mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 afa8a9ec9b
			
		
	
	afa8a9ec9b
	
	
	
		
			
			* llama : functions -> methods (#11110) * llama : add struct llama_vocab to the API (#11156) ggml-ci * hparams : move vocab params to llama_vocab (#11159) ggml-ci * vocab : more pimpl (#11165) ggml-ci * vocab : minor tokenization optimizations (#11160) ggml-ci Co-authored-by: Diego Devesa <slarengh@gmail.com> * lora : update API names (#11167) ggml-ci * llama : update API names to use correct prefix (#11174) * llama : update API names to use correct prefix ggml-ci * cont ggml-ci * cont ggml-ci * minor [no ci] * vocab : llama_vocab_add_[be]os -> llama_vocab_get_add_[be]os (#11174) ggml-ci * vocab : llama_vocab_n_vocab -> llama_vocab_n_tokens (#11174) ggml-ci --------- Co-authored-by: Diego Devesa <slarengh@gmail.com>
		
			
				
	
	
		
			75 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #pragma once
 | |
| 
 | |
| #include "llama.h"
 | |
| 
 | |
| #include "ggml-cpp.h"
 | |
| 
 | |
| #include <string>
 | |
| #include <unordered_map>
 | |
| #include <vector>
 | |
| 
 | |
| // TODO: pimpl
 | |
| 
 | |
| //
 | |
| // llama_adapter_cvec
 | |
| //
 | |
| 
 | |
| struct llama_adapter_cvec {
 | |
|     struct ggml_tensor * tensor_for(int il) const;
 | |
| 
 | |
|     struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int  il) const;
 | |
| 
 | |
|     int32_t apply(
 | |
|             const llama_model & model,
 | |
|             const float * data,
 | |
|             size_t len,
 | |
|             int32_t n_embd,
 | |
|             int32_t il_start,
 | |
|             int32_t il_end);
 | |
| 
 | |
| private:
 | |
|     bool init(const llama_model & model);
 | |
| 
 | |
|     int32_t layer_start = -1;
 | |
|     int32_t layer_end   = -1;
 | |
| 
 | |
|     std::vector<ggml_context_ptr> ctxs;
 | |
|     std::vector<ggml_backend_buffer_ptr> bufs;
 | |
| 
 | |
|     std::vector<struct ggml_tensor *> tensors; // per layer
 | |
| };
 | |
| 
 | |
| //
 | |
| // llama_adapter_lora
 | |
| //
 | |
| 
 | |
| struct llama_adapter_lora_weight {
 | |
|     struct ggml_tensor * a = nullptr;
 | |
|     struct ggml_tensor * b = nullptr;
 | |
| 
 | |
|     // get actual scale based on rank and alpha
 | |
|     float get_scale(float alpha, float adapter_scale) const {
 | |
|         const float rank  = (float) b->ne[0];
 | |
|         const float scale = alpha ? adapter_scale * alpha / rank : adapter_scale;
 | |
|         return scale;
 | |
|     }
 | |
| 
 | |
|     llama_adapter_lora_weight() = default;
 | |
|     llama_adapter_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
 | |
| };
 | |
| 
 | |
| struct llama_adapter_lora {
 | |
|     // map tensor name to lora_a_b
 | |
|     std::unordered_map<std::string, struct llama_adapter_lora_weight> ab_map;
 | |
| 
 | |
|     std::vector<ggml_context_ptr> ctxs;
 | |
|     std::vector<ggml_backend_buffer_ptr> bufs;
 | |
| 
 | |
|     float alpha;
 | |
| 
 | |
|     llama_adapter_lora() = default;
 | |
|     ~llama_adapter_lora() = default;
 | |
| 
 | |
|     llama_adapter_lora_weight * get_weight(struct ggml_tensor * w);
 | |
| };
 |