t * qh = xr->qh + ib;
device const half * dh = &xr->d;
for (short row = 0; row < nr0; row++) {
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 5) & 0x700)));
constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[0] << 2) & 0x700)));
constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[0] >> 1) & 0x700)));
float sum = 0;
for (short j = 0; j < 4; ++j) {
sum += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4)
+ yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4)
+ yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4)
+ yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4);
}
sumf[row] += (float)dh[0] * (sum + sumy * (qh[0] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA)) * (2*((qh[0] >> 12) & 7) + 1);
dh += args.nb01/2;
qs += args.nb01;
qh += args.nb01/2;
}
y4 += 32 * 32;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}
[[host_name("kernel_mul_mv_iq1_s_f32")]]
kernel void kernel_mul_mv_iq1_s_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_iq1_s_f32_impl<N_R0_IQ1_S, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
void kernel_mul_mv_iq1_m_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
const int nb = args.ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_iq1_m * x = (device const block_iq1_m *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
float yl[32];
float sumf[nr0]={0.f};
const int nb32 = nb * (QK_K / 32);
const short ix = tiisg;
device const float * y4 = y + 32 * ix;
iq1m_scale_t scale;
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
float4 sumy = {0.f};
for (short i = 0; i < 8; ++i) {
yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
yl[i+ 8] = y4[i+ 8]; sumy[1] += yl[i+ 8];
yl[i+16] = y4[i+16]; sumy[2] += yl[i+16];
yl[i+24] = y4[i+24]; sumy[3] += yl[i+24];
}
const int ibl = ib32 / (QK_K / 32);
const int ib = ib32 % (QK_K / 32);
device const block_iq1_m * xr = x + ibl;
device const uint8_t * qs = xr->qs + 4 * ib;
device const uint8_t * qh = xr->qh + 2 * ib;
device const uint16_t * sc = (device const uint16_t *)xr->scales;
for (short row = 0; row < nr0; row++) {
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[1] << 8) & 0x700)));
constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[1] << 4) & 0x700)));
float2 sum = {0.f};
for (short j = 0; j < 4; ++j) {
sum[0] += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4)
+ yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4);
sum[1] += yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4)
+ yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4);
}
const float delta1 = sumy[0] * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[1] * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
const float delta2 = sumy[2] * (qh[1] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[3] * (qh[1] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
sumf[row] += (float)scale.f16 * ((sum[0] + delta1) * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 7) + 1) +
(sum[1] + delta2) * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 7) + 1));
sc += args.nb01/2;
qs += args.nb01;
qh += args.nb01;
}
y4 += 32 * 32;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}
[[host_name("kernel_mul_mv_iq1_m_f32")]]
kernel void kernel_mul_mv_iq1_m_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_iq1_m_f32_impl<N_R0_IQ1_M, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
void kernel_mul_mv_iq4_nl_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
threadgroup float * shmem_f32 = (threadgroup float *) shmem;
const int nb = args.ne00/QK4_NL;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_iq4_nl * x = (device const block_iq4_nl *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
const short ix = tiisg/2; // 0...15
const short it = tiisg%2; // 0 or 1
shmem_f32[tiisg] = kvalues_iq4nl_f[tiisg%16];
threadgroup_barrier(mem_flags::mem_threadgroup);
float4 yl[4];
float sumf[nr0]={0.f};
device const float * yb = y + ix * QK4_NL + it * 8;
uint32_t aux32[2];
thread const uint8_t * q8 = (thread const uint8_t *)aux32;
float4 qf1, qf2;
for (int ib = ix; ib < nb; ib += 16) {
device const float4 * y4 = (device const float4 *)yb;
yl[0] = y4[0];
yl[1] = y4[4];
yl[2] = y4[1];
yl[3] = y4[5];
for (short row = 0; row < nr0; row++) {
device const block_iq4_nl & xb = x[row*nb + ib];
device const uint16_t * q4 = (device const uint16_t *)(xb.qs + 8*it);
float4 acc1 = {0.f}, acc2 = {0.f};
aux32[0] = q4[0] | (q4[1] << 16);
aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f;
aux32[0] &= 0x0f0f0f0f;
qf1 = {shmem_f32[q8[0]], shmem_f32[q8[1]], shmem_f32[q8[2]], shmem_f32[q8[3]]};
qf2 = {shmem_f32[q8[4]], shmem_f32[q8[5]], shmem_f32[q8[6]], shmem_f32[q8[7]]};
acc1 += yl[0] * qf1;
acc2 += yl[1] * qf2;
aux32[0] = q4[2] | (q4[3] << 16);
aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f;
aux32[0] &= 0x0f0f0f0f;
qf1 = {shmem_f32[q8[0]], shmem_f32[q8[1]], shmem_f32[q8[2]], shmem_f32[q8[3]]};
qf2 = {shmem_f32[q8[4]], shmem_f32[q8[5]], shmem_f32[q8[6]], shmem_f32[q8[7]]};
acc1 += yl[2] * qf1;
acc2 += yl[3] * qf2;
acc1 += acc2;
sumf[row] += (float)xb.d * (acc1[0] + acc1[1] + acc1[2] + acc1[3]);
}
yb += 16 * QK4_NL;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}
[[host_name("kernel_mul_mv_iq4_nl_f32")]]
kernel void kernel_mul_mv_iq4_nl_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_iq4_nl_f32_impl<N_R0_IQ4_NL, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
void kernel_mul_mv_iq4_xs_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
threadgroup float * shmem_f32 = (threadgroup float *) shmem;
const int nb = args.ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_iq4_xs * x = (device const block_iq4_xs *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
const short ix = tiisg/16; // 0 or 1
const short it = tiisg%16; // 0...15
const short ib = it/2;
const short il = it%2;
shmem_f32[tiisg] = kvalues_iq4nl_f[tiisg%16];
threadgroup_barrier(mem_flags::mem_threadgroup);
float4 yl[4];
float sumf[nr0]={0.f};
device const float * yb = y + ix * QK_K + ib * 32 + il * 8;
uint32_t aux32[2];
thread const uint8_t * q8 = (thread const uint8_t *)aux32;
float4 qf1, qf2;
for (int ibl = ix; ibl < nb; ibl += 2) {
device const float4 * y4 = (device const float4 *)yb;
yl[0] = y4[0];
yl[1] = y4[4];
yl[2] = y4[1];
yl[3] = y4[5];
for (short row = 0; row < nr0; ++row) {
device const block_iq4_xs & xb = x[row*nb + ibl];
device const uint32_t * q4 = (device const uint32_t *)(xb.qs + 16*ib + 8*il);
float4 acc1 = {0.f}, acc2 = {0.f};
aux32[0] = (q4[0] ) & 0x0f0f0f0f;
aux32[1] = (q4[0] >> 4) & 0x0f0f0f0f;
qf1 = {shmem_f32[q8[0]], shmem_f32[q8[1]], shmem_f32[q8[2]], shmem_f32[q8[3]]};
qf2 = {shmem_f32[q8[4]], shmem_f32[q8[5]], shmem_f32[q8[6]], shmem_f32[q8[7]]};
acc1 += yl[0] * qf1;
acc2 += yl[1] * qf2;
aux32[0] = (q4[1] ) & 0x0f0f0f0f;
aux32[1] = (q4[1] >> 4) & 0x0f0f0f0f;
qf1 = {shmem_f32[q8[0]], shmem_f32[q8[1]], shmem_f32[q8[2]], shmem_f32[q8[3]]};
qf2 = {shmem_f32[q8[4]], shmem_f32[q8[5]], shmem_f32[q8[6]], shmem_f32[q8[7]]};
acc1 += yl[2] * qf1;
acc2 += yl[3] * qf2;
acc1 += acc2;
const int ls = (((xb.scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((xb.scales_h >> 2*ib) & 3) << 4)) - 32;
sumf[row] += (float)xb.d * ls * (acc1[0] + acc1[1] + acc1[2] + acc1[3]);
}
yb += 2 * QK_K;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}
[[host_name("kernel_mul_mv_iq4_xs_f32")]]
kernel void kernel_mul_mv_iq4_xs_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_iq4_xs_f32_impl<N_R0_IQ4_XS, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
void kernel_mul_mv_mxfp4_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
const short NSG = FC_mul_mv_nsg;
threadgroup float * shmem_f32 = (threadgroup float *) shmem;
const int nb = args.ne00/QK_MXFP4;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_mxfp4 * x = (device const block_mxfp4 *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
const short ix = tiisg/2; // 0...15
const short it = tiisg%2; // 0 or 1
shmem_f32[tiisg] = kvalues_mxfp4_f[tiisg%16];
threadgroup_barrier(mem_flags::mem_threadgroup);
float4 yl[4];
float sumf[nr0]={0.f};
device const float * yb = y + ix * QK_MXFP4 + it * 8;
for (int ib = ix; ib < nb; ib += 16) {
device const float4 * y4 = (device const float4 *)yb;
yl[0] = y4[0];
yl[1] = y4[4];
yl[2] = y4[1];
yl[3] = y4[5];
#pragma unroll(nr0)
for (short row = 0; row < nr0; row++) {
device const block_mxfp4 & xb = x[row*nb + ib];
device const uint8_t * q2 = (device const uint8_t *)(xb.qs + 8*it);
float4 acc1 = yl[0]*float4(shmem_f32[q2[0] & 0x0F], shmem_f32[q2[1] & 0x0F], shmem_f32[q2[2] & 0x0F], shmem_f32[q2[3] & 0x0F]);
float4 acc2 = yl[1]*float4(shmem_f32[q2[0] >> 4 ], shmem_f32[q2[1] >> 4 ], shmem_f32[q2[2] >> 4 ], shmem_f32[q2[3] >> 4 ]);
float4 acc3 = yl[2]*float4(shmem_f32[q2[4] & 0x0F], shmem_f32[q2[5] & 0x0F], shmem_f32[q2[6] & 0x0F], shmem_f32[q2[7] & 0x0F]);
float4 acc4 = yl[3]*float4(shmem_f32[q2[4] >> 4 ], shmem_f32[q2[5] >> 4 ], shmem_f32[q2[6] >> 4 ], shmem_f32[q2[7] >> 4 ]);
acc1 = (acc1 + acc3) + (acc2 + acc4);
sumf[row] += e8m0_to_fp32(xb.e) * ((acc1[0] + acc1[1]) + (acc1[2] + acc1[3]));
}
yb += 16 * QK_MXFP4;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}
[[host_name("kernel_mul_mv_mxfp4_f32")]]
kernel void kernel_mul_mv_mxfp4_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_mxfp4_f32_impl<N_R0_MXFP4, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
kernel void kernel_get_rows_q(
constant ggml_metal_kargs_get_rows & args,
device const void * src0,
device const void * src1,
device void * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiitg[[thread_index_in_threadgroup]],
ushort3 ntg [[threads_per_threadgroup]]) {
const int32_t iw0 = tgpig.x/args.ne10;
const int32_t i10 = tgpig.x%args.ne10;
const int32_t i11 = tgpig.y;
const int32_t i12 = tgpig.z;
const int32_t r = ((const device int32_t *) ((const device char *) src1 + i12*args.nb12 + i11*args.nb11 + i10*args.nb10))[0];
const int32_t i02 = i11;
const int32_t i03 = i12;
auto psrc = (device const block_q *) ((const device char *) src0 + i03*args.nb03 + i02*args.nb02 + r*args.nb01);
auto pdst = (device float4x4 *) (( device char *) dst + i12*args.nb3 + i11*args.nb2 + i10*args.nb1);
for (int ind = iw0*ntg.x + tiitg; ind < args.ne00t;) {
float4x4 temp;
dequantize_func(psrc + ind/nl, ind%nl, temp);
pdst[ind] = temp;
break;
}
}
template<typename T0, typename T>
kernel void kernel_get_rows_f(
constant ggml_metal_kargs_get_rows & args,
device const void * src0,
device const void * src1,
device void * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiitg[[thread_index_in_threadgroup]],
ushort3 ntg [[threads_per_threadgroup]]) {
const int32_t iw0 = tgpig.x/args.ne10;
const int32_t i10 = tgpig.x%args.ne10;
const int32_t i11 = tgpig.y;
const int32_t i12 = tgpig.z;
const int32_t r = ((const device int32_t *) ((const device char *) src1 + i12*args.nb12 + i11*args.nb11 + i10*args.nb10))[0];
const int32_t i02 = i11;
const int32_t i03 = i12;
auto psrc = (const device T0 *) ((const device char *) src0 + i03*args.nb03 + i02*args.nb02 + r*args.nb01);
auto pdst = ( device T *) (( device char *) dst + i12*args.nb3 + i11*args.nb2 + i10*args.nb1);
for (int ind = iw0*ntg.x + tiitg; ind < args.ne00t;) {
pdst[ind] = psrc[ind];
break;
}
}
template<typename TI, typename block_q, void (*quantize_func)(device const float *, device block_q &)>
kernel void kernel_set_rows_q32(
constant ggml_metal_kargs_set_rows & args,
device const void * src0,
device const void * src1,
device float * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg [[threads_per_threadgroup]]) {
const int32_t i03 = tgpig.z;
const int32_t i02 = tgpig.y;
const int32_t i12 = i03%args.ne12;
const int32_t i11 = i02%args.ne11;
const int32_t i01 = tgpig.x*tptg.y + tiitg/tptg.x;
if (i01 >= args.ne01) {
return;
}
const int32_t i10 = i01;
const TI i1 = ((const device TI *) ((const device char *) src1 + i10*args.nb10 + i11*args.nb11 + i12*args.nb12))[0];
device block_q * dst_row = ( device block_q *) (( device char *) dst + i1*args.nb1 + i02*args.nb2 + i03*args.nb3);
const device float * src_row = (const device float *) ((const device char *) src0 + i01*args.nb01 + i02*args.nb02 + i03*args.nb03);
for (int ind = tiitg%tptg.x; ind < args.nk0; ind += tptg.x) {
quantize_func(src_row + 32*ind, dst_row[ind]);
}
}
template<typename T, typename TI>
kernel void kernel_set_rows_f(
constant ggml_metal_kargs_set_rows & args,
device const void * src0,
device const void * src1,
device float * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg [[threads_per_threadgroup]]) {
const int32_t i03 = tgpig.z;
const int32_t i02 = tgpig.y;
const int32_t i12 = i03%args.ne12;
const int32_t i11 = i02%args.ne11;
const int32_t i01 = tgpig.x*tptg.y + tiitg/tptg.x;
if (i01 >= args.ne01) {
return;
}
const int32_t i10 = i01;
const TI i1 = ((const device TI *) ((const device char *) src1 + i10*args.nb10 + i11*args.nb11 + i12*args.nb12))[0];
device T * dst_row = ( device T *) (( device char *) dst + i1*args.nb1 + i02*args.nb2 + i03*args.nb3);
const device float * src_row = (const device float *) ((const device char *) src0 + i01*args.nb01 + i02*args.nb02 + i03*args.nb03);
for (int ind = tiitg%tptg.x; ind < args.nk0; ind += tptg.x) {
dst_row[ind] = (T) src_row[ind];
}
}
constant bool FC_mul_mm_bc_inp [[function_constant(FC_MUL_MM + 0)]];
constant bool FC_mul_mm_bc_out [[function_constant(FC_MUL_MM + 1)]];
#define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
#define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
#define BLOCK_SIZE_K 32
#define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
#define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
#define THREAD_PER_BLOCK 128
#define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers
#define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers
#define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8
#define SG_MAT_ROW 8
// each block_q contains 16*nl weights
template<typename S0, typename S0_4x4, typename S0_8x8, typename S1, typename S1_2x4, typename S1_8x8, typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread S0_4x4 &), typename T0, typename T0_4x4, typename T1, typename T1_2x4>
kernel void kernel_mul_mm(
constant ggml_metal_kargs_mul_mm & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiitg[[thread_index_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
threadgroup S0 * sa = (threadgroup S0 *)(shmem);
threadgroup S1 * sb = (threadgroup S1 *)(shmem + 4096);
const int r0 = tgpig.y;
const int r1 = tgpig.x;
const int im = tgpig.z;
// if this block is of 64x32 shape or smaller
const short n_rows = (args.ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M;
const short n_cols = (args.ne1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? (args.ne1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N;
// a thread shouldn't load data outside of the matrix
const short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
const short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
S0_8x8 ma[4];
S1_8x8 mb[2];
simdgroup_float8x8 mc[8];
for (short i = 0; i < 8; i++){
mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
}
short il = (tiitg % THREAD_PER_ROW);
const int i12 = im%args.ne12;
const int i13 = im/args.ne12;
const uint64_t offset0 = (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const short offset1 = il/nl;
device const block_q * x = (device const block_q *)(src0
+ args.nb01*(r0*BLOCK_SIZE_M + thread_row) + offset0) + offset1;
const short iy = (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL));
device const T1 * y = (device const T1 *)(src1
+ args.nb13*i13
+ args.nb12*i12
+ args.nb11*(r1*BLOCK_SIZE_N + thread_col)
+ args.nb10*iy);
for (int loop_k = 0; loop_k < args.ne00; loop_k += BLOCK_SIZE_K) {
// load data and store to threadgroup memory
if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// no need for dequantization
for (short i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
+ (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
+ (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = loop_k + 16*il + i < args.ne00 ? ((device T0 *) x)[i] : 0;
}
} else {
S0_4x4 temp_a;
dequantize_func(x, il, temp_a);
threadgroup_barrier(mem_flags::mem_threadgroup);
FOR_UNROLL (short i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
+ (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
+ (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4];
}
}
if (FC_mul_mm_bc_inp) {
for (short i = 0; i < 8; ++i) {
sb[32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL) + i] = loop_k + iy + i < args.ne00 ? (S1) ((device T1 *) y)[i] : 0;
}
} else {
*(threadgroup S1_2x4 *)(sb + 32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL)) = (S1_2x4)(*((device T1_2x4 *) y));
}
il = (il + 2 < nl) ? il + 2 : il % 2;
x = (il < 2) ? x + (2 + nl - 1)/nl : x;
y += BLOCK_SIZE_K;
threadgroup_barrier(mem_flags::mem_threadgroup);
// load matrices from threadgroup memory and conduct outer products
threadgroup const S0 * lsma = (sa + THREAD_MAT_M*SG_MAT_SIZE*(sgitg%2));
threadgroup const S1 * lsmb = (sb + THREAD_MAT_N*SG_MAT_SIZE*(sgitg/2));
#pragma unroll(4)
for (short ik = 0; ik < BLOCK_SIZE_K/8; ik++) {
simdgroup_barrier(mem_flags::mem_none);
#pragma unroll(4)
for (short i = 0; i < 4; i++) {
simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i);
}
#pragma unroll(2)
for (short i = 0; i < 2; i++) {
simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i);
}
simdgroup_barrier(mem_flags::mem_none);
#pragma unroll(8)
for (short i = 0; i < 8; i++){
simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]);
}
lsma += (BLOCK_SIZE_M/SG_MAT_ROW)*SG_MAT_SIZE;
lsmb += (BLOCK_SIZE_N/SG_MAT_ROW)*SG_MAT_SIZE;
}
}
if (!FC_mul_mm_bc_out || ((r0 + 1) * BLOCK_SIZE_M <= args.ne0 && (r1 + 1) * BLOCK_SIZE_N <= args.ne1)) {
// if no bounds checks on the output are needed, we can directly write to device memory
device float * C = (device float *) dst +
(BLOCK_SIZE_M * r0 + 32*(sgitg & 1)) + \
(BLOCK_SIZE_N * r1 + 16*(sgitg >> 1)) * args.ne0 + im*args.ne1*args.ne0;
for (short i = 0; i < 8; i++) {
simdgroup_store(mc[i], C + 8 * (i%4) + 8 * args.ne0 * (i/4), args.ne0);
}
} else {
// block is smaller than 64x32, we should avoid writing data outside of the matrix
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float * temp_str = ((threadgroup float *) shmem) \
+ 32*(sgitg&1) + (16*(sgitg >> 1))*BLOCK_SIZE_M;
for (short i = 0; i < 8; i++) {
simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (sgitg == 0) {
for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + (r1*BLOCK_SIZE_N + j)*args.ne0 + im*args.ne1*args.ne0;
device float4 * D4 = (device float4 *) D;
threadgroup float * C = temp_str + (j*BLOCK_SIZE_M);
threadgroup float4 * C4 = (threadgroup float4 *) C;
int i = 0;
for (; i < n_rows/4; i++) {
*(D4 + i) = *(C4 + i);
}
i *= 4;
for (; i < n_rows; i++) {
*(D + i) = *(C + i);
}
}
}
}
}
template<short ne20> // n_expert_used
kernel void kernel_mul_mm_id_map0(
constant ggml_metal_kargs_mul_mm_id_map0 & args,
device const char * src2,
device char * htpe,
device char * hids,
threadgroup char * shmem [[threadgroup(0)]],
ushort tpitg[[thread_position_in_threadgroup]],
ushort ntg[[threads_per_threadgroup]]) {
const short ide = tpitg; // expert id
uint32_t n_all = 0;
device int32_t * ids_i32 = (device int32_t *) hids + ide*args.ne21;
for (int i21 = 0; i21 < args.ne21; i21 += ntg) { // n_tokens
if (i21 + tpitg < args.ne21) {
device const int32_t * src2_i32 = (device const int32_t *) (src2 + (i21 + tpitg)*args.nb21);
threadgroup uint16_t * sids = (threadgroup uint16_t *) shmem + tpitg*ne20;
#pragma unroll(ne20)
for (short i20 = 0; i20 < ne20; i20++) {
sids[i20] = src2_i32[i20];
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
for (short t = 0; t < ntg; t++) {
if (i21 + t >= args.ne21) {
break;
}
threadgroup const uint16_t * sids = (threadgroup const uint16_t *) shmem + t*ne20;
short sel = 0;
#pragma unroll(ne20)
for (short i20 = 0; i20 < ne20; i20++) {
sel += (sids[i20] == ide)*(i20 + 1);
}
ids_i32[n_all] = (i21 + t)*ne20 + sel - 1;
n_all += sel > 0;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
device uint32_t * tpe_u32 = (device uint32_t *) (htpe);
tpe_u32[ide] = n_all;
}
typedef decltype(kernel_mul_mm_id_map0<1>) kernel_mul_mm_id_map0_t;
template [[host_name("kernel_mul_mm_id_map0_ne20_1" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<1>;
template [[host_name("kernel_mul_mm_id_map0_ne20_2" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<2>;
template [[host_name("kernel_mul_mm_id_map0_ne20_4" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<4>;
template [[host_name("kernel_mul_mm_id_map0_ne20_6" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<6>;
template [[host_name("kernel_mul_mm_id_map0_ne20_8" )]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<8>;
template [[host_name("kernel_mul_mm_id_map0_ne20_10")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<10>;
template [[host_name("kernel_mul_mm_id_map0_ne20_16")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<16>;
template<typename S0, typename S0_4x4, typename S0_8x8, typename S1, typename S1_2x4, typename S1_8x8, typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread S0_4x4 &), typename T0, typename T0_4x4, typename T1, typename T1_2x4>
kernel void kernel_mul_mm_id(
constant ggml_metal_kargs_mul_mm_id & args,
device const char * src0,
device const char * src1,
device const char * htpe,
device const char * hids,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiitg[[thread_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
threadgroup S0 * sa = (threadgroup S0 *)(shmem);
threadgroup S1 * sb = (threadgroup S1 *)(shmem + 4096);
const int r0 = tgpig.y;
const int r1 = tgpig.x;
const int im = tgpig.z; // expert
device const uint32_t * tpe_u32 = (device const uint32_t *) (htpe);
device const int32_t * ids_i32 = (device const int32_t *) (hids);
const int32_t neh1 = tpe_u32[im];
if (r1*BLOCK_SIZE_N >= neh1) {
return;
}
// if this block is of 64x32 shape or smaller
const short n_rows = (args.ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M;
const short n_cols = ( neh1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? ( neh1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N;
// a thread shouldn't load data outside of the matrix
const short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
const short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
S0_8x8 ma[4];
S1_8x8 mb[2];
simdgroup_float8x8 mc[8];
for (short i = 0; i < 8; i++){
mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
}
short il = (tiitg % THREAD_PER_ROW);
const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + thread_col];
const short i11 = (id % args.ne20) % args.ne11;
const short i12 = (id / args.ne20);
const short i13 = 0;
const uint64_t offset0 = im*args.nb02 + i13*args.nb03;
const short offset1 = il/nl;
device const block_q * x = (device const block_q *)(src0
+ args.nb01*(r0*BLOCK_SIZE_M + thread_row) + offset0) + offset1;
const short iy = (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL));
device const T1 * y = (device const T1 *)(src1
+ args.nb13*i13
+ args.nb12*i12
+ args.nb11*i11
+ args.nb10*iy);
for (int loop_k = 0; loop_k < args.ne00; loop_k += BLOCK_SIZE_K) {
// load data and store to threadgroup memory
if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// no need for dequantization
for (short i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
+ (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
+ (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = loop_k + 16*il + i < args.ne00 ? ((device T0 *) x)[i] : 0;
}
} else {
S0_4x4 temp_a;
dequantize_func(x, il, temp_a);
threadgroup_barrier(mem_flags::mem_threadgroup);
FOR_UNROLL (short i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
+ (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
+ (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4];
}
}
if (FC_mul_mm_bc_inp) {
for (short i = 0; i < 8; ++i) {
sb[32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL) + i] = loop_k + iy + i < args.ne00 ? (S1) ((device T1 *) y)[i] : 0;
}
} else {
*(threadgroup S1_2x4 *)(sb + 32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL)) = (S1_2x4)(*((device T1_2x4 *) y));
}
il = (il + 2 < nl) ? il + 2 : il % 2;
x = (il < 2) ? x + (2 + nl - 1)/nl : x;
y += BLOCK_SIZE_K;
threadgroup_barrier(mem_flags::mem_threadgroup);
// load matrices from threadgroup memory and conduct outer products
threadgroup const S0 * lsma = (sa + THREAD_MAT_M*SG_MAT_SIZE*(sgitg%2));
threadgroup const S1 * lsmb = (sb + THREAD_MAT_N*SG_MAT_SIZE*(sgitg/2));
#pragma unroll(4)
for (short ik = 0; ik < BLOCK_SIZE_K/8; ik++) {
#pragma unroll(4)
for (short i = 0; i < 4; i++) {
simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i);
}
simdgroup_barrier(mem_flags::mem_none);
#pragma unroll(2)
for (short i = 0; i < 2; i++) {
simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i);
}
#pragma unroll(8)
for (short i = 0; i < 8; i++){
simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]);
}
lsma += (BLOCK_SIZE_M/SG_MAT_ROW)*SG_MAT_SIZE;
lsmb += (BLOCK_SIZE_N/SG_MAT_ROW)*SG_MAT_SIZE;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float * temp_str = ((threadgroup float *) shmem) \
+ 32*(sgitg&1) + (16*(sgitg >> 1))*BLOCK_SIZE_M;
#pragma unroll(8)
for (short i = 0; i < 8; i++) {
simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
for (short j = sgitg; j < n_cols; j += 4) {
const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + j];
const short ide = id % args.ne20;
const short idt = id / args.ne20;
device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + ide*args.ne0 + idt*args.ne1*args.ne0;
device float4 * D4 = (device float4 *) D;
threadgroup float * C = (threadgroup float *) shmem + (j*BLOCK_SIZE_M);
threadgroup float4 * C4 = (threadgroup float4 *) C;
int i = tiisg;
for (; i < n_rows/4; i += 32) {
*(D4 + i) = *(C4 + i);
}
i = (4*(n_rows/4)) + tiisg;
for (; i < n_rows; i += 32) {
*(D + i) = *(C + i);
}
}
}
#define QK_NL 16
//
// get rows
//
typedef decltype(kernel_get_rows_f<float, float>) get_rows_f_t;
template [[host_name("kernel_get_rows_f32")]] kernel get_rows_f_t kernel_get_rows_f<float, float>;
template [[host_name("kernel_get_rows_f16")]] kernel get_rows_f_t kernel_get_rows_f<half, float>;
template [[host_name("kernel_get_rows_i32")]] kernel get_rows_f_t kernel_get_rows_f<int32_t, int32_t>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_get_rows_bf16")]] kernel get_rows_f_t kernel_get_rows_f<bfloat, float>;
#endif
typedef decltype(kernel_get_rows_q<block_q4_0, 2, dequantize_q4_0>) get_rows_q_t;
template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_q_t kernel_get_rows_q<block_q4_0, 2, dequantize_q4_0>;
template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_q_t kernel_get_rows_q<block_q4_1, 2, dequantize_q4_1>;
template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_q_t kernel_get_rows_q<block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_q_t kernel_get_rows_q<block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_q_t kernel_get_rows_q<block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_get_rows_mxfp4")]] kernel get_rows_q_t kernel_get_rows_q<block_mxfp4, 2, dequantize_mxfp4>;
template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q3_K, QK_NL, dequantize_q3_K>;
template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q4_K, QK_NL, dequantize_q4_K>;
template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q5_K, QK_NL, dequantize_q5_K>;
template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q6_K, QK_NL, dequantize_q6_K>;
template [[host_name("kernel_get_rows_iq2_xxs")]] kernel get_rows_q_t kernel_get_rows_q<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
template [[host_name("kernel_get_rows_iq2_xs")]] kernel get_rows_q_t kernel_get_rows_q<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
template [[host_name("kernel_get_rows_iq3_xxs")]] kernel get_rows_q_t kernel_get_rows_q<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
template [[host_name("kernel_get_rows_iq3_s")]] kernel get_rows_q_t kernel_get_rows_q<block_iq3_s, QK_NL, dequantize_iq3_s>;
template [[host_name("kernel_get_rows_iq2_s")]] kernel get_rows_q_t kernel_get_rows_q<block_iq2_s, QK_NL, dequantize_iq2_s>;
template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_q_t kernel_get_rows_q<block_iq1_s, QK_NL, dequantize_iq1_s>;
template [[host_name("kernel_get_rows_iq1_m")]] kernel get_rows_q_t kernel_get_rows_q<block_iq1_m, QK_NL, dequantize_iq1_m>;
template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_q_t kernel_get_rows_q<block_iq4_nl, 2, dequantize_iq4_nl>;
template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_q_t kernel_get_rows_q<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
//
// set rows
//
typedef decltype(kernel_set_rows_f<float, int64_t>) set_rows_f_t;
template [[host_name("kernel_set_rows_f32_i64")]] kernel set_rows_f_t kernel_set_rows_f<float, int64_t>;
template [[host_name("kernel_set_rows_f32_i32")]] kernel set_rows_f_t kernel_set_rows_f<float, int32_t>;
template [[host_name("kernel_set_rows_f16_i64")]] kernel set_rows_f_t kernel_set_rows_f<half, int64_t>;
template [[host_name("kernel_set_rows_f16_i32")]] kernel set_rows_f_t kernel_set_rows_f<half, int32_t>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_set_rows_bf16_i64")]] kernel set_rows_f_t kernel_set_rows_f<bfloat, int64_t>;
template [[host_name("kernel_set_rows_bf16_i32")]] kernel set_rows_f_t kernel_set_rows_f<bfloat, int32_t>;
#endif
typedef decltype(kernel_set_rows_q32<int64_t, block_q8_0, quantize_q8_0>) set_rows_q32_t;
template [[host_name("kernel_set_rows_q8_0_i64")]] kernel set_rows_q32_t kernel_set_rows_q32<int64_t, block_q8_0, quantize_q8_0>;
template [[host_name("kernel_set_rows_q8_0_i32")]] kernel set_rows_q32_t kernel_set_rows_q32<int32_t, block_q8_0, quantize_q8_0>;
template [[host_name("kernel_set_rows_q4_0_i64")]] kernel set_rows_q32_t kernel_set_rows_q32<int64_t, block_q4_0, quantize_q4_0>;
template [[host_name("kernel_set_rows_q4_0_i32")]] kernel set_rows_q32_t kernel_set_rows_q32<int32_t, block_q4_0, quantize_q4_0>;
template [[host_name("kernel_set_rows_q4_1_i64")]] kernel set_rows_q32_t kernel_set_rows_q32<int64_t, block_q4_1, quantize_q4_1>;
template [[host_name("kernel_set_rows_q4_1_i32")]] kernel set_rows_q32_t kernel_set_rows_q32<int32_t, block_q4_1, quantize_q4_1>;
template [[host_name("kernel_set_rows_q5_0_i64")]] kernel set_rows_q32_t kernel_set_rows_q32<int64_t, block_q5_0, quantize_q5_0>;
template [[host_name("kernel_set_rows_q5_0_i32")]] kernel set_rows_q32_t kernel_set_rows_q32<int32_t, block_q5_0, quantize_q5_0>;
template [[host_name("kernel_set_rows_q5_1_i64")]] kernel set_rows_q32_t kernel_set_rows_q32<int64_t, block_q5_1, quantize_q5_1>;
template [[host_name("kernel_set_rows_q5_1_i32")]] kernel set_rows_q32_t kernel_set_rows_q32<int32_t, block_q5_1, quantize_q5_1>;
template [[host_name("kernel_set_rows_iq4_nl_i64")]] kernel set_rows_q32_t kernel_set_rows_q32<int64_t, block_iq4_nl, quantize_iq4_nl>;
template [[host_name("kernel_set_rows_iq4_nl_i32")]] kernel set_rows_q32_t kernel_set_rows_q32<int32_t, block_iq4_nl, quantize_iq4_nl>;
//
// matrix-matrix multiplication
//
typedef decltype(kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, float4x4, 1, dequantize_f32, float, float4x4, float, float2x4>) mul_mm_t;
template [[host_name("kernel_mul_mm_f32_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, float4x4, 1, dequantize_f32, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, half4x4, 1, dequantize_f16, half, half4x4, float, float2x4>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mm_bf16_f32")]] kernel mul_mm_t kernel_mul_mm<bfloat, bfloat4x4, simdgroup_bfloat8x8, bfloat, bfloat2x4, simdgroup_bfloat8x8, bfloat4x4, 1, dequantize_bf16, bfloat, bfloat4x4, float, float2x4>;
#endif
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_1, 2, dequantize_q4_1, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_1, 2, dequantize_q5_1, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q8_0, 2, dequantize_q8_0, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_mxfp4_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_mxfp4, 2, dequantize_mxfp4, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q2_K, QK_NL, dequantize_q2_K, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q3_K, QK_NL, dequantize_q3_K, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_K, QK_NL, dequantize_q4_K, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_K, QK_NL, dequantize_q5_K, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q6_K, QK_NL, dequantize_q6_K, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq2_xxs, QK_NL, dequantize_iq2_xxs, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq2_xs, QK_NL, dequantize_iq2_xs, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq3_xxs, QK_NL, dequantize_iq3_xxs, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq3_s, QK_NL, dequantize_iq3_s, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq2_s, QK_NL, dequantize_iq2_s, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq1_s, QK_NL, dequantize_iq1_s, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq1_m, QK_NL, dequantize_iq1_m, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq4_nl, 2, dequantize_iq4_nl, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq4_xs, QK_NL, dequantize_iq4_xs, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_f32_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, float4x4, 1, dequantize_f32, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_f16_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, half4x4, 1, dequantize_f16, half, half4x4, half, half2x4>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mm_bf16_f16")]] kernel mul_mm_t kernel_mul_mm<bfloat, bfloat4x4, simdgroup_bfloat8x8, half, half2x4, simdgroup_half8x8, bfloat4x4, 1, dequantize_bf16, bfloat, bfloat4x4, half, half2x4>;
#endif
template [[host_name("kernel_mul_mm_q4_0_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_q4_1_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_1, 2, dequantize_q4_1, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_q5_0_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_q5_1_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_1, 2, dequantize_q5_1, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_q8_0_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q8_0, 2, dequantize_q8_0, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_mxfp4_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_mxfp4, 2, dequantize_mxfp4, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_q2_K_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q2_K, QK_NL, dequantize_q2_K, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_q3_K_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q3_K, QK_NL, dequantize_q3_K, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_q4_K_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_K, QK_NL, dequantize_q4_K, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_q5_K_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_K, QK_NL, dequantize_q5_K, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_q6_K_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q6_K, QK_NL, dequantize_q6_K, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_iq2_xxs_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq2_xxs, QK_NL, dequantize_iq2_xxs, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_iq2_xs_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq2_xs, QK_NL, dequantize_iq2_xs, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_iq3_xxs_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq3_xxs, QK_NL, dequantize_iq3_xxs, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_iq3_s_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq3_s, QK_NL, dequantize_iq3_s, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_iq2_s_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq2_s, QK_NL, dequantize_iq2_s, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_iq1_s_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq1_s, QK_NL, dequantize_iq1_s, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_iq1_m_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq1_m, QK_NL, dequantize_iq1_m, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_iq4_nl_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq4_nl, 2, dequantize_iq4_nl, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_iq4_xs_f16")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq4_xs, QK_NL, dequantize_iq4_xs, float, float4x4, half, half2x4>;
//
// indirect matrix-matrix multiplication
//
typedef decltype(kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, float4x4, 1, dequantize_f32, float, float4x4, float, float2x4>) mul_mm_id;
template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, float4x4, 1, dequantize_f32, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, half4x4, 1, dequantize_f16, half, half4x4, float, float2x4>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mm_id_bf16_f32")]] kernel mul_mm_id kernel_mul_mm_id<bfloat, bfloat4x4, simdgroup_bfloat8x8, bfloat, bfloat2x4, simdgroup_bfloat8x8, bfloat4x4, 1, dequantize_bf16, bfloat, bfloat4x4, float, float2x4>;
#endif
template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_1, 2, dequantize_q4_1, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_1, 2, dequantize_q5_1, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q8_0, 2, dequantize_q8_0, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_mxfp4_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_mxfp4, 2, dequantize_mxfp4, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q2_K, QK_NL, dequantize_q2_K, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q3_K, QK_NL, dequantize_q3_K, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_K, QK_NL, dequantize_q4_K, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_K, QK_NL, dequantize_q5_K, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q6_K, QK_NL, dequantize_q6_K, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq2_xxs, QK_NL, dequantize_iq2_xxs, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq2_xs, QK_NL, dequantize_iq2_xs, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq3_xxs, QK_NL, dequantize_iq3_xxs, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_iq3_s_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq3_s, QK_NL, dequantize_iq3_s, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq2_s, QK_NL, dequantize_iq2_s, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq1_s, QK_NL, dequantize_iq1_s, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq1_m, QK_NL, dequantize_iq1_m, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq4_nl, 2, dequantize_iq4_nl, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq4_xs, QK_NL, dequantize_iq4_xs, float, float4x4, float, float2x4>;
template [[host_name("kernel_mul_mm_id_f32_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, float4x4, 1, dequantize_f32, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_f16_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, half4x4, 1, dequantize_f16, half, half4x4, half, half2x4>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mm_id_bf16_f16")]] kernel mul_mm_id kernel_mul_mm_id<bfloat, bfloat4x4, simdgroup_bfloat8x8, half, half2x4, simdgroup_half8x8, bfloat4x4, 1, dequantize_bf16, bfloat, bfloat4x4, half, half2x4>;
#endif
template [[host_name("kernel_mul_mm_id_q4_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_q4_1_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_1, 2, dequantize_q4_1, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_q5_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_q5_1_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_1, 2, dequantize_q5_1, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_q8_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q8_0, 2, dequantize_q8_0, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_mxfp4_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_mxfp4, 2, dequantize_mxfp4, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_q2_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q2_K, QK_NL, dequantize_q2_K, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_q3_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q3_K, QK_NL, dequantize_q3_K, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_q4_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q4_K, QK_NL, dequantize_q4_K, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_q5_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q5_K, QK_NL, dequantize_q5_K, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_q6_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_q6_K, QK_NL, dequantize_q6_K, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_iq2_xxs_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq2_xxs, QK_NL, dequantize_iq2_xxs, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_iq2_xs_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq2_xs, QK_NL, dequantize_iq2_xs, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_iq3_xxs_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq3_xxs, QK_NL, dequantize_iq3_xxs, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_iq3_s_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq3_s, QK_NL, dequantize_iq3_s, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_iq2_s_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq2_s, QK_NL, dequantize_iq2_s, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_iq1_s_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq1_s, QK_NL, dequantize_iq1_s, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_iq1_m_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq1_m, QK_NL, dequantize_iq1_m, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_iq4_nl_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq4_nl, 2, dequantize_iq4_nl, float, float4x4, half, half2x4>;
template [[host_name("kernel_mul_mm_id_iq4_xs_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half, half2x4, simdgroup_half8x8, block_iq4_xs, QK_NL, dequantize_iq4_xs, float, float4x4, half, half2x4>;
//
// matrix-vector multiplication
//
typedef void (kernel_mul_mv_disp_t)(
ggml_metal_kargs_mul_mv args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig,
ushort tiisg);
typedef void (kernel_mul_mv2_disp_t)(
ggml_metal_kargs_mul_mv args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg);
template<kernel_mul_mv_disp_t disp_fn>
void mmv_fn(
ggml_metal_kargs_mul_mv args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiitg,
ushort tiisg,
ushort sgitg) {
disp_fn(args, src0, src1, dst, tgpig, tiisg);
}
template<kernel_mul_mv2_disp_t disp_fn>
void mmv_fn(
ggml_metal_kargs_mul_mv args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiitg,
ushort tiisg,
ushort sgitg) {
disp_fn(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
typedef decltype(mmv_fn<kernel_mul_mv_t_t_disp<half, half, ggml_metal_kargs_mul_mv>>) mul_mv_disp_fn_t;
template<mul_mv_disp_fn_t disp_fn>
kernel void kernel_mul_mv_id(
constant ggml_metal_kargs_mul_mv_id & args,
device const char * src0s,
device const char * src1,
device char * dst,
device const char * ids,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiitg[[thread_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
const int iid1 = tgpig.z/args.nei0;
const int idx = tgpig.z%args.nei0;
tgpig.z = 0;
const int32_t i02 = ((device const int32_t *) (ids + iid1*args.nbi1))[idx];
const int64_t i11 = idx % args.ne11;
const int64_t i12 = iid1;
const int64_t i1 = idx;
const int64_t i2 = i12;
device const char * src0_cur = src0s + i02*args.nb02;
device const char * src1_cur = src1 + i11*args.nb11 + i12*args.nb12;
device char * dst_cur = dst + (i1*args.ne0 + i2*args.ne1*args.ne0)*sizeof(float);
ggml_metal_kargs_mul_mv args0 = {
/*.ne00 =*/ args.ne00,
/*.ne01 =*/ args.ne01,
/*.ne02 =*/ 1, // args.ne02,
/*.nb00 =*/ args.nb00,
/*.nb01 =*/ args.nb01,
/*.nb02 =*/ args.nb02,
/*.nb03 =*/ args.nb02, // args.ne02 == 1
/*.ne10 =*/ args.ne10,
/*.ne11 =*/ 1, // args.ne11,
/*.ne12 =*/ 1, // args.ne12,
/*.nb10 =*/ args.nb10,
/*.nb11 =*/ args.nb11,
/*.nb12 =*/ args.nb12,
/*.nb13 =*/ args.nb12, // ne12 == 1
/*.ne0 =*/ args.ne0,
/*.ne1 =*/ 1, // args.ne1,
/*.nr0 =*/ args.nr0,
/*.r2 =*/ 1,
/*.r3 =*/ 1,
};
disp_fn(
args0,
/* src0 */ src0_cur,
/* src1 */ src1_cur,
/* dst */ dst_cur,
shmem,
tgpig,
tiitg,
tiisg,
sgitg);
}
typedef decltype(kernel_mul_mv_id<mmv_fn<kernel_mul_mv_t_t_disp<float, float>>>) kernel_mul_mv_id_t;
typedef decltype(kernel_mul_mv_id<mmv_fn<kernel_mul_mv_t_t_4_disp<float, float4, float, float4>>>) kernel_mul_mv_id_4_t;
template [[host_name("kernel_mul_mv_id_f32_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_t_t_disp<float, float>>>;
template [[host_name("kernel_mul_mv_id_f16_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_t_t_disp<half, float>>>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mv_id_bf16_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_t_t_disp<bfloat, float>>>;
#endif
template [[host_name("kernel_mul_mv_id_f32_f32_4")]] kernel kernel_mul_mv_id_4_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_t_t_4_disp<float, float4, float, float4>>>;
template [[host_name("kernel_mul_mv_id_f16_f32_4")]] kernel kernel_mul_mv_id_4_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_t_t_4_disp<half, half4, float, float4>>>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_mul_mv_id_bf16_f32_4")]] kernel kernel_mul_mv_id_4_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_t_t_4_disp<bfloat, bfloat4, float, float4>>>;
#endif
template [[host_name("kernel_mul_mv_id_q8_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q8_0_f32_impl<N_R0_Q8_0>>>;
template [[host_name("kernel_mul_mv_id_q4_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q4_0, N_R0_Q4_0>>>;
template [[host_name("kernel_mul_mv_id_q4_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q4_1, N_R0_Q4_1>>>;
template [[host_name("kernel_mul_mv_id_q5_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q5_0, N_R0_Q5_0>>>;
template [[host_name("kernel_mul_mv_id_q5_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q5_1, N_R0_Q5_1>>>;
template [[host_name("kernel_mul_mv_id_mxfp4_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_mxfp4_f32_impl<N_R0_MXFP4>>>;
template [[host_name("kernel_mul_mv_id_q2_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q2_K_f32_impl <N_R0_Q2_K>>>;
template [[host_name("kernel_mul_mv_id_q3_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q3_K_f32_impl <N_R0_Q3_K>>>;
template [[host_name("kernel_mul_mv_id_q4_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q4_K_f32_impl <N_R0_Q4_K>>>;
template [[host_name("kernel_mul_mv_id_q5_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q5_K_f32_impl <N_R0_Q5_K>>>;
template [[host_name("kernel_mul_mv_id_q6_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q6_K_f32_impl <N_R0_Q6_K>>>;
template [[host_name("kernel_mul_mv_id_iq1_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq1_s_f32_impl <N_R0_IQ1_S>>>;
template [[host_name("kernel_mul_mv_id_iq1_m_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq1_m_f32_impl <N_R0_IQ1_M>>>;
template [[host_name("kernel_mul_mv_id_iq2_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_xxs_f32_impl<N_R0_IQ2_XXS>>>;
template [[host_name("kernel_mul_mv_id_iq2_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_xs_f32_impl <N_R0_IQ2_XS>>>;
template [[host_name("kernel_mul_mv_id_iq3_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_xxs_f32_impl<N_R0_IQ3_XXS>>>;
template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_s_f32_impl <N_R0_IQ3_S>>>;
template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_s_f32_impl <N_R0_IQ2_S>>>;
template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_nl_f32_impl <N_R0_IQ4_NL>>>;
template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl <N_R0_IQ4_XS>>>;
kernel void kernel_pool_2d_max_f32(
constant ggml_metal_kargs_pool_2d & args,
device const float * src0,
device float * dst,
uint gid[[thread_position_in_grid]]) {
if (gid >= args.np) {
return;
}
const int idx = gid;
const int I_HW = args.IH * args.IW;
const int O_HW = args.OH * args.OW;
const int nc = idx / O_HW;
const int cur_oh = idx % O_HW / args.OW;
const int cur_ow = idx % O_HW % args.OW;
device const float * i_ptr = src0 + nc * I_HW;
device float * o_ptr = dst + nc * O_HW;
const int start_h = cur_oh * args.s1 - args.p1;
const int bh = MAX(0, start_h);
const int eh = MIN(args.IH, start_h + args.k1);
const int start_w = cur_ow * args.s0 - args.p0;
const int bw = MAX(0, start_w);
const int ew = MIN(args.IW, start_w + args.k0);
float res = -INFINITY;
for (int i = bh; i < eh; i += 1) {
for (int j = bw; j < ew; j += 1) {
res = MAX(res, i_ptr[i * args.IW + j]);
}
}
o_ptr[cur_oh * args.OW + cur_ow] = res;
}
kernel void kernel_pool_2d_avg_f32(
constant ggml_metal_kargs_pool_2d & args,
device const float * src0,
device float * dst,
uint gid[[thread_position_in_grid]]) {
if (gid >= args.np) {
return;
}
const int idx = gid;
const int I_HW = args.IH * args.IW;
const int O_HW = args.OH * args.OW;
const int nc = idx / O_HW;
const int cur_oh = idx % O_HW / args.OW;
const int cur_ow = idx % O_HW % args.OW;
device const float * i_ptr = src0 + nc * I_HW;
device float * o_ptr = dst + nc * O_HW;
const int start_h = cur_oh * args.s1 - args.p1;
const int bh = MAX(0, start_h);
const int eh = MIN(args.IH, start_h + args.k1);
const int start_w = cur_ow * args.s0 - args.p0;
const int bw = MAX(0, start_w);
const int ew = MIN(args.IW, start_w + args.k0);
// const float scale = 1. / ((eh - bh) * (ew - bw));
const float scale = 1. / (args.k0 * args.k1);
float res = 0;
for (int i = bh; i < eh; i += 1) {
for (int j = bw; j < ew; j += 1) {
float cur = i_ptr[i * args.IW + j];
res += cur * scale;
}
}
o_ptr[cur_oh * args.OW + cur_ow] = res;
}