mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 d1031cf49c
			
		
	
	d1031cf49c
	
	
	
		
			
			* sampling : refactor init to use llama_sampling_params * llama : combine repetition, frequency and presence penalties in 1 call * examples : remove embd-input and gptneox-wip * sampling : rename penalty params + reduce size of "prev" vector * sampling : add llama_sampling_print helper * sampling : hide prev behind API and apply #3661 ggml-ci
		
			
				
	
	
		
			161 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			161 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #ifdef NDEBUG
 | |
| #undef NDEBUG
 | |
| #endif
 | |
| 
 | |
| #include <cmath>
 | |
| #include <numeric>
 | |
| #include <cassert>
 | |
| #include <vector>
 | |
| #include <algorithm>
 | |
| 
 | |
| static void dump(const llama_token_data_array * candidates) {
 | |
|     for (size_t i = 0; i < candidates->size; i++) {
 | |
|         printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0)
 | |
| 
 | |
| static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
 | |
|     size_t n_vocab = probs.size();
 | |
|     std::vector<llama_token_data> candidates;
 | |
|     candidates.reserve(n_vocab);
 | |
|     for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
 | |
|         float logit = log(probs[token_id]);
 | |
|         candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
 | |
|     }
 | |
| 
 | |
|     llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
|     llama_sample_softmax(nullptr, &candidates_p);
 | |
|     DUMP(&candidates_p);
 | |
|     llama_sample_top_k(nullptr, &candidates_p, k, 1);
 | |
|     DUMP(&candidates_p);
 | |
| 
 | |
|     GGML_ASSERT(candidates_p.size == expected_probs.size());
 | |
|     for (size_t i = 0; i < candidates_p.size; i++) {
 | |
|         GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
 | |
|     size_t n_vocab = probs.size();
 | |
|     std::vector<llama_token_data> candidates;
 | |
|     candidates.reserve(n_vocab);
 | |
|     for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
 | |
|         float logit = log(probs[token_id]);
 | |
|         candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
 | |
|     }
 | |
| 
 | |
|     llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
|     llama_sample_softmax(nullptr, &candidates_p);
 | |
|     DUMP(&candidates_p);
 | |
|     llama_sample_top_p(nullptr, &candidates_p, p, 1);
 | |
|     DUMP(&candidates_p);
 | |
| 
 | |
|     GGML_ASSERT(candidates_p.size == expected_probs.size());
 | |
|     for (size_t i = 0; i < candidates_p.size; i++) {
 | |
|         GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
 | |
|     size_t n_vocab = probs.size();
 | |
|     std::vector<llama_token_data> candidates;
 | |
|     candidates.reserve(n_vocab);
 | |
|     for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
 | |
|         float logit = log(probs[token_id]);
 | |
|         candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
 | |
|     }
 | |
| 
 | |
|     llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
|     DUMP(&candidates_p);
 | |
|     llama_sample_tail_free(nullptr, &candidates_p, z, 1);
 | |
|     DUMP(&candidates_p);
 | |
| 
 | |
|     GGML_ASSERT(candidates_p.size == expected_probs.size());
 | |
|     for (size_t i = 0; i < candidates_p.size; i++) {
 | |
|         GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
 | |
|     size_t n_vocab = probs.size();
 | |
|     std::vector<llama_token_data> candidates;
 | |
|     candidates.reserve(n_vocab);
 | |
|     for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
 | |
|         float logit = log(probs[token_id]);
 | |
|         candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
 | |
|     }
 | |
| 
 | |
|     llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
|     DUMP(&candidates_p);
 | |
|     llama_sample_typical(nullptr, &candidates_p, p, 1);
 | |
|     DUMP(&candidates_p);
 | |
| 
 | |
|     GGML_ASSERT(candidates_p.size == expected_probs.size());
 | |
|     for (size_t i = 0; i < candidates_p.size; i++) {
 | |
|         GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void test_repetition_penalties(
 | |
|     const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
 | |
|     const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence
 | |
| ) {
 | |
|     GGML_ASSERT(probs.size() == expected_probs.size());
 | |
| 
 | |
|     size_t n_vocab = probs.size();
 | |
|     std::vector<llama_token_data> candidates;
 | |
|     candidates.reserve(n_vocab);
 | |
|     for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
 | |
|         float logit = log(probs[token_id]);
 | |
|         candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
 | |
|     }
 | |
| 
 | |
|     llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
|     llama_sample_softmax(nullptr, &candidates_p);
 | |
|     DUMP(&candidates_p);
 | |
|     llama_sample_repetition_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence);
 | |
|     llama_sample_softmax(nullptr, &candidates_p);
 | |
|     DUMP(&candidates_p);
 | |
| 
 | |
|     GGML_ASSERT(candidates_p.size == expected_probs.size());
 | |
|     for (size_t i = 0; i < candidates_p.size; i++) {
 | |
|         GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int main(void) {
 | |
|     ggml_time_init();
 | |
| 
 | |
|     test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
 | |
|     test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
 | |
| 
 | |
|     test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
 | |
|     test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
 | |
|     test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f);
 | |
|     test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1);
 | |
| 
 | |
|     test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);
 | |
|     test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f);
 | |
|     test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f);
 | |
| 
 | |
|     test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
 | |
|     test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
 | |
| 
 | |
|     test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0},   50.0f, 0.0f, 0.0f);
 | |
|     test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0},       50.0f, 0.0f, 0.0f);
 | |
|     test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
 | |
| 
 | |
|     test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0},             {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f);
 | |
|     test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2},       {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f);
 | |
|     test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f);
 | |
| 
 | |
|     printf("OK\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 |