mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-28 08:31:25 +00:00
This commit adds support for passing a prompt file to the model conversion targets/scripts. It also updates the logits.cpp to print out embedding information in the same format as when running the original embedding model. The motivation for this is that it allows us to pass files of different sizes when running the converted models and validating the logits. This can be particularly important when testing the sliding window functionality of models where the sequence length needs to exceed a certain number of tokens to trigger the sliding window logic.
197 lines
7.9 KiB
Python
197 lines
7.9 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import numpy as np
|
|
import argparse
|
|
import os
|
|
import importlib
|
|
|
|
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, AutoModel
|
|
|
|
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
|
|
|
def cosine_similarity(a, b=None):
|
|
a = np.asarray(a)
|
|
if b is None:
|
|
b = a
|
|
else:
|
|
b = np.asarray(b)
|
|
|
|
if a.ndim == 1:
|
|
a = a.reshape(1, -1)
|
|
if b.ndim == 1:
|
|
b = b.reshape(1, -1)
|
|
|
|
a_norms = np.linalg.norm(a, axis=1, keepdims=True)
|
|
b_norms = np.linalg.norm(b, axis=1, keepdims=True)
|
|
|
|
a_norms = np.where(a_norms == 0, 1e-8, a_norms)
|
|
b_norms = np.where(b_norms == 0, 1e-8, b_norms)
|
|
|
|
a_normalized = a / a_norms
|
|
b_normalized = b / b_norms
|
|
|
|
# Compute cosine similarity
|
|
return np.dot(a_normalized, b_normalized.T)
|
|
|
|
def load_embeddings_from_file(filename, n_tokens, n_embd):
|
|
embeddings = np.fromfile(filename, dtype=np.float32)
|
|
return embeddings.reshape(n_tokens, n_embd)
|
|
|
|
def test_single_prompt_similarity(python_emb, cpp_emb, tokens, prompt):
|
|
np.set_printoptions(suppress=True, precision=6)
|
|
print("pytorch embeddings:");
|
|
print(python_emb)
|
|
print("llama.cpp embeddings:");
|
|
print(cpp_emb)
|
|
print(f"\n=== Prompt: '{prompt}' ===")
|
|
print(f"Tokens: {tokens}")
|
|
print(f"Embeddings shape: Python {python_emb.shape}, llama.cpp {cpp_emb.shape}")
|
|
|
|
n_tokens = len(tokens)
|
|
|
|
# 1. Direct embedding comparison
|
|
print(f"\n1. Raw Embedding Magnitude Comparison:")
|
|
# Check if the distance of each token embedding from the origin and compare
|
|
# if the vectors are on the same "sphere". This does not tell us about
|
|
# direction (meaning of the token embedding), just magnitude.
|
|
for i in range(n_tokens):
|
|
py_mag = np.linalg.norm(python_emb[i]) # calculate standard euclidean norm for Python embeddings
|
|
cpp_mag = np.linalg.norm(cpp_emb[i]) # calculate standard euclidean norm for llama.cpp embeddings
|
|
ratio = py_mag / cpp_mag if cpp_mag > 0 else float('inf')
|
|
print(f" Token {i} ({tokens[i]}): Python={py_mag:.3f}, llama.cpp={cpp_mag:.3f}, ratio={ratio:.3f}")
|
|
|
|
# 2. Cosine similarity between tokens within each model
|
|
# Here we check the direction of token embeddings to see if the have the
|
|
# same meaning (similarity). This is done by calculating cosine similarity
|
|
# of a pair of token embeddings within each model.
|
|
print(f"\n2. Within-Model Token Similarities:")
|
|
print(" Python model:")
|
|
for i in range(n_tokens):
|
|
for j in range(i+1, n_tokens):
|
|
sim = cosine_similarity([python_emb[i]], [python_emb[j]])[0][0]
|
|
print(f" {tokens[i]} ↔ {tokens[j]}: {sim:.4f}")
|
|
|
|
print(" llama.cpp model:")
|
|
for i in range(n_tokens):
|
|
for j in range(i+1, n_tokens):
|
|
sim = cosine_similarity([cpp_emb[i]], [cpp_emb[j]])[0][0]
|
|
print(f" {tokens[i]} ↔ {tokens[j]}: {sim:.4f}")
|
|
|
|
# 3. Cross-model similarity (same token position)
|
|
print(f"\n3. Cross-Model Same-Token Similarities:")
|
|
for i in range(n_tokens):
|
|
sim = cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0]
|
|
print(f" Token {i} ({tokens[i]}): {sim:.4f}")
|
|
|
|
# 4. Similarity matrix comparison
|
|
print(f"\n4. Similarity Matrix Differences:")
|
|
py_sim_matrix = cosine_similarity(python_emb)
|
|
cpp_sim_matrix = cosine_similarity(cpp_emb)
|
|
diff_matrix = np.abs(py_sim_matrix - cpp_sim_matrix)
|
|
|
|
print(f" Max difference: {np.max(diff_matrix):.4f}")
|
|
print(f" Mean difference: {np.mean(diff_matrix):.4f}")
|
|
print(f" RMS difference: {np.sqrt(np.mean(diff_matrix**2)):.4f}")
|
|
|
|
return {
|
|
'cross_model_similarities': [cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0] for i in range(n_tokens)],
|
|
'similarity_matrix_diff': diff_matrix,
|
|
'max_diff': np.max(diff_matrix),
|
|
'mean_diff': np.mean(diff_matrix),
|
|
'rms_diff': np.sqrt(np.mean(diff_matrix**2))
|
|
}
|
|
|
|
def read_prompt_from_file(file_path):
|
|
try:
|
|
with open(file_path, 'r', encoding='utf-8') as f:
|
|
return f.read().strip()
|
|
except FileNotFoundError:
|
|
print(f"Error: Prompts file '{file_path}' not found")
|
|
exit(1)
|
|
except Exception as e:
|
|
print(f"Error reading prompts file: {e}")
|
|
exit(1)
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Test semantic similarity between Python and llama.cpp embeddings')
|
|
parser.add_argument('--model-path', '-m', required=True, help='Path to the original Python model')
|
|
parser.add_argument('--python-embeddings', '-pe', help='Path to pytorch embeddings "logits" binary file')
|
|
parser.add_argument('--cpp-embeddings', '-ce', help='Path to llama.cpp embeddings "logits" binary file')
|
|
parser.add_argument('--causal', '-c', default=False, help='if the model is causal (default: false)', action='store_true')
|
|
parser.add_argument('--prompt', '-p', default='Hello world today', help='Test prompt')
|
|
parser.add_argument('--prompts-file', '-pf', help='Path to file containing prompts')
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.prompts_file:
|
|
prompt = read_prompt_from_file(args.prompts_file)
|
|
else:
|
|
prompt = args.prompt
|
|
|
|
print("Semantic Similarity Test Between Python and llama.cpp Embedding Models")
|
|
print("=" * 70)
|
|
|
|
# Single prompt detailed comparison
|
|
print(f"\nTesting with prompt: '{prompt}'")
|
|
|
|
# Load the python model to get configuration information and also to load the tokenizer.
|
|
print("Loading model and tokenizer using AutoTokenizer:", args.model_path)
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
|
|
config = AutoConfig.from_pretrained(args.model_path)
|
|
|
|
if unreleased_model_name:
|
|
model_name_lower = unreleased_model_name.lower()
|
|
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
|
if args.causal:
|
|
class_name = f"{unreleased_model_name}ForCausalLM"
|
|
else:
|
|
class_name = f"{unreleased_model_name}Model"
|
|
print(f"Model class: {class_name}")
|
|
print(f"Importing unreleased model module: {unreleased_module_path}")
|
|
|
|
try:
|
|
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
|
model = model_class.from_pretrained(args.model_path)
|
|
except (ImportError, AttributeError) as e:
|
|
print(f"Failed to import or load model: {e}")
|
|
exit(1)
|
|
else:
|
|
if args.causal:
|
|
model = AutoModelForCausalLM.from_pretrained(args.model_path)
|
|
else:
|
|
model = AutoModel.from_pretrained(args.model_path)
|
|
|
|
encoded = tokenizer(prompt, return_tensors="pt")
|
|
tokens = tokenizer.convert_ids_to_tokens(encoded['input_ids'][0])
|
|
n_tokens = len(tokens)
|
|
print(f"n_tokens: {n_tokens}");
|
|
print(f"hidden_size: {model.config.hidden_size}")
|
|
|
|
# Load binary embeddings from data directory.
|
|
llamacpp_embeddings = load_embeddings_from_file(args.cpp_embeddings, n_tokens, model.config.hidden_size)
|
|
python_embeddings = load_embeddings_from_file(args.python_embeddings, n_tokens, model.config.hidden_size)
|
|
|
|
# Run comparison
|
|
results = test_single_prompt_similarity(python_embeddings, llamacpp_embeddings, tokens, prompt)
|
|
|
|
# Summary
|
|
print(f"\n=== SUMMARY ===")
|
|
avg_cross_sim = np.mean(results['cross_model_similarities'])
|
|
print(f"Average cross-model similarity: {avg_cross_sim:.4f}")
|
|
print(f"Similarity matrix RMS difference: {results['rms_diff']:.4f}")
|
|
|
|
# Quality assessment
|
|
if avg_cross_sim > 0.95:
|
|
print("✅ EXCELLENT: Models are highly similar")
|
|
elif avg_cross_sim > 0.90:
|
|
print("✅ VERY GOOD: Models are very similar")
|
|
elif avg_cross_sim > 0.80:
|
|
print("⚠️ GOOD: Models are reasonably similar")
|
|
elif avg_cross_sim > 0.70:
|
|
print("⚠️ FAIR: Models have some differences")
|
|
else:
|
|
print("❌ POOR: Models are significantly different")
|
|
|
|
if __name__ == "__main__":
|
|
main()
|