mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 b8e09f08b9
			
		
	
	b8e09f08b9
	
	
	
		
			
			* add grok-2 support * type fix * type fix * type fix * "fix" vocab for invalid sequences * fix expert tensor mapping and spaces in vocab * add chat template * fix norm tensor mapping * rename layer_out_norm to ffn_post_norm * ensure ffn_post_norm is mapped * fix experts merging * remove erroneous FFN_GATE entry * concatenate split tensors and add more metadata * process all expert layers and try cat instead of hstack * add support for community BPE vocab * fix expert feed forward length and ffn_down concat * commit this too * add ffn_up/gate/down, unsure if sequence is right * add ffn_gate/down/up to tensor names * correct residual moe (still not working) * mess-- * fix embedding scale being applied twice * add built in chat template * change beta fast for grok if default value * remove spm vocab in favor of community bpe vocab * change attention temp length metadata type to integer * update attention temp length metadata * remove comment * replace M_SQRT2 with std::sqrt(2) * add yarn metadata, move defaults to hparams
		
			
				
	
	
		
			1948 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1948 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "llama-graph.h"
 | |
| 
 | |
| #include "llama-impl.h"
 | |
| #include "llama-batch.h"
 | |
| #include "llama-cparams.h"
 | |
| 
 | |
| #include "llama-kv-cache.h"
 | |
| #include "llama-kv-cache-iswa.h"
 | |
| #include "llama-memory-hybrid.h"
 | |
| #include "llama-memory-recurrent.h"
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstring>
 | |
| 
 | |
| void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
 | |
|     if (ubatch->token) {
 | |
|         const int64_t n_tokens = ubatch->n_tokens;
 | |
| 
 | |
|         ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
 | |
|     }
 | |
| 
 | |
|     if (ubatch->embd) {
 | |
|         const int64_t n_embd   = embd->ne[0];
 | |
|         const int64_t n_tokens = ubatch->n_tokens;
 | |
| 
 | |
|         ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool llm_graph_input_embd::can_reuse(const llm_graph_params & params) {
 | |
|     bool res = true;
 | |
| 
 | |
|     res &= (!tokens && !params.ubatch.token) || (tokens && tokens->ne[0] == params.ubatch.n_tokens);
 | |
|     res &= (!embd   && !params.ubatch.embd)  || (embd   &&   embd->ne[0] == params.ubatch.n_tokens);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
 | |
|     if (ubatch->pos && pos) {
 | |
|         const int64_t n_tokens = ubatch->n_tokens;
 | |
| 
 | |
|         if (ubatch->token && n_pos_per_embd == 4) {
 | |
|             // in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
 | |
|             // the 3 first dims are the same, and 4th dim is all 0
 | |
|             std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
 | |
|             // copy the first dimension
 | |
|             for (int i = 0; i < n_tokens; ++i) {
 | |
|                 pos_data[               i] = ubatch->pos[i];
 | |
|                 pos_data[    n_tokens + i] = ubatch->pos[i];
 | |
|                 pos_data[2 * n_tokens + i] = ubatch->pos[i];
 | |
|                 pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
 | |
|             }
 | |
|             ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
 | |
|         } else {
 | |
|             ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool llm_graph_input_pos::can_reuse(const llm_graph_params & params) {
 | |
|     bool res = true;
 | |
| 
 | |
|     res &= pos->ne[0] == params.ubatch.n_tokens;
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
 | |
|     if (ubatch->pos && attn_scale) {
 | |
|         const int64_t n_tokens = ubatch->n_tokens;
 | |
| 
 | |
|         std::vector<float> attn_scale_data(n_tokens, 0.0f);
 | |
|         for (int i = 0; i < n_tokens; ++i) {
 | |
|             const float pos = ubatch->pos[i];
 | |
|             attn_scale_data[i] = std::log(
 | |
|                 std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
 | |
|             ) * f_attn_temp_scale + 1.0;
 | |
|         }
 | |
| 
 | |
|         ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
 | |
|     if (pos_bucket) {
 | |
|         const int64_t n_tokens = ubatch->n_tokens;
 | |
| 
 | |
|         GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
 | |
|         GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing
 | |
| 
 | |
|         int32_t * data = (int32_t *) pos_bucket->data;
 | |
| 
 | |
|         for (int h = 0; h < 1; ++h) {
 | |
|             for (int j = 0; j < n_tokens; ++j) {
 | |
|                 for (int i = 0; i < n_tokens; ++i) {
 | |
|                     data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
 | |
|     if (pos_bucket) {
 | |
|         mctx->set_input_pos_bucket(pos_bucket, ubatch);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
 | |
|     GGML_ASSERT(out_ids);
 | |
| 
 | |
|     const int64_t n_tokens = ubatch->n_tokens;
 | |
| 
 | |
|     GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
 | |
|     int32_t * data = (int32_t *) out_ids->data;
 | |
| 
 | |
|     if (n_outputs == n_tokens) {
 | |
|         for (int i = 0; i < n_tokens; ++i) {
 | |
|             data[i] = i;
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(ubatch->output);
 | |
| 
 | |
|     int n_outputs = 0;
 | |
| 
 | |
|     for (int i = 0; i < n_tokens; ++i) {
 | |
|         if (ubatch->output[i]) {
 | |
|             data[n_outputs++] = i;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool llm_graph_input_out_ids::can_reuse(const llm_graph_params & params) {
 | |
|     bool res = true;
 | |
| 
 | |
|     res &= n_outputs == params.n_outputs;
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
 | |
|     if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
 | |
|         const int64_t n_tokens     = ubatch->n_tokens;
 | |
|         const int64_t n_seq_tokens = ubatch->n_seq_tokens;
 | |
|         const int64_t n_seqs_unq   = ubatch->n_seqs_unq;
 | |
| 
 | |
|         GGML_ASSERT(mean);
 | |
|         GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));
 | |
| 
 | |
|         float * data = (float *) mean->data;
 | |
|         memset(mean->data, 0, n_tokens*n_seqs_unq*ggml_element_size(mean));
 | |
| 
 | |
|         std::vector<uint64_t> sums(n_seqs_unq, 0);
 | |
|         for (int i = 0; i < n_tokens; i += n_seq_tokens) {
 | |
|             for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
 | |
|                 const llama_seq_id seq_id  = ubatch->seq_id[i][s];
 | |
|                 const int32_t      seq_idx = ubatch->seq_idx[seq_id];
 | |
| 
 | |
|                 sums[seq_idx] += ubatch->n_seq_tokens;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         std::vector<float> div(n_seqs_unq, 0.0f);
 | |
|         for (int s = 0; s < n_seqs_unq; ++s) {
 | |
|             const uint64_t sum = sums[s];
 | |
|             if (sum > 0) {
 | |
|                 div[s] = 1.0f/float(sum);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (int i = 0; i < n_tokens; i += n_seq_tokens) {
 | |
|             for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
 | |
|                 const llama_seq_id seq_id  = ubatch->seq_id[i][s];
 | |
|                 const int32_t      seq_idx = ubatch->seq_idx[seq_id];
 | |
| 
 | |
|                 for (int j = 0; j < n_seq_tokens; ++j) {
 | |
|                     data[seq_idx*n_tokens + i + j] = div[seq_idx];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
 | |
|     const int64_t n_tokens     = ubatch->n_tokens;
 | |
|     const int64_t n_seqs_unq   = ubatch->n_seqs_unq;
 | |
| 
 | |
|     if (cparams.embeddings && (
 | |
|         cparams.pooling_type == LLAMA_POOLING_TYPE_CLS  ||
 | |
|         cparams.pooling_type == LLAMA_POOLING_TYPE_RANK ||
 | |
|         cparams.pooling_type == LLAMA_POOLING_TYPE_LAST
 | |
|     )) {
 | |
|         GGML_ASSERT(cls);
 | |
|         GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
 | |
| 
 | |
|         uint32_t * data = (uint32_t *) cls->data;
 | |
|         memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
 | |
| 
 | |
|         std::vector<int> target_pos(n_seqs_unq, -1);
 | |
|         std::vector<int> target_row(n_seqs_unq, -1);
 | |
| 
 | |
|         bool last = cparams.pooling_type == LLAMA_POOLING_TYPE_LAST;
 | |
| 
 | |
|         for (int i = 0; i < n_tokens; ++i) {
 | |
|             const llama_pos pos = ubatch->pos[i];
 | |
| 
 | |
|             for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
 | |
|                 const llama_seq_id seq_id  = ubatch->seq_id[i][s];
 | |
|                 const int32_t      seq_idx = ubatch->seq_idx[seq_id];
 | |
| 
 | |
|                 if (
 | |
|                     (target_pos[seq_idx] == -1) ||
 | |
|                     ( last && pos >= target_pos[seq_idx]) ||
 | |
|                     (!last && pos <  target_pos[seq_idx])
 | |
|                 ) {
 | |
|                     target_pos[seq_idx] = pos;
 | |
|                     target_row[seq_idx] = i;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (int s = 0; s < n_seqs_unq; ++s) {
 | |
|             if (target_row[s] >= 0) {
 | |
|                 data[s] = target_row[s];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llm_graph_input_rs::set_input(const llama_ubatch * ubatch) {
 | |
|     GGML_UNUSED(ubatch);
 | |
| 
 | |
|     const int64_t n_rs = mctx->get_n_rs();
 | |
| 
 | |
|     if (s_copy) {
 | |
|         GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
 | |
|         int32_t * data = (int32_t *) s_copy->data;
 | |
| 
 | |
|         // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
 | |
|         for (uint32_t i = 0; i < n_rs; ++i) {
 | |
|             data[i] = mctx->s_copy(i);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
 | |
|     GGML_UNUSED(ubatch);
 | |
| 
 | |
|     if (cross_embd && !cross->v_embd.empty()) {
 | |
|         assert(cross_embd->type == GGML_TYPE_F32);
 | |
| 
 | |
|         ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void print_mask(float * data, int64_t n_tokens, int64_t n_kv, int64_t n_swa, llama_swa_type swa_type) {
 | |
|     LLAMA_LOG_DEBUG("%s: === Attention mask ===\n", __func__);
 | |
|     const char * swa_type_str = (swa_type == LLAMA_SWA_TYPE_NONE) ? "LLAMA_SWA_TYPE_NONE" :
 | |
|                           (swa_type == LLAMA_SWA_TYPE_STANDARD) ? "LLAMA_SWA_TYPE_STANDARD" :
 | |
|                           (swa_type == LLAMA_SWA_TYPE_CHUNKED) ? "LLAMA_SWA_TYPE_CHUNKED" :
 | |
|                           (swa_type == LLAMA_SWA_TYPE_SYMMETRIC) ? "LLAMA_SWA_TYPE_SYMMETRIC" : "unknown";
 | |
|     LLAMA_LOG_DEBUG("%s: n_swa : %d, n_kv: %d, swq_type: %s\n", __func__, (int)n_swa, (int)n_kv, swa_type_str);
 | |
|     LLAMA_LOG_DEBUG("%s: '0' = can attend, '∞' = masked\n", __func__);
 | |
|     LLAMA_LOG_DEBUG("%s: Rows = query tokens, Columns = key/value tokens\n\n", __func__);
 | |
| 
 | |
|     LLAMA_LOG_DEBUG("    ");
 | |
|     for (int j = 0; j < std::min((int64_t)20, n_kv); ++j) {
 | |
|         LLAMA_LOG_DEBUG("%2d", j);
 | |
|     }
 | |
|     LLAMA_LOG_DEBUG("\n");
 | |
| 
 | |
|     for (int i = 0; i < std::min((int64_t)20, n_tokens); ++i) {
 | |
|         LLAMA_LOG_DEBUG(" %2d ", i);
 | |
|         for (int j = 0; j < std::min((int64_t)20, n_kv); ++j) {
 | |
|             float val = data[i * n_kv + j];
 | |
|             if (val == -INFINITY) {
 | |
|                 LLAMA_LOG_DEBUG(" ∞");
 | |
|             } else {
 | |
|                 LLAMA_LOG_DEBUG(" 0");
 | |
|             }
 | |
|         }
 | |
|         LLAMA_LOG_DEBUG("\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
 | |
|     const int64_t n_kv     = ubatch->n_tokens;
 | |
|     const int64_t n_tokens = ubatch->n_tokens;
 | |
| 
 | |
|     GGML_ASSERT(kq_mask);
 | |
|     GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
 | |
| 
 | |
|     float * data = (float *) kq_mask->data;
 | |
| 
 | |
|     // [TAG_NO_CACHE_ISWA]
 | |
|     GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "TODO: implement");
 | |
| 
 | |
|     for (int h = 0; h < 1; ++h) {
 | |
|         for (int i1 = 0; i1 < n_tokens; ++i1) {
 | |
|             const llama_seq_id s1 = ubatch->seq_id[i1][0];
 | |
| 
 | |
|             for (int i0 = 0; i0 < n_tokens; ++i0) {
 | |
|                 float f = -INFINITY;
 | |
| 
 | |
|                 for (int s = 0; s < ubatch->n_seq_id[i0]; ++s) {
 | |
|                     const llama_seq_id s0 = ubatch->seq_id[i0][0];
 | |
| 
 | |
|                     if (s0 != s1) {
 | |
|                         continue; // skip different sequences
 | |
|                     }
 | |
| 
 | |
|                     if (cparams.causal_attn && ubatch->pos[i0] > ubatch->pos[i1]) {
 | |
|                         continue; // skip future tokens for causal attention
 | |
|                     }
 | |
| 
 | |
|                     // TODO: this does not take into account that some layers are SWA and others are note (i.e. iSWA) [TAG_NO_CACHE_ISWA]
 | |
|                     //if (hparams.is_masked_swa(ubatch->pos[i0], ubatch->pos[i1])) {
 | |
|                     //    continue; // skip masked tokens for SWA
 | |
|                     //}
 | |
| 
 | |
|                     // TODO: reimplement this like in llama_kv_cache_unified
 | |
|                     if (hparams.use_alibi) {
 | |
|                         f = -std::abs(ubatch->pos[i0] - ubatch->pos[i1]);
 | |
|                     } else {
 | |
|                         f = 0.0f;
 | |
|                     }
 | |
|                 }
 | |
|                 data[h*(n_kv*n_tokens) + i1*n_kv + i0] = f;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (debug) {
 | |
|         print_mask(data, n_tokens, n_kv, hparams.n_swa, hparams.swa_type);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llm_graph_input_attn_kv::set_input(const llama_ubatch * ubatch) {
 | |
|     mctx->set_input_k_idxs(self_k_idxs, ubatch);
 | |
|     mctx->set_input_v_idxs(self_v_idxs, ubatch);
 | |
| 
 | |
|     mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
 | |
| }
 | |
| 
 | |
| bool llm_graph_input_attn_kv::can_reuse(const llm_graph_params & params) {
 | |
|     const auto * mctx = static_cast<const llama_kv_cache_context *>(params.mctx);
 | |
| 
 | |
|     this->mctx = mctx;
 | |
| 
 | |
|     bool res = true;
 | |
| 
 | |
|     res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
 | |
|   //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
 | |
| 
 | |
|     res &= self_kq_mask->ne[0] == mctx->get_n_kv();
 | |
|     res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| void llm_graph_input_attn_kv_iswa::set_input(const llama_ubatch * ubatch) {
 | |
|     mctx->get_base()->set_input_k_idxs(self_k_idxs, ubatch);
 | |
|     mctx->get_base()->set_input_v_idxs(self_v_idxs, ubatch);
 | |
| 
 | |
|     mctx->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
 | |
| 
 | |
|     mctx->get_swa()->set_input_k_idxs(self_k_idxs_swa, ubatch);
 | |
|     mctx->get_swa()->set_input_v_idxs(self_v_idxs_swa, ubatch);
 | |
| 
 | |
|     mctx->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn);
 | |
| }
 | |
| 
 | |
| bool llm_graph_input_attn_kv_iswa::can_reuse(const llm_graph_params & params) {
 | |
|     const auto * mctx = static_cast<const llama_kv_cache_iswa_context *>(params.mctx);
 | |
| 
 | |
|     this->mctx = mctx;
 | |
| 
 | |
|     bool res = true;
 | |
| 
 | |
|     res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
 | |
|   //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
 | |
| 
 | |
|     res &= self_k_idxs_swa->ne[0] == params.ubatch.n_tokens;
 | |
|   //res &= self_v_idxs_swa->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
 | |
| 
 | |
|     res &= self_kq_mask->ne[0] == mctx->get_base()->get_n_kv();
 | |
|     res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);
 | |
| 
 | |
|     res &= self_kq_mask_swa->ne[0] == mctx->get_swa()->get_n_kv();
 | |
|     res &= self_kq_mask_swa->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
 | |
|     GGML_ASSERT(cross_kq_mask);
 | |
| 
 | |
|     const int64_t n_enc    = cross_kq_mask->ne[0];
 | |
|     const int64_t n_tokens = ubatch->n_tokens;
 | |
| 
 | |
|     GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
 | |
|     GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing
 | |
| 
 | |
|     float * data = (float *) cross_kq_mask->data;
 | |
| 
 | |
|     for (int h = 0; h < 1; ++h) {
 | |
|         for (int i = 0; i < n_tokens; ++i) {
 | |
|             for (int j = 0; j < n_enc; ++j) {
 | |
|                 float f = -INFINITY;
 | |
| 
 | |
|                 for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
 | |
|                     const llama_seq_id seq_id = ubatch->seq_id[i][s];
 | |
| 
 | |
|                     if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) {
 | |
|                         f = 0.0f;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 data[h*(n_enc*n_tokens) + i*n_enc + j] = f;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
 | |
|             for (int j = 0; j < n_enc; ++j) {
 | |
|                 data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) {
 | |
|     inp_attn->set_input(ubatch);
 | |
|     inp_rs->set_input(ubatch);
 | |
| }
 | |
| 
 | |
| //
 | |
| // llm_graph_result
 | |
| //
 | |
| 
 | |
| llm_graph_result::llm_graph_result(int64_t max_nodes) : max_nodes(max_nodes) {
 | |
|     reset();
 | |
| 
 | |
|     const char * LLAMA_GRAPH_RESULT_DEBUG = getenv("LLAMA_GRAPH_RESULT_DEBUG");
 | |
|     debug = LLAMA_GRAPH_RESULT_DEBUG ? atoi(LLAMA_GRAPH_RESULT_DEBUG) : 0;
 | |
| }
 | |
| 
 | |
| int64_t llm_graph_result::get_max_nodes() const {
 | |
|     return max_nodes;
 | |
| }
 | |
| 
 | |
| void llm_graph_result::reset() {
 | |
|     t_tokens      = nullptr;
 | |
|     t_logits      = nullptr;
 | |
|     t_embd        = nullptr;
 | |
|     t_embd_pooled = nullptr;
 | |
| 
 | |
|     params = {};
 | |
| 
 | |
|     inputs.clear();
 | |
| 
 | |
|     buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
 | |
| 
 | |
|     ggml_init_params params = {
 | |
|         /*.mem_size   =*/ buf_compute_meta.size(),
 | |
|         /*.mem_buffer =*/ buf_compute_meta.data(),
 | |
|         /*.no_alloc   =*/ true,
 | |
|     };
 | |
| 
 | |
|     ctx_compute.reset(ggml_init(params));
 | |
| 
 | |
|     gf = ggml_new_graph_custom(ctx_compute.get(), max_nodes, false);
 | |
| }
 | |
| 
 | |
| void llm_graph_result::set_inputs(const llama_ubatch * ubatch) {
 | |
|     for (auto & input : inputs) {
 | |
|         input->set_input(ubatch);
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool llm_graph_result::can_reuse(const llm_graph_params & params) {
 | |
|     if (!this->params.allow_reuse(params)) {
 | |
|         if (debug > 1) {
 | |
|             LLAMA_LOG_DEBUG("%s: cannot reuse graph due to incompatible graph parameters\n", __func__);
 | |
|         }
 | |
| 
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (debug > 1) {
 | |
|         LLAMA_LOG_DEBUG("%s: checking compatibility of %d inputs:\n", __func__, (int) inputs.size());
 | |
|     }
 | |
| 
 | |
|     bool res = true;
 | |
| 
 | |
|     for (auto & input : inputs) {
 | |
|         const bool cur = input->can_reuse(params);
 | |
| 
 | |
|         if (debug > 1) {
 | |
|             LLAMA_LOG_DEBUG("%s: can_reuse = %d\n", "placeholder", cur);
 | |
|         }
 | |
| 
 | |
|         res = res && cur;
 | |
|     }
 | |
| 
 | |
|     if (debug > 0) {
 | |
|         LLAMA_LOG_DEBUG("%s: can reuse graph = %d\n", __func__, res);
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| llm_graph_input_i * llm_graph_result::add_input(llm_graph_input_ptr input) {
 | |
|     inputs.emplace_back(std::move(input));
 | |
|     return inputs.back().get();
 | |
| }
 | |
| 
 | |
| void llm_graph_result::set_params(const llm_graph_params & params) {
 | |
|     this->params = params;
 | |
| }
 | |
| 
 | |
| //
 | |
| // llm_graph_context
 | |
| //
 | |
| 
 | |
| llm_graph_context::llm_graph_context(const llm_graph_params & params) :
 | |
|     arch             (params.arch),
 | |
|     hparams          (params.hparams),
 | |
|     cparams          (params.cparams),
 | |
|     ubatch           (params.ubatch),
 | |
|     n_embd           (hparams.n_embd),
 | |
|     n_layer          (hparams.n_layer),
 | |
|     n_rot            (hparams.n_rot),
 | |
|     n_ctx            (cparams.n_ctx),
 | |
|     n_head           (hparams.n_head()),
 | |
|     n_head_kv        (hparams.n_head_kv()),
 | |
|     n_embd_head_k    (hparams.n_embd_head_k),
 | |
|     n_embd_k_gqa     (hparams.n_embd_k_gqa()),
 | |
|     n_embd_head_v    (hparams.n_embd_head_v),
 | |
|     n_embd_v_gqa     (hparams.n_embd_v_gqa()),
 | |
|     n_expert         (hparams.n_expert),
 | |
|     n_expert_used    (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
 | |
|     freq_base        (cparams.rope_freq_base),
 | |
|     freq_scale       (cparams.rope_freq_scale),
 | |
|     ext_factor       (cparams.yarn_ext_factor),
 | |
|     attn_factor      (cparams.yarn_attn_factor),
 | |
|     beta_fast        (cparams.yarn_beta_fast),
 | |
|     beta_slow        (cparams.yarn_beta_slow),
 | |
|     norm_eps         (hparams.f_norm_eps),
 | |
|     norm_rms_eps     (hparams.f_norm_rms_eps),
 | |
|     n_tokens         (ubatch.n_tokens),
 | |
|     n_outputs        (params.n_outputs),
 | |
|     n_ctx_orig       (cparams.n_ctx_orig_yarn),
 | |
|     pooling_type     (cparams.pooling_type),
 | |
|     rope_type        (hparams.rope_type),
 | |
|     sched            (params.sched),
 | |
|     backend_cpu      (params.backend_cpu),
 | |
|     cvec             (params.cvec),
 | |
|     loras            (params.loras),
 | |
|     mctx             (params.mctx),
 | |
|     cross            (params.cross),
 | |
|     cb_func          (params.cb),
 | |
|     res              (params.res),
 | |
|     ctx0             (res->get_ctx()),
 | |
|     gf               (res->get_gf()) {
 | |
|         res->set_params(params);
 | |
|     }
 | |
| 
 | |
| void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
 | |
|     if (cb_func) {
 | |
|         cb_func(ubatch, cur, name, il);
 | |
|     }
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_cvec(
 | |
|          ggml_tensor * cur,
 | |
|                  int   il) const {
 | |
|     return cvec->apply_to(ctx0, cur, il);
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_lora_mm(
 | |
|           ggml_tensor * w,
 | |
|           ggml_tensor * cur) const {
 | |
|     ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
 | |
| 
 | |
|     for (const auto & lora : *loras) {
 | |
|         llama_adapter_lora_weight * lw = lora.first->get_weight(w);
 | |
|         if (lw == nullptr) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         const float adapter_scale = lora.second;
 | |
|         const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
 | |
| 
 | |
|         ggml_tensor * ab_cur = ggml_mul_mat(
 | |
|                 ctx0, lw->b,
 | |
|                 ggml_mul_mat(ctx0, lw->a, cur)
 | |
|                 );
 | |
| 
 | |
|         ab_cur = ggml_scale(ctx0, ab_cur, scale);
 | |
|         res = ggml_add(ctx0, res, ab_cur);
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_lora_mm_id(
 | |
|           ggml_tensor * w,   // ggml_tensor * as
 | |
|           ggml_tensor * cur, // ggml_tensor * b
 | |
|           ggml_tensor * ids) const {
 | |
|     ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
 | |
|     for (const auto & lora : *loras) {
 | |
|         llama_adapter_lora_weight * lw = lora.first->get_weight(w);
 | |
|         if (lw == nullptr) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         const float alpha = lora.first->alpha;
 | |
|         const float rank  = (float) lw->b->ne[0];
 | |
|         const float scale = alpha ? lora.second * alpha / rank : lora.second;
 | |
| 
 | |
|         ggml_tensor * ab_cur = ggml_mul_mat_id(
 | |
|                 ctx0, lw->b,
 | |
|                 ggml_mul_mat_id(ctx0, lw->a, cur, ids),
 | |
|                 ids
 | |
|                 );
 | |
| 
 | |
|         ab_cur = ggml_scale(ctx0, ab_cur, scale);
 | |
|         res = ggml_add(ctx0, res, ab_cur);
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_norm(
 | |
|          ggml_tensor * cur,
 | |
|          ggml_tensor * mw,
 | |
|          ggml_tensor * mb,
 | |
|        llm_norm_type   type,
 | |
|                  int   il) const {
 | |
|     switch (type) {
 | |
|         case LLM_NORM:       cur = ggml_norm    (ctx0, cur, hparams.f_norm_eps);     break;
 | |
|         case LLM_NORM_RMS:   cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
 | |
|         case LLM_NORM_GROUP:
 | |
|             {
 | |
|                 cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
 | |
|                 cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
 | |
|                 cur = ggml_reshape_2d(ctx0, cur, cur->ne[0],    cur->ne[2]);
 | |
|             } break;
 | |
|     }
 | |
| 
 | |
|     if (mw || mb) {
 | |
|         cb(cur, "norm", il);
 | |
|     }
 | |
| 
 | |
|     if (mw) {
 | |
|         cur = ggml_mul(ctx0, cur, mw);
 | |
|         if (mb) {
 | |
|             cb(cur, "norm_w", il);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (mb) {
 | |
|         cur = ggml_add(ctx0, cur, mb);
 | |
|     }
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_ffn(
 | |
|          ggml_tensor * cur,
 | |
|          ggml_tensor * up,
 | |
|          ggml_tensor * up_b,
 | |
|          ggml_tensor * up_s,
 | |
|          ggml_tensor * gate,
 | |
|          ggml_tensor * gate_b,
 | |
|          ggml_tensor * gate_s,
 | |
|          ggml_tensor * down,
 | |
|          ggml_tensor * down_b,
 | |
|          ggml_tensor * down_s,
 | |
|          ggml_tensor * act_scales,
 | |
|      llm_ffn_op_type   type_op,
 | |
|    llm_ffn_gate_type   type_gate,
 | |
|                  int   il) const {
 | |
|     ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
 | |
|     cb(tmp, "ffn_up", il);
 | |
| 
 | |
|     if (up_b) {
 | |
|         tmp = ggml_add(ctx0, tmp, up_b);
 | |
|         cb(tmp, "ffn_up_b", il);
 | |
|     }
 | |
| 
 | |
|     if (up_s) {
 | |
|         tmp = ggml_mul(ctx0, tmp, up_s);
 | |
|         cb(tmp, "ffn_up_s", il);
 | |
|     }
 | |
| 
 | |
|     if (gate) {
 | |
|         switch (type_gate) {
 | |
|             case LLM_FFN_SEQ:
 | |
|                 {
 | |
|                     cur = build_lora_mm(gate, tmp);
 | |
|                     cb(cur, "ffn_gate", il);
 | |
|                 } break;
 | |
|             case LLM_FFN_PAR:
 | |
|                 {
 | |
|                     cur = build_lora_mm(gate, cur);
 | |
|                     cb(cur, "ffn_gate", il);
 | |
|                 } break;
 | |
|         }
 | |
| 
 | |
|         if (gate_b) {
 | |
|             cur = ggml_add(ctx0, cur, gate_b);
 | |
|             cb(cur, "ffn_gate_b", il);
 | |
|         }
 | |
| 
 | |
|         if (gate_s) {
 | |
|             cur = ggml_mul(ctx0, cur, gate_s);
 | |
|             cb(cur, "ffn_gate_s", il);
 | |
|         }
 | |
| 
 | |
|     } else {
 | |
|         cur = tmp;
 | |
|     }
 | |
| 
 | |
|     switch (type_op) {
 | |
|         case LLM_FFN_SILU:
 | |
|             if (gate && type_gate == LLM_FFN_PAR) {
 | |
|                 cur = ggml_swiglu_split(ctx0, cur, tmp);
 | |
|                 cb(cur, "ffn_swiglu", il);
 | |
|                 type_gate = LLM_FFN_SEQ;
 | |
|             } else {
 | |
|                 cur = ggml_silu(ctx0, cur);
 | |
|                 cb(cur, "ffn_silu", il);
 | |
|             } break;
 | |
|         case LLM_FFN_GELU:
 | |
|             if (gate && type_gate == LLM_FFN_PAR) {
 | |
|                 cur = ggml_geglu_split(ctx0, cur, tmp);
 | |
|                 cb(cur, "ffn_geglu", il);
 | |
|                 type_gate = LLM_FFN_SEQ;
 | |
|             } else {
 | |
|                 cur = ggml_gelu(ctx0, cur);
 | |
|                 cb(cur, "ffn_gelu", il);
 | |
|                 if (act_scales != NULL) {
 | |
|                     cur = ggml_div(ctx0, cur, act_scales);
 | |
|                     cb(cur, "ffn_act", il);
 | |
|                 }
 | |
|             } break;
 | |
|         case LLM_FFN_RELU:
 | |
|             if (gate && type_gate == LLM_FFN_PAR) {
 | |
|                 cur = ggml_reglu_split(ctx0, cur, tmp);
 | |
|                 cb(cur, "ffn_reglu", il);
 | |
|                 type_gate = LLM_FFN_SEQ;
 | |
|             } else {
 | |
|                 cur = ggml_relu(ctx0, cur);
 | |
|                 cb(cur, "ffn_relu", il);
 | |
|             } break;
 | |
|         case LLM_FFN_RELU_SQR:
 | |
|             {
 | |
|                 cur = ggml_relu(ctx0, cur);
 | |
|                 cb(cur, "ffn_relu", il);
 | |
| 
 | |
|                 cur = ggml_sqr(ctx0, cur);
 | |
|                 cb(cur, "ffn_sqr(relu)", il);
 | |
|             } break;
 | |
|         case LLM_FFN_SWIGLU:
 | |
|             {
 | |
|                 cur = ggml_swiglu(ctx0, cur);
 | |
|                 cb(cur, "ffn_swiglu", il);
 | |
|             } break;
 | |
|         case LLM_FFN_GEGLU:
 | |
|             {
 | |
|                 cur = ggml_geglu(ctx0, cur);
 | |
|                 cb(cur, "ffn_geglu", il);
 | |
|             } break;
 | |
|         case LLM_FFN_REGLU:
 | |
|             {
 | |
|                 cur = ggml_reglu(ctx0, cur);
 | |
|                 cb(cur, "ffn_reglu", il);
 | |
|             } break;
 | |
|         default:
 | |
|             GGML_ABORT("fatal error");
 | |
|     }
 | |
| 
 | |
|     if (gate && type_gate == LLM_FFN_PAR) {
 | |
|         cur = ggml_mul(ctx0, cur, tmp);
 | |
|         cb(cur, "ffn_gate_par", il);
 | |
|     }
 | |
| 
 | |
|     if (down) {
 | |
|         cur = build_lora_mm(down, cur);
 | |
|         if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
 | |
|             // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
 | |
|             ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (down_b) {
 | |
|         cb(cur, "ffn_down", il);
 | |
|     }
 | |
| 
 | |
|     if (down_b) {
 | |
|         cur = ggml_add(ctx0, cur, down_b);
 | |
|     }
 | |
| 
 | |
|     if (down_s) {
 | |
|         cur = ggml_mul(ctx0, cur, down_s);
 | |
|         cb(cur, "ffn_down_s", il);
 | |
|     }
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_moe_ffn(
 | |
|          ggml_tensor * cur,
 | |
|          ggml_tensor * gate_inp,
 | |
|          ggml_tensor * up_exps,
 | |
|          ggml_tensor * gate_exps,
 | |
|          ggml_tensor * down_exps,
 | |
|          ggml_tensor * exp_probs_b,
 | |
|              int64_t   n_expert,
 | |
|              int64_t   n_expert_used,
 | |
|      llm_ffn_op_type   type_op,
 | |
|                 bool   norm_w,
 | |
|                 bool   scale_w,
 | |
|                float   w_scale,
 | |
|          llama_expert_gating_func_type gating_op,
 | |
|                  int   il,
 | |
|          ggml_tensor * probs_in) const {
 | |
|     return build_moe_ffn(
 | |
|         cur,
 | |
|         gate_inp,  /* gate_inp_b  */ nullptr,
 | |
|         up_exps,   /* up_exps_b   */ nullptr,
 | |
|         gate_exps, /* gate_exps_b */ nullptr,
 | |
|         down_exps, /* down_exps_b */ nullptr,
 | |
|         exp_probs_b,
 | |
|         n_expert,
 | |
|         n_expert_used,
 | |
|         type_op,
 | |
|         norm_w,
 | |
|         scale_w,
 | |
|         w_scale,
 | |
|         gating_op,
 | |
|         il,
 | |
|         probs_in
 | |
|     );
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_moe_ffn(
 | |
|          ggml_tensor * cur,
 | |
|          ggml_tensor * gate_inp,
 | |
|          ggml_tensor * gate_inp_b,
 | |
|          ggml_tensor * up_exps,
 | |
|          ggml_tensor * up_exps_b,
 | |
|          ggml_tensor * gate_exps,
 | |
|          ggml_tensor * gate_exps_b,
 | |
|          ggml_tensor * down_exps,
 | |
|          ggml_tensor * down_exps_b,
 | |
|          ggml_tensor * exp_probs_b,
 | |
|              int64_t   n_expert,
 | |
|              int64_t   n_expert_used,
 | |
|      llm_ffn_op_type   type_op,
 | |
|                 bool   norm_w,
 | |
|                 bool   scale_w,
 | |
|                float   w_scale,
 | |
|         llama_expert_gating_func_type gating_op,
 | |
|                  int   il,
 | |
|          ggml_tensor * probs_in) const {
 | |
|     const int64_t n_embd   = cur->ne[0];
 | |
|     const int64_t n_tokens = cur->ne[1];
 | |
|     const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
 | |
| 
 | |
|     ggml_tensor * logits = nullptr;
 | |
| 
 | |
|     if (probs_in == nullptr) {
 | |
|         logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
 | |
|         cb(logits, "ffn_moe_logits", il);
 | |
|     } else {
 | |
|         logits = probs_in;
 | |
|     }
 | |
| 
 | |
|     if (gate_inp_b) {
 | |
|         logits = ggml_add(ctx0, logits, gate_inp_b);
 | |
|         cb(logits, "ffn_moe_logits_biased", il);
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * probs = nullptr;
 | |
|     switch (gating_op) {
 | |
|         case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
 | |
|             {
 | |
|                 probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
 | |
|             } break;
 | |
|         case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
 | |
|             {
 | |
|                 probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
 | |
|             } break;
 | |
|         case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT:
 | |
|             {
 | |
|                 probs = logits; // [n_expert, n_tokens]
 | |
|             } break;
 | |
|         default:
 | |
|             GGML_ABORT("fatal error");
 | |
|     }
 | |
|     cb(probs, "ffn_moe_probs", il);
 | |
| 
 | |
|     // add experts selection bias - introduced in DeepSeek V3
 | |
|     // leave probs unbiased as it's later used to get expert weights
 | |
|     ggml_tensor * selection_probs = probs;
 | |
|     if (exp_probs_b != nullptr) {
 | |
|         selection_probs = ggml_add(ctx0, probs, exp_probs_b);
 | |
|         cb(selection_probs, "ffn_moe_probs_biased", il);
 | |
|     }
 | |
| 
 | |
|     // llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
 | |
|     // see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
 | |
|     if (arch == LLM_ARCH_LLAMA4) {
 | |
|         selection_probs = logits;
 | |
|     }
 | |
| 
 | |
|     // select experts
 | |
|     ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
 | |
|     cb(selected_experts->src[0], "ffn_moe_argsort", il);
 | |
|     cb(selected_experts, "ffn_moe_topk", il);
 | |
| 
 | |
|     ggml_tensor * weights = ggml_get_rows(ctx0,
 | |
|             ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
 | |
|     cb(weights, "ffn_moe_weights", il);
 | |
| 
 | |
|     if (gating_op == LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT) {
 | |
|         weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
 | |
|         weights = ggml_soft_max(ctx0, weights); // [n_expert_used, n_tokens]
 | |
|         weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
 | |
|         cb(weights, "ffn_moe_weights_softmax", il);
 | |
|     }
 | |
| 
 | |
|     if (norm_w) {
 | |
|         weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
 | |
| 
 | |
|         ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
 | |
|         cb(weights_sum, "ffn_moe_weights_sum", il);
 | |
| 
 | |
|         weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
 | |
|         cb(weights, "ffn_moe_weights_norm", il);
 | |
| 
 | |
|         weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
 | |
|     }
 | |
|     if (scale_w) {
 | |
|         weights = ggml_scale(ctx0, weights, w_scale);
 | |
|         cb(weights, "ffn_moe_weights_scaled", il);
 | |
|     }
 | |
| 
 | |
|     cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
 | |
| 
 | |
|     if (weight_before_ffn) {
 | |
|         // repeat cur to [n_embd, n_expert_used, n_tokens]
 | |
|         ggml_tensor * repeated = ggml_repeat_4d(ctx0, cur, n_embd, n_expert_used, n_tokens, 1);
 | |
|         cur = ggml_mul(ctx0, repeated, weights);
 | |
|         cb(cur, "ffn_moe_weighted", il);
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
 | |
|     cb(up, "ffn_moe_up", il);
 | |
| 
 | |
|     if (up_exps_b) {
 | |
|         up = ggml_add_id(ctx0, up, up_exps_b, selected_experts);
 | |
|         cb(up, "ffn_moe_up_biased", il);
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * experts = nullptr;
 | |
|     if (gate_exps) {
 | |
|         cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
 | |
|         cb(cur, "ffn_moe_gate", il);
 | |
|     } else {
 | |
|         cur = up;
 | |
|     }
 | |
| 
 | |
|     if (gate_exps_b) {
 | |
|         cur = ggml_add_id(ctx0, cur, gate_exps_b, selected_experts);
 | |
|         cb(cur, "ffn_moe_gate_biased", il);
 | |
|     }
 | |
| 
 | |
|     switch (type_op) {
 | |
|         case LLM_FFN_SILU:
 | |
|             if (gate_exps) {
 | |
|                 cur = ggml_swiglu_split(ctx0, cur, up);
 | |
|                 cb(cur, "ffn_moe_swiglu", il);
 | |
|             } else {
 | |
|                 cur = ggml_silu(ctx0, cur);
 | |
|                 cb(cur, "ffn_moe_silu", il);
 | |
|             } break;
 | |
|         case LLM_FFN_GELU:
 | |
|             if (gate_exps) {
 | |
|                 cur = ggml_geglu_split(ctx0, cur, up);
 | |
|                 cb(cur, "ffn_moe_geglu", il);
 | |
|             } else {
 | |
|                 cur = ggml_gelu(ctx0, cur);
 | |
|                 cb(cur, "ffn_moe_gelu", il);
 | |
|             } break;
 | |
|         case LLM_FFN_SWIGLU_OAI_MOE:
 | |
|             {
 | |
|                 // TODO: move to hparams?
 | |
|                 constexpr float alpha = 1.702f;
 | |
|                 constexpr float limit = 7.0f;
 | |
|                 cur = ggml_swiglu_oai(ctx0, cur, up, alpha, limit);
 | |
|                 cb(cur, "ffn_moe_swiglu_oai", il);
 | |
|             } break;
 | |
|         case LLM_FFN_RELU:
 | |
|             if (gate_exps) {
 | |
|                 cur = ggml_reglu_split(ctx0, cur, up);
 | |
|                 cb(cur, "ffn_moe_reglu", il);
 | |
|             } else {
 | |
|                 cur = ggml_relu(ctx0, cur);
 | |
|                 cb(cur, "ffn_moe_relu", il);
 | |
|             } break;
 | |
|         default:
 | |
|             GGML_ABORT("fatal error");
 | |
|     }
 | |
| 
 | |
|     experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
 | |
|     cb(experts, "ffn_moe_down", il);
 | |
| 
 | |
|     if (down_exps_b) {
 | |
|         experts = ggml_add_id(ctx0, experts, down_exps_b, selected_experts);
 | |
|         cb(experts, "ffn_moe_down_biased", il);
 | |
|     }
 | |
| 
 | |
|     if (!weight_before_ffn) {
 | |
|         experts = ggml_mul(ctx0, experts, weights);
 | |
|         cb(cur, "ffn_moe_weighted", il);
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr };
 | |
| 
 | |
|     assert(n_expert_used > 0);
 | |
| 
 | |
|     // order the views before the adds
 | |
|     for (uint32_t i = 0; i < hparams.n_expert_used; ++i) {
 | |
|         cur_experts[i] = ggml_view_2d(ctx0, experts, n_embd, n_tokens, experts->nb[2], i*experts->nb[1]);
 | |
| 
 | |
|         ggml_build_forward_expand(gf, cur_experts[i]);
 | |
|     }
 | |
| 
 | |
|     // aggregate experts
 | |
|     // note: here we explicitly use hparams.n_expert_used instead of n_expert_used
 | |
|     //       to avoid potentially a large number of add nodes during warmup
 | |
|     //       ref: https://github.com/ggml-org/llama.cpp/pull/14753
 | |
|     ggml_tensor * moe_out = cur_experts[0];
 | |
| 
 | |
|     for (uint32_t i = 1; i < hparams.n_expert_used; ++i) {
 | |
|         moe_out = ggml_add(ctx0, moe_out, cur_experts[i]);
 | |
|     }
 | |
| 
 | |
|     if (hparams.n_expert_used == 1) {
 | |
|         // avoid returning a non-contiguous tensor
 | |
|         moe_out = ggml_cont(ctx0, moe_out);
 | |
|     }
 | |
| 
 | |
|     cb(moe_out, "ffn_moe_out", il);
 | |
| 
 | |
|     return moe_out;
 | |
| }
 | |
| 
 | |
| // input embeddings with optional lora
 | |
| ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
 | |
|     const int64_t n_embd = hparams.n_embd;
 | |
| 
 | |
|     auto inp = std::make_unique<llm_graph_input_embd>();
 | |
| 
 | |
|     ggml_tensor * cur = nullptr;
 | |
| 
 | |
|     if (ubatch.token) {
 | |
|         inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
 | |
|         //cb(inp->tokens, "inp_tokens", -1);
 | |
|         ggml_set_input(inp->tokens);
 | |
|         res->t_tokens = inp->tokens;
 | |
| 
 | |
|         cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
 | |
| 
 | |
|         // apply lora for embedding tokens if needed
 | |
|         for (const auto & lora : *loras) {
 | |
|             llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
 | |
|             if (lw == nullptr) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             const float adapter_scale = lora.second;
 | |
|             const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
 | |
| 
 | |
|             ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
 | |
|                         ctx0, lw->b, // non-transposed lora_b
 | |
|                         ggml_get_rows(ctx0, lw->a, inp->tokens)
 | |
|                         ), scale);
 | |
| 
 | |
|             cur = ggml_add(ctx0, cur, inpL_delta);
 | |
|         }
 | |
|     } else {
 | |
|         inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
 | |
|         ggml_set_input(inp->embd);
 | |
| 
 | |
|         cur = inp->embd;
 | |
|     }
 | |
| 
 | |
|     // For Granite architecture
 | |
|     if (hparams.f_embedding_scale != 0.0f) {
 | |
|         cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
 | |
|     }
 | |
| 
 | |
|     cb(cur, "inp_embd", -1);
 | |
| 
 | |
|     res->add_input(std::move(inp));
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_inp_pos() const {
 | |
|     auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd());
 | |
| 
 | |
|     auto & cur = inp->pos;
 | |
| 
 | |
|     cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, (int64_t)n_tokens*hparams.n_pos_per_embd());
 | |
|     ggml_set_input(cur);
 | |
| 
 | |
|     res->add_input(std::move(inp));
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
 | |
|     auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
 | |
| 
 | |
|     auto & cur = inp->attn_scale;
 | |
| 
 | |
|     // this need to be 1x1xN for broadcasting
 | |
|     cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
 | |
|     ggml_set_input(cur);
 | |
| 
 | |
|     res->add_input(std::move(inp));
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_inp_out_ids() const {
 | |
|     // note: when all tokens are output, we could skip this optimization to spare the ggml_get_rows() calls,
 | |
|     //       but this would make the graph topology depend on the number of output tokens, which can interere with
 | |
|     //       features that require constant topology such as pipline parallelism
 | |
|     //       ref: https://github.com/ggml-org/llama.cpp/pull/14275#issuecomment-2987424471
 | |
|     //if (n_outputs < n_tokens) {
 | |
|     //    return nullptr;
 | |
|     //}
 | |
| 
 | |
|     auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);
 | |
| 
 | |
|     auto & cur = inp->out_ids;
 | |
| 
 | |
|     cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
 | |
|     ggml_set_input(cur);
 | |
| 
 | |
|     res->add_input(std::move(inp));
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_inp_mean() const {
 | |
|     auto inp = std::make_unique<llm_graph_input_mean>(cparams);
 | |
| 
 | |
|     auto & cur = inp->mean;
 | |
| 
 | |
|     cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, ubatch.n_seqs_unq);
 | |
|     ggml_set_input(cur);
 | |
| 
 | |
|     res->add_input(std::move(inp));
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_inp_cls() const {
 | |
|     auto inp = std::make_unique<llm_graph_input_cls>(cparams);
 | |
| 
 | |
|     auto & cur = inp->cls;
 | |
| 
 | |
|     cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_seqs_unq);
 | |
|     ggml_set_input(cur);
 | |
| 
 | |
|     res->add_input(std::move(inp));
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
 | |
|     auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);
 | |
| 
 | |
|     auto & cur = inp->cross_embd;
 | |
| 
 | |
|     // if we have the output embeddings from the encoder, use them directly
 | |
|     // TODO: needs more work to be correct, for now just use the tensor shape
 | |
|     //if (cross->t_embd) {
 | |
|     //    cur = ggml_view_tensor(ctx0, cross->t_embd);
 | |
| 
 | |
|     //    return cur;
 | |
|     //}
 | |
| 
 | |
|     const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
 | |
|     const auto n_enc  = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
 | |
| 
 | |
|     cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
 | |
|     ggml_set_input(cur);
 | |
| 
 | |
|     res->add_input(std::move(inp));
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
 | |
|     auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);
 | |
| 
 | |
|     auto & cur = inp->pos_bucket;
 | |
| 
 | |
|     cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
 | |
|     ggml_set_input(cur);
 | |
| 
 | |
|     res->add_input(std::move(inp));
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
 | |
|     const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx);
 | |
| 
 | |
|     auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, mctx_cur);
 | |
| 
 | |
|     const auto n_kv = mctx_cur->get_n_kv();
 | |
| 
 | |
|     auto & cur = inp->pos_bucket;
 | |
| 
 | |
|     cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
 | |
|     ggml_set_input(cur);
 | |
| 
 | |
|     res->add_input(std::move(inp));
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
 | |
|     ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
 | |
|     cb(pos_bucket_1d, "pos_bucket_1d", -1);
 | |
| 
 | |
|     ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
 | |
| 
 | |
|     pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
 | |
|     pos_bias = ggml_permute   (ctx0, pos_bias, 2, 0, 1, 3);
 | |
|     pos_bias = ggml_cont      (ctx0, pos_bias);
 | |
| 
 | |
|     cb(pos_bias, "pos_bias", -1);
 | |
| 
 | |
|     return pos_bias;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_attn_mha(
 | |
|          ggml_tensor * q,
 | |
|          ggml_tensor * k,
 | |
|          ggml_tensor * v,
 | |
|          ggml_tensor * kq_b,
 | |
|          ggml_tensor * kq_mask,
 | |
|          ggml_tensor * sinks,
 | |
|          ggml_tensor * v_mla,
 | |
|                float   kq_scale,
 | |
|                  int   il) const {
 | |
|     const bool v_trans = v->nb[1] > v->nb[2];
 | |
| 
 | |
|     // split the batch into streams if needed
 | |
|     const auto n_stream = k->ne[3];
 | |
| 
 | |
|     q = ggml_view_4d(ctx0, q, q->ne[0], q->ne[1], q->ne[2]/n_stream, n_stream, q->nb[1], q->nb[2], q->nb[3]/n_stream, 0);
 | |
| 
 | |
|     q = ggml_permute(ctx0, q, 0, 2, 1, 3);
 | |
|     k = ggml_permute(ctx0, k, 0, 2, 1, 3);
 | |
|     v = ggml_permute(ctx0, v, 0, 2, 1, 3);
 | |
| 
 | |
|     const auto n_kv = k->ne[1];
 | |
| 
 | |
|     ggml_tensor * cur;
 | |
| 
 | |
|     // TODO: replace hardcoded padding with ggml-provided padding
 | |
|     if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
 | |
|         GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");
 | |
| 
 | |
|         if (v_trans) {
 | |
|             v = ggml_transpose(ctx0, v);
 | |
|         }
 | |
| 
 | |
|         // this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
 | |
|         if (k->type == GGML_TYPE_F32) {
 | |
|             k = ggml_cast(ctx0, k, GGML_TYPE_F16);
 | |
|         }
 | |
| 
 | |
|         if (v->type == GGML_TYPE_F32) {
 | |
|             v = ggml_cast(ctx0, v, GGML_TYPE_F16);
 | |
|         }
 | |
| 
 | |
|         cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
 | |
|                                   hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
 | |
|         cb(cur, LLAMA_TENSOR_NAME_FATTN, il);
 | |
| 
 | |
|         ggml_flash_attn_ext_add_sinks(cur, sinks);
 | |
|         ggml_flash_attn_ext_set_prec (cur, GGML_PREC_F32);
 | |
| 
 | |
|         if (v_mla) {
 | |
| #if 0
 | |
|             // v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
 | |
|             // However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
 | |
|             cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
 | |
|             cur = ggml_mul_mat(ctx0, v_mla, cur);
 | |
| #else
 | |
|             // It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
 | |
|             // The permutations are noops and only change how the tensor data is interpreted.
 | |
|             cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
 | |
|             cur = ggml_mul_mat(ctx0, v_mla, cur);
 | |
|             cb(cur, "fattn_mla", il);
 | |
|             cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
 | |
|             cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
 | |
| #endif
 | |
|         }
 | |
| 
 | |
|         cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
 | |
|     } else {
 | |
|         ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
 | |
|         cb(kq, "kq", il);
 | |
| 
 | |
|         // note: this op tends to require high floating point range
 | |
|         //       while for some models F16 is enough, for others it is not, so we default to F32 here
 | |
|         ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
 | |
| 
 | |
|         if (arch == LLM_ARCH_GROK) {
 | |
|             // need to do the following:
 | |
|             // multiply by attn_output_multiplier
 | |
|             // and then :
 | |
|             // kq = 30 * tanh(kq / 30)
 | |
|             // before the softmax below
 | |
| 
 | |
|             kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, hparams.f_attn_out_scale / hparams.f_attn_logit_softcapping));
 | |
|             cb(kq, "kq_tanh", il);
 | |
|             kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
 | |
|             cb(kq, "kq_scaled", il);
 | |
|         }
 | |
| 
 | |
|         if (hparams.attn_soft_cap) {
 | |
|             kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
 | |
|             cb(kq, "kq_scaled_1", il);
 | |
|             kq = ggml_tanh (ctx0, kq);
 | |
|             cb(kq, "kq_tanh", il);
 | |
|             kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
 | |
|             cb(kq, "kq_scaled_2", il);
 | |
|         }
 | |
| 
 | |
|         if (kq_b) {
 | |
|             kq = ggml_add(ctx0, kq, kq_b);
 | |
|             cb(kq, "kq_plus_kq_b", il);
 | |
|         }
 | |
| 
 | |
|         kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
 | |
|         ggml_soft_max_add_sinks(kq, sinks);
 | |
|         cb(kq, "kq_soft_max", il);
 | |
| 
 | |
|         if (!v_trans) {
 | |
|             // note: avoid this branch
 | |
|             v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
 | |
|             cb(v, "v_cont", il);
 | |
|         }
 | |
| 
 | |
|         ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
 | |
|         cb(kqv, "kqv", il);
 | |
| 
 | |
|         // for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
 | |
|         if (v_mla) {
 | |
|             kqv = ggml_mul_mat(ctx0, v_mla, kqv);
 | |
|             cb(kqv, "kqv_mla", il);
 | |
|         }
 | |
| 
 | |
|         cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
 | |
| 
 | |
|         // recombine streams
 | |
|         cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
 | |
| 
 | |
|         if (!cparams.offload_kqv) {
 | |
|             // all nodes between the KV store and the attention output are run on the CPU
 | |
|             ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ggml_build_forward_expand(gf, cur);
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
 | |
|     auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);
 | |
| 
 | |
|     // note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
 | |
|     inp->kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
 | |
|     ggml_set_input(inp->kq_mask);
 | |
| 
 | |
|     inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;
 | |
| 
 | |
|     return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_attn(
 | |
|         llm_graph_input_attn_no_cache * inp,
 | |
|         ggml_tensor * wo,
 | |
|         ggml_tensor * wo_b,
 | |
|         ggml_tensor * q_cur,
 | |
|         ggml_tensor * k_cur,
 | |
|         ggml_tensor * v_cur,
 | |
|         ggml_tensor * kq_b,
 | |
|         ggml_tensor * sinks,
 | |
|         ggml_tensor * v_mla,
 | |
|             float     kq_scale,
 | |
|             int       il) const {
 | |
|     GGML_UNUSED(n_tokens);
 | |
| 
 | |
|     // these nodes are added to the graph together so that they are not reordered
 | |
|     // by doing so, the number of splits in the graph is reduced
 | |
|     ggml_build_forward_expand(gf, q_cur);
 | |
|     ggml_build_forward_expand(gf, k_cur);
 | |
|     ggml_build_forward_expand(gf, v_cur);
 | |
| 
 | |
|     const auto & kq_mask = inp->get_kq_mask();
 | |
| 
 | |
|     // [TAG_NO_CACHE_PAD]
 | |
|     // TODO: if ubatch.equal_seqs() == true, we can split the three tensors below into ubatch.n_seqs_unq streams
 | |
|     //       but it might not be worth it: https://github.com/ggml-org/llama.cpp/pull/15636
 | |
|     //assert(!ubatch.equal_seqs() || (k_cur->ne[3] == 1 && k_cur->ne[3] == ubatch.n_seqs_unq));
 | |
| 
 | |
|     ggml_tensor * q = q_cur;
 | |
|     ggml_tensor * k = k_cur;
 | |
|     ggml_tensor * v = v_cur;
 | |
| 
 | |
|     ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
 | |
|     cb(cur, "kqv_out", il);
 | |
| 
 | |
|     if (wo) {
 | |
|         cur = build_lora_mm(wo, cur);
 | |
|     }
 | |
| 
 | |
|     if (wo_b) {
 | |
|         //cb(cur, "kqv_wo", il);
 | |
|     }
 | |
| 
 | |
|     if (wo_b) {
 | |
|         cur = ggml_add(ctx0, cur, wo_b);
 | |
|     }
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| static std::unique_ptr<llm_graph_input_attn_kv> build_attn_inp_kv_impl(
 | |
|            ggml_context * ctx0,
 | |
|      const llama_ubatch & ubatch,
 | |
|     const llama_hparams & hparams,
 | |
|     const llama_cparams & cparams,
 | |
|     const llama_kv_cache_context * mctx_cur) {
 | |
| 
 | |
|     auto inp = std::make_unique<llm_graph_input_attn_kv>(hparams, cparams, mctx_cur);
 | |
| 
 | |
|     {
 | |
|         GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_iswa for SWA");
 | |
| 
 | |
|         const auto n_kv     = mctx_cur->get_n_kv();
 | |
|         const auto n_tokens = ubatch.n_tokens;
 | |
|         const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
 | |
| 
 | |
|         inp->self_k_idxs = mctx_cur->build_input_k_idxs(ctx0, ubatch);
 | |
|         inp->self_v_idxs = mctx_cur->build_input_v_idxs(ctx0, ubatch);
 | |
| 
 | |
|         inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
 | |
|         ggml_set_input(inp->self_kq_mask);
 | |
| 
 | |
|         inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
 | |
|     }
 | |
| 
 | |
|     return inp;
 | |
| }
 | |
| 
 | |
| llm_graph_input_attn_kv * llm_graph_context::build_attn_inp_kv() const {
 | |
|     const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx);
 | |
| 
 | |
|     auto inp = build_attn_inp_kv_impl(ctx0, ubatch, hparams, cparams, mctx_cur);
 | |
| 
 | |
|     return (llm_graph_input_attn_kv *) res->add_input(std::move(inp));
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_attn(
 | |
|         llm_graph_input_attn_kv * inp,
 | |
|         ggml_tensor * wo,
 | |
|         ggml_tensor * wo_b,
 | |
|         ggml_tensor * q_cur,
 | |
|         ggml_tensor * k_cur,
 | |
|         ggml_tensor * v_cur,
 | |
|         ggml_tensor * kq_b,
 | |
|         ggml_tensor * sinks,
 | |
|         ggml_tensor * v_mla,
 | |
|             float     kq_scale,
 | |
|             int       il) const {
 | |
|     // these nodes are added to the graph together so that they are not reordered
 | |
|     // by doing so, the number of splits in the graph is reduced
 | |
|     ggml_build_forward_expand(gf, q_cur);
 | |
|     ggml_build_forward_expand(gf, k_cur);
 | |
|     ggml_build_forward_expand(gf, v_cur);
 | |
| 
 | |
|     const auto * mctx_cur = inp->mctx;
 | |
| 
 | |
|     // store to KV cache
 | |
|     {
 | |
|         const auto & k_idxs = inp->get_k_idxs();
 | |
|         const auto & v_idxs = inp->get_v_idxs();
 | |
| 
 | |
|         ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
 | |
|         ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
 | |
|     }
 | |
| 
 | |
|     const auto & kq_mask = inp->get_kq_mask();
 | |
| 
 | |
|     ggml_tensor * q = q_cur;
 | |
|     ggml_tensor * k = mctx_cur->get_k(ctx0, il);
 | |
|     ggml_tensor * v = mctx_cur->get_v(ctx0, il);
 | |
| 
 | |
|     ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
 | |
|     cb(cur, "kqv_out", il);
 | |
| 
 | |
|     if (wo) {
 | |
|         cur = build_lora_mm(wo, cur);
 | |
|         if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
 | |
|             // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
 | |
|             ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (wo_b) {
 | |
|         cur = ggml_add(ctx0, cur, wo_b);
 | |
|     }
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_attn(
 | |
|         llm_graph_input_attn_kv_iswa * inp,
 | |
|         ggml_tensor * wo,
 | |
|         ggml_tensor * wo_b,
 | |
|         ggml_tensor * q_cur,
 | |
|         ggml_tensor * k_cur,
 | |
|         ggml_tensor * v_cur,
 | |
|         ggml_tensor * kq_b,
 | |
|         ggml_tensor * sinks,
 | |
|         ggml_tensor * v_mla,
 | |
|             float     kq_scale,
 | |
|             int       il) const {
 | |
|     // these nodes are added to the graph together so that they are not reordered
 | |
|     // by doing so, the number of splits in the graph is reduced
 | |
|     ggml_build_forward_expand(gf, q_cur);
 | |
| 
 | |
|     if (k_cur) {
 | |
|         ggml_build_forward_expand(gf, k_cur);
 | |
|     }
 | |
| 
 | |
|     if (v_cur) {
 | |
|         ggml_build_forward_expand(gf, v_cur);
 | |
|     }
 | |
| 
 | |
|     const auto * mctx_iswa = inp->mctx;
 | |
| 
 | |
|     const bool is_swa = hparams.is_swa(il);
 | |
| 
 | |
|     const auto * mctx_cur = is_swa ? mctx_iswa->get_swa() : mctx_iswa->get_base();
 | |
| 
 | |
|     // optionally store to KV cache
 | |
|     if (k_cur) {
 | |
|         const auto & k_idxs = is_swa ? inp->get_k_idxs_swa() : inp->get_k_idxs();
 | |
| 
 | |
|         ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il));
 | |
|     }
 | |
| 
 | |
|     if (v_cur) {
 | |
|         const auto & v_idxs = is_swa ? inp->get_v_idxs_swa() : inp->get_v_idxs();
 | |
| 
 | |
|         ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il));
 | |
|     }
 | |
| 
 | |
|     const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
 | |
| 
 | |
|     ggml_tensor * q = q_cur;
 | |
|     ggml_tensor * k = mctx_cur->get_k(ctx0, il);
 | |
|     ggml_tensor * v = mctx_cur->get_v(ctx0, il);
 | |
| 
 | |
|     ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
 | |
|     cb(cur, "kqv_out", il);
 | |
| 
 | |
|     if (wo) {
 | |
|         cur = build_lora_mm(wo, cur);
 | |
|     }
 | |
| 
 | |
|     if (wo_b) {
 | |
|         //cb(cur, "kqv_wo", il);
 | |
|     }
 | |
| 
 | |
|     if (wo_b) {
 | |
|         cur = ggml_add(ctx0, cur, wo_b);
 | |
|     }
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
 | |
|     auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);
 | |
| 
 | |
|     const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
 | |
| 
 | |
|     inp->cross_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
 | |
|     ggml_set_input(inp->cross_kq_mask);
 | |
| 
 | |
|     inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;
 | |
| 
 | |
|     return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_attn(
 | |
|         llm_graph_input_attn_cross * inp,
 | |
|         ggml_tensor * wo,
 | |
|         ggml_tensor * wo_b,
 | |
|         ggml_tensor * q_cur,
 | |
|         ggml_tensor * k_cur,
 | |
|         ggml_tensor * v_cur,
 | |
|         ggml_tensor * kq_b,
 | |
|         ggml_tensor * sinks,
 | |
|         ggml_tensor * v_mla,
 | |
|             float     kq_scale,
 | |
|             int       il) const {
 | |
|     // these nodes are added to the graph together so that they are not reordered
 | |
|     // by doing so, the number of splits in the graph is reduced
 | |
|     ggml_build_forward_expand(gf, q_cur);
 | |
|     ggml_build_forward_expand(gf, k_cur);
 | |
|     ggml_build_forward_expand(gf, v_cur);
 | |
| 
 | |
|     const auto & kq_mask = inp->get_kq_mask_cross();
 | |
| 
 | |
|     ggml_tensor * q = q_cur;
 | |
|     ggml_tensor * k = k_cur;
 | |
|     ggml_tensor * v = v_cur;
 | |
| 
 | |
|     ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il);
 | |
|     cb(cur, "kqv_out", il);
 | |
| 
 | |
|     if (wo) {
 | |
|         cur = build_lora_mm(wo, cur);
 | |
|     }
 | |
| 
 | |
|     if (wo_b) {
 | |
|         //cb(cur, "kqv_wo", il);
 | |
|     }
 | |
| 
 | |
|     if (wo_b) {
 | |
|         cur = ggml_add(ctx0, cur, wo_b);
 | |
|     }
 | |
| 
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| // TODO: maybe separate the inner implementation into a separate function
 | |
| //       like with the non-sliding window equivalent
 | |
| //       once sliding-window hybrid caches are a thing.
 | |
| llm_graph_input_attn_kv_iswa * llm_graph_context::build_attn_inp_kv_iswa() const {
 | |
|     const auto * mctx_cur = static_cast<const llama_kv_cache_iswa_context *>(mctx);
 | |
| 
 | |
|     auto inp = std::make_unique<llm_graph_input_attn_kv_iswa>(hparams, cparams, mctx_cur);
 | |
| 
 | |
|     const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
 | |
| 
 | |
|     {
 | |
|         const auto n_kv = mctx_cur->get_base()->get_n_kv();
 | |
| 
 | |
|         inp->self_k_idxs = mctx_cur->get_base()->build_input_k_idxs(ctx0, ubatch);
 | |
|         inp->self_v_idxs = mctx_cur->get_base()->build_input_v_idxs(ctx0, ubatch);
 | |
| 
 | |
|         inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
 | |
|         ggml_set_input(inp->self_kq_mask);
 | |
| 
 | |
|         inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache for non-SWA");
 | |
| 
 | |
|         const auto n_kv = mctx_cur->get_swa()->get_n_kv();
 | |
| 
 | |
|         inp->self_k_idxs_swa = mctx_cur->get_swa()->build_input_k_idxs(ctx0, ubatch);
 | |
|         inp->self_v_idxs_swa = mctx_cur->get_swa()->build_input_v_idxs(ctx0, ubatch);
 | |
| 
 | |
|         inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream);
 | |
|         ggml_set_input(inp->self_kq_mask_swa);
 | |
| 
 | |
|         inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
 | |
|     }
 | |
| 
 | |
|     return (llm_graph_input_attn_kv_iswa *) res->add_input(std::move(inp));
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_rs(
 | |
|         ggml_tensor * s,
 | |
|         ggml_tensor * state_copy_main,
 | |
|         ggml_tensor * state_copy_extra,
 | |
|             int32_t   state_size,
 | |
|             int32_t   n_seqs,
 | |
|            uint32_t   n_rs,
 | |
|            uint32_t   rs_head,
 | |
|            uint32_t   rs_size,
 | |
|             int32_t   rs_zero,
 | |
|         const llm_graph_get_rows_fn & get_state_rows) const {
 | |
| 
 | |
|     ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, rs_size);
 | |
| 
 | |
|     // Clear a single state which will then be copied to the other cleared states.
 | |
|     // Note that this is a no-op when the view is zero-sized.
 | |
|     ggml_tensor * state_zero = ggml_view_1d(ctx0, states, state_size*(rs_zero >= 0), rs_zero*states->nb[1]*(rs_zero >= 0));
 | |
|     ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0));
 | |
| 
 | |
|     // copy states
 | |
|     // NOTE: assuming the copy destinations are ALL contained between rs_head and rs_head + n_rs
 | |
|     // {state_size, rs_size} -> {state_size, n_seqs}
 | |
|     ggml_tensor * output_states = get_state_rows(ctx0, states, state_copy_main);
 | |
|     ggml_build_forward_expand(gf, output_states);
 | |
| 
 | |
|     // copy extra states which won't be changed further (between n_seqs and n_rs)
 | |
|     ggml_tensor * states_extra = ggml_get_rows(ctx0, states, state_copy_extra);
 | |
|     ggml_build_forward_expand(gf,
 | |
|         ggml_cpy(ctx0,
 | |
|             states_extra,
 | |
|             ggml_view_1d(ctx0, s, state_size*(n_rs - n_seqs), (rs_head + n_seqs)*state_size*ggml_element_size(s))));
 | |
| 
 | |
|     return output_states;
 | |
| }
 | |
| 
 | |
| static std::unique_ptr<llm_graph_input_rs> build_rs_inp_impl(
 | |
|            ggml_context * ctx0,
 | |
|      const llama_ubatch & ubatch,
 | |
|     const llama_memory_recurrent_context * mctx_cur) {
 | |
| 
 | |
|     auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur);
 | |
| 
 | |
|     const int64_t n_rs   = mctx_cur->get_n_rs();
 | |
|     const int64_t n_seqs = ubatch.n_seqs;
 | |
| 
 | |
|     inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
 | |
|     ggml_set_input(inp->s_copy);
 | |
| 
 | |
|     inp->s_copy_main  = ggml_view_1d(ctx0, inp->s_copy, n_seqs, 0);
 | |
|     inp->s_copy_extra = ggml_view_1d(ctx0, inp->s_copy, n_rs - n_seqs, n_seqs * inp->s_copy->nb[0]);
 | |
| 
 | |
|     return inp;
 | |
| }
 | |
| 
 | |
| llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
 | |
|     const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
 | |
| 
 | |
|     auto inp = build_rs_inp_impl(ctx0, ubatch, mctx_cur);
 | |
| 
 | |
|     return (llm_graph_input_rs *) res->add_input(std::move(inp));
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_rs(
 | |
|         llm_graph_input_rs * inp,
 | |
|         ggml_tensor * s,
 | |
|             int32_t   state_size,
 | |
|             int32_t   n_seqs,
 | |
|         const llm_graph_get_rows_fn & get_state_rows) const {
 | |
|     const auto * kv_state = inp->mctx;
 | |
| 
 | |
|     return build_rs(s, inp->s_copy_main, inp->s_copy_extra, state_size, n_seqs,
 | |
|                     kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(),
 | |
|                     get_state_rows);
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
 | |
|     llm_graph_input_rs * inp,
 | |
|     const llama_ubatch & ubatch,
 | |
|                    int   il) const {
 | |
|     const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
 | |
| 
 | |
|     const auto token_shift_count = hparams.token_shift_count;
 | |
| 
 | |
|     const int64_t n_seqs  = ubatch.n_seqs;
 | |
| 
 | |
|     ggml_tensor * token_shift_all = mctx_cur->get_r_l(il);
 | |
| 
 | |
|     ggml_tensor * token_shift = build_rs(
 | |
|             inp, token_shift_all,
 | |
|             hparams.n_embd_r(), n_seqs);
 | |
| 
 | |
|     token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);
 | |
| 
 | |
|     return token_shift;
 | |
| }
 | |
| 
 | |
| ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
 | |
|          ggml_tensor * token_shift,
 | |
|   const llama_ubatch & ubatch,
 | |
|                  int   il) const {
 | |
|     const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
 | |
| 
 | |
|     const auto token_shift_count = hparams.token_shift_count;
 | |
|     const auto n_embd = hparams.n_embd;
 | |
| 
 | |
|     const int64_t n_seqs = ubatch.n_seqs;
 | |
| 
 | |
|     const auto kv_head = mctx_cur->get_head();
 | |
| 
 | |
|     return ggml_cpy(
 | |
|         ctx0,
 | |
|         ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
 | |
|         ggml_view_1d(ctx0, mctx_cur->get_r_l(il), hparams.n_embd_r()*n_seqs, hparams.n_embd_r()*kv_head*ggml_element_size(mctx_cur->get_r_l(il)))
 | |
|     );
 | |
| }
 | |
| 
 | |
| llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
 | |
|     const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);
 | |
| 
 | |
|     auto inp_rs   = build_rs_inp_impl(ctx0, ubatch, mctx_cur->get_recr());
 | |
|     auto inp_attn = build_attn_inp_kv_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn());
 | |
| 
 | |
|     auto inp = std::make_unique<llm_graph_input_mem_hybrid>(std::move(inp_attn), std::move(inp_rs), mctx_cur);
 | |
| 
 | |
|     return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
 | |
| }
 | |
| 
 | |
| void llm_graph_context::build_pooling(
 | |
|         ggml_tensor * cls,
 | |
|         ggml_tensor * cls_b,
 | |
|         ggml_tensor * cls_out,
 | |
|         ggml_tensor * cls_out_b) const {
 | |
|     if (!cparams.embeddings) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * inp = res->t_embd;
 | |
| 
 | |
|     //// find result_norm tensor for input
 | |
|     //for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
 | |
|     //    inp = ggml_graph_node(gf, i);
 | |
|     //    if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
 | |
|     //        break;
 | |
|     //    }
 | |
| 
 | |
|     //    inp = nullptr;
 | |
|     //}
 | |
| 
 | |
|     GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
 | |
| 
 | |
|     ggml_tensor * cur;
 | |
| 
 | |
|     switch (pooling_type) {
 | |
|         case LLAMA_POOLING_TYPE_NONE:
 | |
|             {
 | |
|                 cur = inp;
 | |
|             } break;
 | |
|         case LLAMA_POOLING_TYPE_MEAN:
 | |
|             {
 | |
|                 ggml_tensor * inp_mean = build_inp_mean();
 | |
|                 cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
 | |
|             } break;
 | |
|         case LLAMA_POOLING_TYPE_CLS:
 | |
|         case LLAMA_POOLING_TYPE_LAST:
 | |
|             {
 | |
|                 ggml_tensor * inp_cls = build_inp_cls();
 | |
|                 cur = ggml_get_rows(ctx0, inp, inp_cls);
 | |
|             } break;
 | |
|         case LLAMA_POOLING_TYPE_RANK:
 | |
|             {
 | |
|                 ggml_tensor * inp_cls = build_inp_cls();
 | |
|                 inp = ggml_get_rows(ctx0, inp, inp_cls);
 | |
| 
 | |
|                 if (cls) {
 | |
|                     // classification head
 | |
|                     // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
 | |
|                     cur = ggml_mul_mat(ctx0, cls, inp);
 | |
|                     if (cls_b) {
 | |
|                         cur = ggml_add(ctx0, cur, cls_b);
 | |
|                     }
 | |
|                     cur = ggml_tanh(ctx0, cur);
 | |
| 
 | |
|                     // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
 | |
|                     // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
 | |
|                     if (cls_out) {
 | |
|                         cur = ggml_mul_mat(ctx0, cls_out, cur);
 | |
|                         if (cls_out_b) {
 | |
|                             cur = ggml_add(ctx0, cur, cls_out_b);
 | |
|                         }
 | |
|                     }
 | |
|                 } else if (cls_out) {
 | |
|                     // Single layer classification head (direct projection)
 | |
|                     // https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476
 | |
|                     cur = ggml_mul_mat(ctx0, cls_out, inp);
 | |
|                     if (cls_out_b) {
 | |
|                         cur = ggml_add(ctx0, cur, cls_out_b);
 | |
|                     }
 | |
|                 } else {
 | |
|                     GGML_ABORT("RANK pooling requires either cls+cls_b or cls_out+cls_out_b");
 | |
|                 }
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ABORT("unknown pooling type");
 | |
|             }
 | |
|     }
 | |
| 
 | |
|     cb(cur, "result_embd_pooled", -1);
 | |
|     res->t_embd_pooled = cur;
 | |
| 
 | |
|     ggml_build_forward_expand(gf, cur);
 | |
| }
 | |
| 
 | |
| int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
 | |
|     // TODO move to hparams if a T5 variant appears that uses a different value
 | |
|     const int64_t max_distance = 128;
 | |
| 
 | |
|     if (bidirectional) {
 | |
|         n_buckets >>= 1;
 | |
|     }
 | |
| 
 | |
|     const int64_t max_exact = n_buckets >> 1;
 | |
| 
 | |
|     int32_t relative_position = x - y;
 | |
|     int32_t relative_bucket = 0;
 | |
| 
 | |
|     if (bidirectional) {
 | |
|         relative_bucket += (relative_position > 0) * n_buckets;
 | |
|         relative_position = abs(relative_position);
 | |
|     } else {
 | |
|         relative_position = -std::min<int32_t>(relative_position, 0);
 | |
|     }
 | |
| 
 | |
|     int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
 | |
|     relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
 | |
|     relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
 | |
| 
 | |
|     return relative_bucket;
 | |
| }
 |