mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 92d0b751a7
			
		
	
	92d0b751a7
	
	
	
		
			
			* convert : fix python 3.8 support * convert : sort imports * convert : fix required parameters in convert-llama-ggmlv3-to-gguf * convert : fix mypy errors in convert-llama-ggmlv3-to-gguf * convert : use PEP 585 generics and PEP 604 unions Now that we have `from __future__ import annotations`, we can use this modern syntax in Python 3.7 instead of restricting support to Python 3.9 or 3.10 respectively. * gguf.py : a tuple is already a tuple * add mypy.ini * convert : add necessary `type: ignore` comments * gguf-py: bump version
		
			
				
	
	
		
			262 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| # 7b pth llama --> gguf conversion
 | |
| # Only models with a single datafile are supported, like 7B
 | |
| # HF files required in the model dir: config.json tokenizer_config.json tokenizer.json tokenizer.model
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| import argparse
 | |
| import json
 | |
| import os
 | |
| import struct
 | |
| import sys
 | |
| from pathlib import Path
 | |
| from typing import TYPE_CHECKING, Any
 | |
| 
 | |
| import gguf
 | |
| import numpy as np
 | |
| import torch
 | |
| from sentencepiece import SentencePieceProcessor  # type: ignore[import]
 | |
| 
 | |
| if TYPE_CHECKING:
 | |
|     from typing import TypeAlias
 | |
| 
 | |
| NDArray: TypeAlias = 'np.ndarray[Any, Any]'
 | |
| 
 | |
| 
 | |
| def count_model_parts(dir_model: Path) -> int:
 | |
|     num_parts = 0
 | |
|     for filename in os.listdir(dir_model):
 | |
|         if filename.startswith("consolidated."):
 | |
|             num_parts += 1
 | |
| 
 | |
|     if num_parts > 0:
 | |
|         print("gguf: found " + str(num_parts) + " model parts")
 | |
|     return num_parts
 | |
| 
 | |
| 
 | |
| def parse_args() -> argparse.Namespace:
 | |
|     parser = argparse.ArgumentParser(description="Convert a PyTorch 7B LLaMA model to a GGML compatible file")
 | |
|     parser.add_argument("--vocab-only",  action="store_true",    help="extract only the vocab")
 | |
|     parser.add_argument("--outfile",     type=Path,              help="path to write to; default: based on input")
 | |
|     parser.add_argument("model",         type=Path,              help="directory containing model file, or model file itself (*.bin)")
 | |
|     parser.add_argument("ftype",     type=int, choices=[0, 1],   help="output format - use 0 for float32, 1 for float16", default = 1)
 | |
|     return parser.parse_args()
 | |
| 
 | |
| args = parse_args()
 | |
| 
 | |
| dir_model = args.model
 | |
| ftype = args.ftype
 | |
| if not dir_model.is_dir():
 | |
|     print(f'Error: {args.model} is not a directory', file = sys.stderr)
 | |
|     sys.exit(1)
 | |
| 
 | |
| # possible tensor data types
 | |
| #   ftype == 0 -> float32
 | |
| #   ftype == 1 -> float16
 | |
| 
 | |
| # map from ftype to string
 | |
| ftype_str = ["f32", "f16"]
 | |
| 
 | |
| if args.outfile is not None:
 | |
|     fname_out = args.outfile
 | |
| else:
 | |
|     # output in the same directory as the model by default
 | |
|     fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
 | |
| 
 | |
| print("gguf: loading model "+dir_model.name)
 | |
| 
 | |
| with open(dir_model / "config.json", "r", encoding="utf-8") as f:
 | |
|     hparams = json.load(f)
 | |
| 
 | |
| if hparams["architectures"][0] != "LlamaForCausalLM":
 | |
|     print("Model architecture not supported: " + hparams["architectures"][0])
 | |
|     sys.exit()
 | |
| 
 | |
| # get number of model parts
 | |
| num_parts = count_model_parts(dir_model)
 | |
| 
 | |
| if num_parts > 1:
 | |
|     print("gguf: Only models with a single datafile are supported.")
 | |
| 
 | |
|     sys.exit()
 | |
| 
 | |
| ARCH=gguf.MODEL_ARCH.LLAMA
 | |
| gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
 | |
| 
 | |
| 
 | |
| print("gguf: get model metadata")
 | |
| 
 | |
| block_count = hparams["num_hidden_layers"]
 | |
| head_count = hparams["num_attention_heads"]
 | |
| 
 | |
| if "num_key_value_heads" in hparams:
 | |
|     head_count_kv = hparams["num_key_value_heads"]
 | |
| else:
 | |
|     head_count_kv = head_count
 | |
| 
 | |
| if "_name_or_path" in hparams:
 | |
|     hf_repo = hparams["_name_or_path"]
 | |
| else:
 | |
|     hf_repo = ""
 | |
| 
 | |
| if "max_sequence_length" in hparams:
 | |
|     ctx_length = hparams["max_sequence_length"]
 | |
| elif "max_position_embeddings" in hparams:
 | |
|     ctx_length = hparams["max_position_embeddings"]
 | |
| else:
 | |
|     print("gguf: can not find ctx length parameter.")
 | |
| 
 | |
|     sys.exit()
 | |
| 
 | |
| 
 | |
| gguf_writer.add_name(dir_model.name)
 | |
| gguf_writer.add_source_hf_repo(hf_repo)
 | |
| gguf_writer.add_tensor_data_layout("Meta AI original pth")
 | |
| gguf_writer.add_context_length(ctx_length)
 | |
| gguf_writer.add_embedding_length(hparams["hidden_size"])
 | |
| gguf_writer.add_block_count(block_count)
 | |
| gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | |
| gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
 | |
| gguf_writer.add_head_count(head_count)
 | |
| gguf_writer.add_head_count_kv(head_count_kv)
 | |
| gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
 | |
| 
 | |
| if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
 | |
|     if "type" in hparams["rope_scaling"]:
 | |
|         if hparams["rope_scaling"]["type"] == "linear":
 | |
|             gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
 | |
| 
 | |
| 
 | |
| # TOKENIZATION
 | |
| 
 | |
| print("gguf: get tokenizer metadata")
 | |
| 
 | |
| tokens: list[bytes] = []
 | |
| scores: list[float] = []
 | |
| toktypes: list[int] = []
 | |
| 
 | |
| tokenizer_model_file = dir_model / 'tokenizer.model'
 | |
| if not tokenizer_model_file.is_file():
 | |
|     print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
 | |
|     sys.exit(1)
 | |
| 
 | |
| # vocab type sentencepiece
 | |
| print("gguf: get sentencepiece tokenizer vocab and scores")
 | |
| 
 | |
| tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
 | |
| 
 | |
| for i in range(tokenizer.vocab_size()):
 | |
|     text: bytes
 | |
|     score: float
 | |
| 
 | |
|     piece = tokenizer.id_to_piece(i)
 | |
|     text = piece.encode("utf-8")
 | |
|     score = tokenizer.get_score(i)
 | |
| 
 | |
|     toktype = 1  # defualt to normal token type
 | |
|     if tokenizer.is_unknown(i):
 | |
|         toktype = 2
 | |
|     if tokenizer.is_control(i):
 | |
|         toktype = 3
 | |
| 
 | |
|     # toktype = 4 is user-defined = tokens from added_tokens.json
 | |
| 
 | |
|     if tokenizer.is_unused(i):
 | |
|         toktype = 5
 | |
|     if tokenizer.is_byte(i):
 | |
|         toktype = 6
 | |
| 
 | |
|     tokens.append(text)
 | |
|     scores.append(score)
 | |
|     toktypes.append(toktype)
 | |
| 
 | |
| added_tokens_file = dir_model / 'added_tokens.json'
 | |
| if added_tokens_file.is_file():
 | |
|     with open(added_tokens_file, "r", encoding="utf-8") as f:
 | |
|         addtokens_json = json.load(f)
 | |
| 
 | |
|         print("gguf: get added tokens")
 | |
| 
 | |
|         for key in addtokens_json:
 | |
|             tokens.append( key.encode("utf-8") )
 | |
|             scores.append(-1000.0)
 | |
|             toktypes.append(4) # user-defined token type
 | |
| 
 | |
| gguf_writer.add_tokenizer_model("llama")
 | |
| gguf_writer.add_token_list(tokens)
 | |
| gguf_writer.add_token_scores(scores)
 | |
| gguf_writer.add_token_types(toktypes)
 | |
| 
 | |
| special_vocab = gguf.SpecialVocab(dir_model)
 | |
| special_vocab.add_to_gguf(gguf_writer)
 | |
| 
 | |
| # TENSORS
 | |
| 
 | |
| tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
 | |
| 
 | |
| # tensor info
 | |
| print("gguf: get tensor metadata")
 | |
| 
 | |
| part_names = (f"consolidated.{n:02}.pth" for n in range(0, num_parts))
 | |
| 
 | |
| for part_name in part_names:
 | |
|     if args.vocab_only:
 | |
|         break
 | |
|     print("gguf: loading model part '" + part_name + "'")
 | |
|     model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
 | |
| 
 | |
|     for name in model_part.keys():
 | |
|         data = model_part[name]
 | |
| 
 | |
|         # we don't need these
 | |
|         if name == "rope.freqs":
 | |
|             continue
 | |
| 
 | |
|         old_dtype = data.dtype
 | |
| 
 | |
|         # convert any unsupported data types to float32
 | |
|         if data.dtype != torch.float16 and data.dtype != torch.float32:
 | |
|             data = data.to(torch.float32)
 | |
| 
 | |
|         data = data.squeeze().numpy()
 | |
| 
 | |
|         # map tensor names
 | |
|         new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
 | |
|         if new_name is None:
 | |
|             print("Can not map tensor '" + name + "'")
 | |
|             sys.exit()
 | |
| 
 | |
|         n_dims = len(data.shape)
 | |
|         data_dtype = data.dtype
 | |
| 
 | |
|         # if f32 desired, convert any float16 to float32
 | |
|         if ftype == 0 and data_dtype == np.float16:
 | |
|             data = data.astype(np.float32)
 | |
| 
 | |
|         # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | |
|         if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | |
|             data = data.astype(np.float32)
 | |
| 
 | |
|         # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|         if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|             data = data.astype(np.float16)
 | |
| 
 | |
|         print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | |
| 
 | |
|         gguf_writer.add_tensor(new_name, data)
 | |
| 
 | |
| 
 | |
| print("gguf: write header")
 | |
| gguf_writer.write_header_to_file()
 | |
| print("gguf: write metadata")
 | |
| gguf_writer.write_kv_data_to_file()
 | |
| if not args.vocab_only:
 | |
|     print("gguf: write tensors")
 | |
|     gguf_writer.write_tensors_to_file()
 | |
| 
 | |
| gguf_writer.close()
 | |
| 
 | |
| print(f"gguf: model successfully exported to '{fname_out}'")
 | |
| print("")
 |