mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* convert_hf : faster lazy safetensors This makes '--dry-run' much, much faster. * convert_hf : fix memory leak in lazy MoE conversion The '_lazy' queue was sometimes self-referential, which caused reference cycles of objects old enough to avoid garbage collection until potential memory exhaustion.
		
			
				
	
	
		
			212 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			212 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import annotations
 | 
						|
from abc import ABC, ABCMeta, abstractmethod
 | 
						|
 | 
						|
import logging
 | 
						|
from typing import Any, Callable
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from numpy.typing import DTypeLike
 | 
						|
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
 | 
						|
class LazyMeta(ABCMeta):
 | 
						|
 | 
						|
    def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs):
 | 
						|
        def __getattr__(self, name: str) -> Any:
 | 
						|
            meta_attr = getattr(self._meta, name)
 | 
						|
            if callable(meta_attr):
 | 
						|
                return type(self)._wrap_fn(
 | 
						|
                    (lambda s, *args, **kwargs: getattr(s, name)(*args, **kwargs)),
 | 
						|
                    use_self=self,
 | 
						|
                )
 | 
						|
            elif isinstance(meta_attr, self._tensor_type):
 | 
						|
                # e.g. self.T with torch.Tensor should still be wrapped
 | 
						|
                return type(self)._wrap_fn(lambda s: getattr(s, name))(self)
 | 
						|
            else:
 | 
						|
                # no need to wrap non-tensor properties,
 | 
						|
                # and they likely don't depend on the actual contents of the tensor
 | 
						|
                return meta_attr
 | 
						|
 | 
						|
        namespace["__getattr__"] = __getattr__
 | 
						|
 | 
						|
        # need to make a builder for the wrapped wrapper to copy the name,
 | 
						|
        # or else it fails with very cryptic error messages,
 | 
						|
        # because somehow the same string would end up in every closures
 | 
						|
        def mk_wrap(op_name: str, *, meta_noop: bool = False):
 | 
						|
            # need to wrap the wrapper to get self
 | 
						|
            def wrapped_special_op(self, *args, **kwargs):
 | 
						|
                return type(self)._wrap_fn(
 | 
						|
                    getattr(type(self)._tensor_type, op_name),
 | 
						|
                    meta_noop=meta_noop,
 | 
						|
                )(self, *args, **kwargs)
 | 
						|
            return wrapped_special_op
 | 
						|
 | 
						|
        # special methods bypass __getattr__, so they need to be added manually
 | 
						|
        # ref: https://docs.python.org/3/reference/datamodel.html#special-lookup
 | 
						|
        # NOTE: doing this from a metaclass is very convenient
 | 
						|
        # TODO: make this even more comprehensive
 | 
						|
        for binary_op in (
 | 
						|
            "lt", "le", "eq", "ne", "ge", "gt", "not"
 | 
						|
            "abs", "add", "and", "floordiv", "invert", "lshift", "mod", "mul", "matmul",
 | 
						|
            "neg", "or", "pos", "pow", "rshift", "sub", "truediv", "xor",
 | 
						|
            "iadd", "iand", "ifloordiv", "ilshift", "imod", "imul", "ior", "irshift", "isub", "ixor",
 | 
						|
            "radd", "rand", "rfloordiv", "rmul", "ror", "rpow", "rsub", "rtruediv", "rxor",
 | 
						|
        ):
 | 
						|
            attr_name = f"__{binary_op}__"
 | 
						|
            # the result of these operators usually has the same shape and dtype as the input,
 | 
						|
            # so evaluation on the meta tensor can be skipped.
 | 
						|
            namespace[attr_name] = mk_wrap(attr_name, meta_noop=True)
 | 
						|
 | 
						|
        for special_op in (
 | 
						|
            "getitem", "setitem", "len",
 | 
						|
        ):
 | 
						|
            attr_name = f"__{special_op}__"
 | 
						|
            namespace[attr_name] = mk_wrap(attr_name, meta_noop=False)
 | 
						|
 | 
						|
        return super().__new__(cls, name, bases, namespace, **kwargs)
 | 
						|
 | 
						|
 | 
						|
# Tree of lazy tensors
 | 
						|
class LazyBase(ABC, metaclass=LazyMeta):
 | 
						|
    _tensor_type: type
 | 
						|
    _meta: Any
 | 
						|
    _data: Any | None
 | 
						|
    _args: tuple
 | 
						|
    _kwargs: dict[str, Any]
 | 
						|
    _func: Callable[[Any], Any] | None
 | 
						|
 | 
						|
    def __init__(self, *, meta: Any, data: Any | None = None, args: tuple = (), kwargs: dict[str, Any] | None = None, func: Callable[[Any], Any] | None = None):
 | 
						|
        super().__init__()
 | 
						|
        self._meta = meta
 | 
						|
        self._data = data
 | 
						|
        self._args = args
 | 
						|
        self._kwargs = kwargs if kwargs is not None else {}
 | 
						|
        self._func = func
 | 
						|
        assert self._func is not None or self._data is not None
 | 
						|
 | 
						|
    def __init_subclass__(cls) -> None:
 | 
						|
        if "_tensor_type" not in cls.__dict__:
 | 
						|
            raise TypeError(f"property '_tensor_type' must be defined for {cls!r}")
 | 
						|
        return super().__init_subclass__()
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any:
 | 
						|
        # TODO: dict and set
 | 
						|
        if isinstance(o, (list, tuple)):
 | 
						|
            L = []
 | 
						|
            for item in o:
 | 
						|
                L.append(LazyBase._recurse_apply(item, fn))
 | 
						|
            if isinstance(o, tuple):
 | 
						|
                L = tuple(L)
 | 
						|
            return L
 | 
						|
        elif isinstance(o, LazyBase):
 | 
						|
            return fn(o)
 | 
						|
        else:
 | 
						|
            return o
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike | tuple[DTypeLike, Callable[[tuple[int, ...]], tuple[int, ...]]] = False) -> Callable[[Any], Any]:
 | 
						|
        def wrapped_fn(*args, **kwargs):
 | 
						|
            if kwargs is None:
 | 
						|
                kwargs = {}
 | 
						|
            args = ((use_self,) if use_self is not None else ()) + args
 | 
						|
 | 
						|
            meta_args = LazyBase._recurse_apply(args, lambda t: t._meta)
 | 
						|
            # TODO: maybe handle tensors in kwargs too
 | 
						|
 | 
						|
            if isinstance(meta_noop, bool) and not meta_noop:
 | 
						|
                try:
 | 
						|
                    res = fn(*meta_args, **kwargs)
 | 
						|
                except NotImplementedError:
 | 
						|
                    # running some operations on PyTorch's Meta tensors can cause this exception
 | 
						|
                    res = None
 | 
						|
            else:
 | 
						|
                # some operators don't need to actually run on the meta tensors
 | 
						|
                assert len(args) > 0
 | 
						|
                res = args[0]
 | 
						|
                assert isinstance(res, cls)
 | 
						|
                res = res._meta
 | 
						|
                # allow operations to override the dtype and shape
 | 
						|
                if meta_noop is not True:
 | 
						|
                    if isinstance(meta_noop, tuple):
 | 
						|
                        dtype, shape = meta_noop
 | 
						|
                        assert callable(shape)
 | 
						|
                        res = cls.meta_with_dtype_and_shape(dtype, shape(res.shape))
 | 
						|
                    else:
 | 
						|
                        res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
 | 
						|
 | 
						|
            if isinstance(res, cls._tensor_type):
 | 
						|
                return cls(meta=cls.eager_to_meta(res), args=args, kwargs=kwargs, func=fn)
 | 
						|
            else:
 | 
						|
                del res  # not needed
 | 
						|
                # non-tensor return likely relies on the contents of the args
 | 
						|
                # (e.g. the result of torch.equal)
 | 
						|
                eager_args = cls.to_eager(args)
 | 
						|
                return fn(*eager_args, **kwargs)
 | 
						|
        return wrapped_fn
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def to_eager(cls, t: Any) -> Any:
 | 
						|
        def simple_to_eager(_t: LazyBase) -> Any:
 | 
						|
            if _t._data is not None:
 | 
						|
                return _t._data
 | 
						|
 | 
						|
            # NOTE: there's a recursion limit in Python (usually 1000)
 | 
						|
 | 
						|
            assert _t._func is not None
 | 
						|
            _t._args = cls._recurse_apply(_t._args, simple_to_eager)
 | 
						|
            _t._data = _t._func(*_t._args, **_t._kwargs)
 | 
						|
            # sanity check
 | 
						|
            assert _t._data is not None
 | 
						|
            assert _t._data.dtype == _t._meta.dtype
 | 
						|
            assert _t._data.shape == _t._meta.shape
 | 
						|
 | 
						|
            return _t._data
 | 
						|
 | 
						|
        # recurse into lists and/or tuples, keeping their structure
 | 
						|
        return cls._recurse_apply(t, simple_to_eager)
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def eager_to_meta(cls, t: Any) -> Any:
 | 
						|
        return cls.meta_with_dtype_and_shape(t.dtype, t.shape)
 | 
						|
 | 
						|
    # must be overridden, meta tensor init is backend-specific
 | 
						|
    @classmethod
 | 
						|
    @abstractmethod
 | 
						|
    def meta_with_dtype_and_shape(cls, dtype: Any, shape: Any) -> Any: pass
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def from_eager(cls, t: Any) -> Any:
 | 
						|
        if type(t) is cls:
 | 
						|
            # already lazy
 | 
						|
            return t
 | 
						|
        elif isinstance(t, cls._tensor_type):
 | 
						|
            return cls(meta=cls.eager_to_meta(t), data=t)
 | 
						|
        else:
 | 
						|
            return TypeError(f"{type(t)!r} is not compatible with {cls._tensor_type!r}")
 | 
						|
 | 
						|
 | 
						|
class LazyNumpyTensor(LazyBase):
 | 
						|
    _tensor_type = np.ndarray
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: tuple[int, ...]) -> np.ndarray[Any, Any]:
 | 
						|
        # The initial idea was to use np.nan as the fill value,
 | 
						|
        # but non-float types like np.int16 can't use that.
 | 
						|
        # So zero it is.
 | 
						|
        cheat = np.zeros(1, dtype)
 | 
						|
        return np.lib.stride_tricks.as_strided(cheat, shape, (0 for _ in shape))
 | 
						|
 | 
						|
    def astype(self, dtype, *args, **kwargs):
 | 
						|
        meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape)
 | 
						|
        full_args = (self, dtype,) + args
 | 
						|
        return type(self)(meta=meta, args=full_args, kwargs=kwargs, func=(lambda a, *args, **kwargs: a.astype(*args, **kwargs)))
 | 
						|
 | 
						|
    def tofile(self, *args, **kwargs):
 | 
						|
        eager = LazyNumpyTensor.to_eager(self)
 | 
						|
        return eager.tofile(*args, **kwargs)
 | 
						|
 | 
						|
    # TODO: __array_function__
 |