mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			365 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			365 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #define LLAMA_API_INTERNAL
 | |
| #include "sampling.h"
 | |
| #include <random>
 | |
| 
 | |
| struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
 | |
|     struct llama_sampling_context * result = new llama_sampling_context();
 | |
| 
 | |
|     result->params  = params;
 | |
|     result->grammar = nullptr;
 | |
| 
 | |
|     // if there is a grammar, parse it
 | |
|     if (!params.grammar.empty()) {
 | |
|         result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
 | |
| 
 | |
|         // will be empty (default) if there are parse errors
 | |
|         if (result->parsed_grammar.rules.empty()) {
 | |
|             fprintf(stderr, "%s: failed to parse grammar\n", __func__);
 | |
|             delete result;
 | |
|             return nullptr;
 | |
|         }
 | |
| 
 | |
|         // Ensure that there is a "root" node.
 | |
|         if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
 | |
|             fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
 | |
|             delete result;
 | |
|             return nullptr;
 | |
|         }
 | |
| 
 | |
|         std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
 | |
| 
 | |
|         result->grammar = llama_grammar_init(
 | |
|                 grammar_rules.data(),
 | |
|                 grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
 | |
|     }
 | |
| 
 | |
|     result->prev.resize(params.n_prev);
 | |
| 
 | |
|     llama_sampling_set_rng_seed(result, params.seed);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void llama_sampling_free(struct llama_sampling_context * ctx) {
 | |
|     if (ctx->grammar != NULL) {
 | |
|         llama_grammar_free(ctx->grammar);
 | |
|     }
 | |
| 
 | |
|     delete ctx;
 | |
| }
 | |
| 
 | |
| void llama_sampling_reset(llama_sampling_context * ctx) {
 | |
|     if (ctx->grammar != NULL) {
 | |
|         llama_grammar_free(ctx->grammar);
 | |
|         ctx->grammar = NULL;
 | |
|     }
 | |
| 
 | |
|     if (!ctx->parsed_grammar.rules.empty()) {
 | |
|         std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
 | |
| 
 | |
|         ctx->grammar = llama_grammar_init(
 | |
|                 grammar_rules.data(),
 | |
|                 grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
 | |
|     }
 | |
| 
 | |
|     std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
 | |
|     ctx->cur.clear();
 | |
| }
 | |
| 
 | |
| void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
 | |
|     if (seed == LLAMA_DEFAULT_SEED) {
 | |
|         seed = time(NULL);
 | |
|     }
 | |
|     ctx->rng.seed(seed);
 | |
| }
 | |
| 
 | |
| void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
 | |
|     if (dst->grammar) {
 | |
|         llama_grammar_free(dst->grammar);
 | |
|         dst->grammar = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (src->grammar) {
 | |
|         dst->grammar = llama_grammar_copy(src->grammar);
 | |
|     }
 | |
| 
 | |
|     dst->prev = src->prev;
 | |
| }
 | |
| 
 | |
| llama_token llama_sampling_last(llama_sampling_context * ctx) {
 | |
|     return ctx->prev.back();
 | |
| }
 | |
| 
 | |
| std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
 | |
|     const int size = ctx_sampling->prev.size();
 | |
| 
 | |
|     n = std::min(n, size);
 | |
| 
 | |
|     std::string result;
 | |
| 
 | |
|     for (int i = size - n; i < size; i++) {
 | |
|         result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| std::string llama_sampling_print(const llama_sampling_params & params) {
 | |
|     char result[1024];
 | |
| 
 | |
|     snprintf(result, sizeof(result),
 | |
|             "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
 | |
|             "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
 | |
|             "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
 | |
|             params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
 | |
|             params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
 | |
|             params.mirostat, params.mirostat_eta, params.mirostat_tau);
 | |
| 
 | |
|     return std::string(result);
 | |
| }
 | |
| 
 | |
| std::string llama_sampling_order_print(const llama_sampling_params & params) {
 | |
|     std::string result = "CFG -> Penalties ";
 | |
|     if (params.mirostat == 0) {
 | |
|         for (auto sampler_type : params.samplers_sequence) {
 | |
|             const auto sampler_type_name = sampler_type_to_name_string(sampler_type);
 | |
|             if (!sampler_type_name.empty()) {
 | |
|                 result += "-> " + sampler_type_name + " ";
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         result += "-> mirostat ";
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // no reasons to expose this function in header
 | |
| static void sampler_queue(
 | |
|                    struct llama_context * ctx_main,
 | |
|             const llama_sampling_params & params,
 | |
|                  llama_token_data_array & cur_p,
 | |
|                                  size_t   min_keep) {
 | |
|     const float         temp              = params.temp;
 | |
|     const float         dynatemp_range    = params.dynatemp_range;
 | |
|     const float         dynatemp_exponent = params.dynatemp_exponent;
 | |
|     const int32_t       top_k             = params.top_k;
 | |
|     const float         top_p             = params.top_p;
 | |
|     const float         min_p             = params.min_p;
 | |
|     const float         tfs_z             = params.tfs_z;
 | |
|     const float         typical_p         = params.typical_p;
 | |
|     const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
 | |
| 
 | |
|     for (auto sampler_type : samplers_sequence) {
 | |
|         switch (sampler_type) {
 | |
|             case llama_sampler_type::TOP_K    : llama_sample_top_k    (ctx_main, &cur_p, top_k,     min_keep); break;
 | |
|             case llama_sampler_type::TFS_Z    : llama_sample_tail_free(ctx_main, &cur_p, tfs_z,     min_keep); break;
 | |
|             case llama_sampler_type::TYPICAL_P: llama_sample_typical  (ctx_main, &cur_p, typical_p, min_keep); break;
 | |
|             case llama_sampler_type::TOP_P    : llama_sample_top_p    (ctx_main, &cur_p, top_p,     min_keep); break;
 | |
|             case llama_sampler_type::MIN_P    : llama_sample_min_p    (ctx_main, &cur_p, min_p,     min_keep); break;
 | |
|             case llama_sampler_type::TEMPERATURE:
 | |
|                 if (dynatemp_range > 0) {
 | |
|                     float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
 | |
|                     float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
 | |
|                     llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
 | |
|                 } else {
 | |
|                     llama_sample_temp(ctx_main, &cur_p, temp);
 | |
|                 }
 | |
|                 break;
 | |
|             default : break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static llama_token llama_sampling_sample_impl(
 | |
|                   struct llama_sampling_context * ctx_sampling,
 | |
|                   struct llama_context * ctx_main,
 | |
|                   struct llama_context * ctx_cfg,
 | |
|                   const int idx,
 | |
|                   bool is_resampling) {  // Add a parameter to indicate if we are resampling
 | |
|     const llama_sampling_params & params = ctx_sampling->params;
 | |
| 
 | |
|     const float   temp            = params.temp;
 | |
|     const int     mirostat        = params.mirostat;
 | |
|     const float   mirostat_tau    = params.mirostat_tau;
 | |
|     const float   mirostat_eta    = params.mirostat_eta;
 | |
| 
 | |
|     std::vector<float> original_logits;
 | |
|     auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, !is_resampling, &original_logits);
 | |
|     if (!is_resampling) {
 | |
|         GGML_ASSERT(!original_logits.empty());
 | |
|     }
 | |
|     llama_token id = 0;
 | |
|     // Get a pointer to the logits
 | |
|     float * logits = llama_get_logits_ith(ctx_main, idx);
 | |
| 
 | |
|     if (temp < 0.0) {
 | |
|         // greedy sampling, with probs
 | |
|         llama_sample_softmax(ctx_main, &cur_p);
 | |
|         id = cur_p.data[0].id;
 | |
|     } else if (temp == 0.0) {
 | |
|         // greedy sampling, no probs
 | |
|         id = llama_sample_token_greedy(ctx_main, &cur_p);
 | |
|     } else {
 | |
|         if (mirostat == 1) {
 | |
|             const int mirostat_m = 100;
 | |
|             llama_sample_temp(ctx_main, &cur_p, temp);
 | |
|             id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
 | |
|         } else if (mirostat == 2) {
 | |
|             llama_sample_temp(ctx_main, &cur_p, temp);
 | |
|             id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
 | |
|         } else {
 | |
|             // temperature sampling
 | |
|             size_t min_keep = std::max(1, params.min_keep);
 | |
| 
 | |
|             sampler_queue(ctx_main, params, cur_p, min_keep);
 | |
| 
 | |
|             id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
 | |
| 
 | |
|             //{
 | |
|             //    const int n_top = 10;
 | |
|             //    LOG("top %d candidates:\n", n_top);
 | |
| 
 | |
|             //    for (int i = 0; i < n_top; i++) {
 | |
|             //        const llama_token id = cur_p.data[i].id;
 | |
|             //        (void)id; // To avoid a warning that id is unused when logging is disabled.
 | |
|             //        LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
 | |
|             //    }
 | |
|             //}
 | |
| 
 | |
|             //LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (ctx_sampling->grammar != NULL && !is_resampling) {
 | |
|         // Create an array with a single token data element for the sampled id
 | |
|         llama_token_data single_token_data = {id, logits[id], 0.0f};
 | |
|         llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
 | |
| 
 | |
|         // Apply grammar constraints to the single token
 | |
|         llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
 | |
| 
 | |
|         // Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
 | |
|         bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
 | |
| 
 | |
|         // If the token is not valid according to the grammar, perform resampling
 | |
|         if (!is_valid) {
 | |
|             LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
 | |
| 
 | |
|             // Restore logits from the copy
 | |
|             std::copy(original_logits.begin(), original_logits.end(), logits);
 | |
| 
 | |
|             return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, true);  // Pass true for is_resampling
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return id;
 | |
| }
 | |
| 
 | |
| static llama_token_data_array llama_sampling_prepare_impl(
 | |
|                   struct llama_sampling_context * ctx_sampling,
 | |
|                   struct llama_context * ctx_main,
 | |
|                   struct llama_context * ctx_cfg,
 | |
|                   const int idx,
 | |
|                   bool apply_grammar,
 | |
|                   std::vector<float> * original_logits) {
 | |
|     const llama_sampling_params & params = ctx_sampling->params;
 | |
| 
 | |
|     const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
 | |
| 
 | |
|     const int32_t penalty_last_n  = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
 | |
|     const float   penalty_repeat  = params.penalty_repeat;
 | |
|     const float   penalty_freq    = params.penalty_freq;
 | |
|     const float   penalty_present = params.penalty_present;
 | |
| 
 | |
|     const bool    penalize_nl     = params.penalize_nl;
 | |
| 
 | |
|     auto & prev = ctx_sampling->prev;
 | |
|     auto & cur  = ctx_sampling->cur;
 | |
| 
 | |
|     // Get a pointer to the logits
 | |
|     float * logits = llama_get_logits_ith(ctx_main, idx);
 | |
| 
 | |
|     if (apply_grammar && original_logits != NULL) {
 | |
|         // Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
 | |
|         *original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
 | |
|     }
 | |
| 
 | |
|     // apply params.logit_bias map
 | |
|     for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
 | |
|         logits[it->first] += it->second;
 | |
|     }
 | |
| 
 | |
|     if (ctx_cfg) {
 | |
|         float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
 | |
|         llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
 | |
|     }
 | |
| 
 | |
|     cur.clear();
 | |
| 
 | |
|     for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|         cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
 | |
|     }
 | |
| 
 | |
|     llama_token_data_array cur_p = { cur.data(), cur.size(), false };
 | |
| 
 | |
|     // apply penalties
 | |
|     const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
 | |
|     const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
 | |
|     if (penalty_tokens_used_size) {
 | |
|         const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
 | |
| 
 | |
|         llama_sample_repetition_penalties(ctx_main, &cur_p,
 | |
|                 penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
 | |
|                 penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
 | |
| 
 | |
|         if (!penalize_nl) {
 | |
|             for (size_t idx = 0; idx < cur_p.size; idx++) {
 | |
|                 if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
 | |
|                     cur_p.data[idx].logit = nl_logit;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // apply grammar checks before sampling logic
 | |
|     if (apply_grammar && ctx_sampling->grammar != NULL) {
 | |
|         llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
 | |
|     }
 | |
| 
 | |
|     return cur_p;
 | |
| }
 | |
| 
 | |
| llama_token llama_sampling_sample(
 | |
|                   struct llama_sampling_context * ctx_sampling,
 | |
|                   struct llama_context * ctx_main,
 | |
|                   struct llama_context * ctx_cfg,
 | |
|                   const int idx) {
 | |
|     // Call the implementation function with is_resampling set to false by default
 | |
|     return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
 | |
| }
 | |
| 
 | |
| llama_token_data_array llama_sampling_prepare(
 | |
|                   struct llama_sampling_context * ctx_sampling,
 | |
|                   struct llama_context * ctx_main,
 | |
|                   struct llama_context * ctx_cfg,
 | |
|                   const int idx,
 | |
|                   bool apply_grammar,
 | |
|                   std::vector<float> * original_logits) {
 | |
|     return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
 | |
| }
 | |
| 
 | |
| void llama_sampling_accept(
 | |
|         struct llama_sampling_context * ctx_sampling,
 | |
|         struct llama_context * ctx_main,
 | |
|         llama_token id,
 | |
|         bool apply_grammar) {
 | |
|     ctx_sampling->prev.erase(ctx_sampling->prev.begin());
 | |
|     ctx_sampling->prev.push_back(id);
 | |
| 
 | |
|     if (ctx_sampling->grammar != NULL && apply_grammar) {
 | |
|         llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
 | |
|     }
 | |
| }
 | 
