mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			232 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			232 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						||
 | 
						||
import argparse
 | 
						||
import os
 | 
						||
import importlib
 | 
						||
from pathlib import Path
 | 
						||
 | 
						||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
 | 
						||
import torch
 | 
						||
import numpy as np
 | 
						||
 | 
						||
### If you want to dump RoPE activations, apply this monkey patch to the model
 | 
						||
### class from Transformers that you are running (replace apertus.modeling_apertus
 | 
						||
### with the proper package and class for your model
 | 
						||
### === START ROPE DEBUG ===
 | 
						||
# from transformers.models.apertus.modeling_apertus import apply_rotary_pos_emb
 | 
						||
 | 
						||
# orig_rope = apply_rotary_pos_emb
 | 
						||
# torch.set_printoptions(threshold=float('inf'))
 | 
						||
# torch.set_printoptions(precision=6, sci_mode=False)
 | 
						||
 | 
						||
# def debug_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
 | 
						||
#     # log inputs
 | 
						||
#     summarize(q, "RoPE.q_in")
 | 
						||
#     summarize(k, "RoPE.k_in")
 | 
						||
 | 
						||
#     # call original
 | 
						||
#     q_out, k_out = orig_rope(q, k, cos, sin, position_ids, unsqueeze_dim)
 | 
						||
 | 
						||
#     # log outputs
 | 
						||
#     summarize(q_out, "RoPE.q_out")
 | 
						||
#     summarize(k_out, "RoPE.k_out")
 | 
						||
 | 
						||
#     return q_out, k_out
 | 
						||
 | 
						||
# # Patch it
 | 
						||
# import transformers.models.apertus.modeling_apertus as apertus_mod  # noqa: E402
 | 
						||
# apertus_mod.apply_rotary_pos_emb = debug_rope
 | 
						||
### == END ROPE DEBUG ===
 | 
						||
 | 
						||
 | 
						||
def summarize(tensor: torch.Tensor, name: str, max_seq: int = 3, max_vals: int = 3):
 | 
						||
    """
 | 
						||
    Print a tensor in llama.cpp debug style.
 | 
						||
 | 
						||
    Supports:
 | 
						||
    - 2D tensors (seq, hidden)
 | 
						||
    - 3D tensors (batch, seq, hidden)
 | 
						||
    - 4D tensors (batch, seq, heads, dim_per_head) via flattening heads × dim_per_head
 | 
						||
 | 
						||
    Shows first and last max_vals of each vector per sequence position.
 | 
						||
    """
 | 
						||
    t = tensor.detach().to(torch.float32).cpu()
 | 
						||
 | 
						||
    # Determine dimensions
 | 
						||
    if t.ndim == 3:
 | 
						||
        _, s, _ = t.shape
 | 
						||
    elif t.ndim == 2:
 | 
						||
        _, s = 1, t.shape[0]
 | 
						||
        t = t.unsqueeze(0)
 | 
						||
    elif t.ndim == 4:
 | 
						||
        _, s, _, _ = t.shape
 | 
						||
    else:
 | 
						||
        print(f"Skipping tensor due to unsupported dimensions: {t.ndim}")
 | 
						||
        return
 | 
						||
 | 
						||
    ten_shape = t.shape
 | 
						||
 | 
						||
    print(f"ggml_debug: {name} = (f32)  ... = {{{ten_shape}}}")
 | 
						||
    print("                                     [")
 | 
						||
    print("                                      [")
 | 
						||
 | 
						||
    # Determine indices for first and last sequences
 | 
						||
    first_indices = list(range(min(s, max_seq)))
 | 
						||
    last_indices = list(range(max(0, s - max_seq), s))
 | 
						||
 | 
						||
    # Check if there's an overlap between first and last indices or if we're at the edge case of s = 2 * max_seq
 | 
						||
    has_overlap = bool(set(first_indices) & set(last_indices)) or (max_seq * 2 == s)
 | 
						||
 | 
						||
    # Combine indices
 | 
						||
    if has_overlap:
 | 
						||
        # If there's overlap, just use the combined unique indices
 | 
						||
        indices = sorted(list(set(first_indices + last_indices)))
 | 
						||
        separator_index = None
 | 
						||
    else:
 | 
						||
        # If no overlap, we'll add a separator between first and last sequences
 | 
						||
        indices = first_indices + last_indices
 | 
						||
        separator_index = len(first_indices)
 | 
						||
 | 
						||
    for i, si in enumerate(indices):
 | 
						||
        # Add separator if needed
 | 
						||
        if separator_index is not None and i == separator_index:
 | 
						||
            print("                                       ...")
 | 
						||
 | 
						||
        # Extract appropriate slice
 | 
						||
        vec = t[0, si]
 | 
						||
        if vec.ndim == 2:  # 4D case: flatten heads × dim_per_head
 | 
						||
            flat = vec.flatten().tolist()
 | 
						||
        else:  # 2D or 3D case
 | 
						||
            flat = vec.tolist()
 | 
						||
 | 
						||
        # First and last slices
 | 
						||
        first = flat[:max_vals]
 | 
						||
        last = flat[-max_vals:] if len(flat) >= max_vals else flat
 | 
						||
        first_str = ", ".join(f"{v:12.4f}" for v in first)
 | 
						||
        last_str = ", ".join(f"{v:12.4f}" for v in last)
 | 
						||
 | 
						||
        print(f"                                       [{first_str}, ..., {last_str}]")
 | 
						||
 | 
						||
    print("                                      ],")
 | 
						||
    print("                                     ]")
 | 
						||
    print(f"                                     sum = {t.sum().item():.6f}\n")
 | 
						||
 | 
						||
 | 
						||
def debug_hook(name):
 | 
						||
    def fn(_m, input, output):
 | 
						||
        if isinstance(input, torch.Tensor):
 | 
						||
            summarize(input, name + "_in")
 | 
						||
        elif isinstance(input, (tuple, list)) and isinstance(input[0], torch.Tensor):
 | 
						||
            summarize(input[0], name + "_in")
 | 
						||
        if isinstance(output, torch.Tensor):
 | 
						||
            summarize(output, name + "_out")
 | 
						||
        elif isinstance(output, (tuple, list)) and isinstance(output[0], torch.Tensor):
 | 
						||
            summarize(output[0], name + "_out")
 | 
						||
 | 
						||
    return fn
 | 
						||
 | 
						||
 | 
						||
unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
 | 
						||
 | 
						||
parser = argparse.ArgumentParser(description="Process model with specified path")
 | 
						||
parser.add_argument("--model-path", "-m", help="Path to the model")
 | 
						||
args = parser.parse_args()
 | 
						||
 | 
						||
model_path = os.environ.get("MODEL_PATH", args.model_path)
 | 
						||
if model_path is None:
 | 
						||
    parser.error(
 | 
						||
        "Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
 | 
						||
    )
 | 
						||
 | 
						||
config = AutoConfig.from_pretrained(model_path)
 | 
						||
 | 
						||
print("Model type:       ", config.model_type)
 | 
						||
print("Vocab size:       ", config.vocab_size)
 | 
						||
print("Hidden size:      ", config.hidden_size)
 | 
						||
print("Number of layers: ", config.num_hidden_layers)
 | 
						||
print("BOS token id:     ", config.bos_token_id)
 | 
						||
print("EOS token id:     ", config.eos_token_id)
 | 
						||
 | 
						||
print("Loading model and tokenizer using AutoTokenizer:", model_path)
 | 
						||
tokenizer = AutoTokenizer.from_pretrained(model_path)
 | 
						||
config = AutoConfig.from_pretrained(model_path)
 | 
						||
 | 
						||
if unreleased_model_name:
 | 
						||
    model_name_lower = unreleased_model_name.lower()
 | 
						||
    unreleased_module_path = (
 | 
						||
        f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
 | 
						||
    )
 | 
						||
    class_name = f"{unreleased_model_name}ForCausalLM"
 | 
						||
    print(f"Importing unreleased model module: {unreleased_module_path}")
 | 
						||
 | 
						||
    try:
 | 
						||
        model_class = getattr(
 | 
						||
            importlib.import_module(unreleased_module_path), class_name
 | 
						||
        )
 | 
						||
        model = model_class.from_pretrained(
 | 
						||
            model_path
 | 
						||
        )  # Note: from_pretrained, not fromPretrained
 | 
						||
    except (ImportError, AttributeError) as e:
 | 
						||
        print(f"Failed to import or load model: {e}")
 | 
						||
        exit(1)
 | 
						||
else:
 | 
						||
    model = AutoModelForCausalLM.from_pretrained(
 | 
						||
        model_path, device_map="auto", offload_folder="offload"
 | 
						||
    )
 | 
						||
 | 
						||
for name, module in model.named_modules():
 | 
						||
    if len(list(module.children())) == 0:  # only leaf modules
 | 
						||
        module.register_forward_hook(debug_hook(name))
 | 
						||
 | 
						||
model_name = os.path.basename(model_path)
 | 
						||
# Printing the Model class to allow for easier debugging. This can be useful
 | 
						||
# when working with models that have not been publicly released yet and this
 | 
						||
# migth require that the concrete class is imported and used directly instead
 | 
						||
# of using AutoModelForCausalLM.
 | 
						||
print(f"Model class: {model.__class__.__name__}")
 | 
						||
 | 
						||
prompt = "Hello, my name is"
 | 
						||
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
 | 
						||
 | 
						||
print(f"Input tokens: {input_ids}")
 | 
						||
print(f"Input text: {repr(prompt)}")
 | 
						||
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
 | 
						||
 | 
						||
with torch.no_grad():
 | 
						||
    outputs = model(input_ids.to(model.device))
 | 
						||
    logits = outputs.logits
 | 
						||
 | 
						||
    # Extract logits for the last token (next token prediction)
 | 
						||
    last_logits = logits[0, -1, :].cpu().numpy()
 | 
						||
 | 
						||
    print(f"Logits shape: {logits.shape}")
 | 
						||
    print(f"Last token logits shape: {last_logits.shape}")
 | 
						||
    print(f"Vocab size: {len(last_logits)}")
 | 
						||
 | 
						||
    data_dir = Path("data")
 | 
						||
    data_dir.mkdir(exist_ok=True)
 | 
						||
    bin_filename = data_dir / f"pytorch-{model_name}.bin"
 | 
						||
    txt_filename = data_dir / f"pytorch-{model_name}.txt"
 | 
						||
 | 
						||
    # Save to file for comparison
 | 
						||
    last_logits.astype(np.float32).tofile(bin_filename)
 | 
						||
 | 
						||
    # Also save as text file for easy inspection
 | 
						||
    with open(txt_filename, "w") as f:
 | 
						||
        for i, logit in enumerate(last_logits):
 | 
						||
            f.write(f"{i}: {logit:.6f}\n")
 | 
						||
 | 
						||
    # Print some sample logits for quick verification
 | 
						||
    print(f"First 10 logits: {last_logits[:10]}")
 | 
						||
    print(f"Last 10 logits: {last_logits[-10:]}")
 | 
						||
 | 
						||
    # Show top 5 predicted tokens
 | 
						||
    top_indices = np.argsort(last_logits)[-5:][::-1]
 | 
						||
    print("Top 5 predictions:")
 | 
						||
    for idx in top_indices:
 | 
						||
        token = tokenizer.decode([idx])
 | 
						||
        print(f"  Token {idx} ({repr(token)}): {last_logits[idx]:.6f}")
 | 
						||
 | 
						||
    print(f"Saved bin logits to: {bin_filename}")
 | 
						||
    print(f"Saved txt logist to: {txt_filename}")
 |