mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 aa3ee0eb0b
			
		
	
	aa3ee0eb0b
	
	
	
		
			
			This commit adds support for passing a prompt file to the model conversion targets/scripts. It also updates the logits.cpp to print out embedding information in the same format as when running the original embedding model. The motivation for this is that it allows us to pass files of different sizes when running the converted models and validating the logits. This can be particularly important when testing the sliding window functionality of models where the sequence length needs to exceed a certain number of tokens to trigger the sliding window logic.
		
			
				
	
	
		
			149 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			149 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | ||
| 
 | ||
| import argparse
 | ||
| import os
 | ||
| import numpy as np
 | ||
| import importlib
 | ||
| from pathlib import Path
 | ||
| 
 | ||
| from transformers import AutoTokenizer, AutoConfig, AutoModel
 | ||
| import torch
 | ||
| 
 | ||
| unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
 | ||
| 
 | ||
| parser = argparse.ArgumentParser(description='Process model with specified path')
 | ||
| parser.add_argument('--model-path', '-m', help='Path to the model')
 | ||
| parser.add_argument('--prompts-file', '-p', help='Path to file containing prompts (one per line)')
 | ||
| args = parser.parse_args()
 | ||
| 
 | ||
| def read_prompt_from_file(file_path):
 | ||
|     try:
 | ||
|         with open(file_path, 'r', encoding='utf-8') as f:
 | ||
|             return f.read().strip()
 | ||
|     except FileNotFoundError:
 | ||
|         print(f"Error: Prompts file '{file_path}' not found")
 | ||
|         exit(1)
 | ||
|     except Exception as e:
 | ||
|         print(f"Error reading prompts file: {e}")
 | ||
|         exit(1)
 | ||
| 
 | ||
| model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
 | ||
| if model_path is None:
 | ||
|     parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
 | ||
| 
 | ||
| tokenizer = AutoTokenizer.from_pretrained(model_path)
 | ||
| 
 | ||
| config = AutoConfig.from_pretrained(model_path)
 | ||
| 
 | ||
| # This can be used to override the sliding window size for manual testing. This
 | ||
| # can be useful to verify the sliding window attention mask in the original model
 | ||
| # and compare it with the converted .gguf model.
 | ||
| if hasattr(config, 'sliding_window'):
 | ||
|     original_sliding_window = config.sliding_window
 | ||
|     #original_sliding_window = 6
 | ||
|     print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
 | ||
| 
 | ||
| print(f"Using unreleased model: {unreleased_model_name}")
 | ||
| if unreleased_model_name:
 | ||
|     model_name_lower = unreleased_model_name.lower()
 | ||
|     unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
 | ||
|     class_name = f"{unreleased_model_name}Model"
 | ||
|     print(f"Importing unreleased model module: {unreleased_module_path}")
 | ||
| 
 | ||
|     try:
 | ||
|         model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
 | ||
|         model = model_class.from_pretrained(model_path, config=config)
 | ||
|     except (ImportError, AttributeError) as e:
 | ||
|         print(f"Failed to import or load model: {e}")
 | ||
|         exit(1)
 | ||
| else:
 | ||
|     model = AutoModel.from_pretrained(model_path, config=config)
 | ||
| print(f"Model class: {type(model)}")
 | ||
| print(f"Model file: {type(model).__module__}")
 | ||
| 
 | ||
| # Verify the model is using the correct sliding window
 | ||
| if hasattr(model.config, 'sliding_window'):
 | ||
|     print(f"Model's sliding_window: {model.config.sliding_window}")
 | ||
| else:
 | ||
|     print("Model config does not have sliding_window attribute")
 | ||
| 
 | ||
| model_name = os.path.basename(model_path)
 | ||
| 
 | ||
| if args.prompts_file:
 | ||
|     prompt_text = read_prompt_from_file(args.prompts_file)
 | ||
|     texts = [prompt_text]
 | ||
| else:
 | ||
|     texts = ["Hello world today"]
 | ||
| 
 | ||
| encoded = tokenizer(
 | ||
|     texts,
 | ||
|     padding=True,
 | ||
|     truncation=True,
 | ||
|     return_tensors="pt"
 | ||
| )
 | ||
| 
 | ||
| tokens = encoded['input_ids'][0]
 | ||
| token_strings = tokenizer.convert_ids_to_tokens(tokens)
 | ||
| for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
 | ||
|     print(f"{token_id:6d} -> '{token_str}'")
 | ||
| 
 | ||
| with torch.no_grad():
 | ||
|     outputs = model(**encoded)
 | ||
|     hidden_states = outputs.last_hidden_state  # Shape: [batch_size, seq_len, hidden_size]
 | ||
| 
 | ||
|     # Extract embeddings for each token (matching LLAMA_POOLING_TYPE_NONE behavior)
 | ||
|     all_embeddings = hidden_states[0].cpu().numpy()  # Shape: [seq_len, hidden_size]
 | ||
| 
 | ||
|     print(f"Hidden states shape: {hidden_states.shape}")
 | ||
|     print(f"All embeddings shape: {all_embeddings.shape}")
 | ||
|     print(f"Embedding dimension: {all_embeddings.shape[1]}")
 | ||
| 
 | ||
|     # Print embeddings exactly like embedding.cpp does for LLAMA_POOLING_TYPE_NONE
 | ||
|     n_embd = all_embeddings.shape[1]
 | ||
|     n_embd_count = all_embeddings.shape[0]
 | ||
| 
 | ||
|     print()  # Empty line to match C++ output
 | ||
| 
 | ||
|     for j in range(n_embd_count):
 | ||
|         embedding = all_embeddings[j]
 | ||
|         print(f"embedding {j}: ", end="")
 | ||
| 
 | ||
|         # Print first 3 values
 | ||
|         for i in range(min(3, n_embd)):
 | ||
|             print(f"{embedding[i]:9.6f} ", end="")
 | ||
| 
 | ||
|         print(" ... ", end="")
 | ||
| 
 | ||
|         # Print last 3 values
 | ||
|         for i in range(n_embd - 3, n_embd):
 | ||
|             print(f"{embedding[i]:9.6f} ", end="")
 | ||
| 
 | ||
|         print()  # New line
 | ||
| 
 | ||
|     print()  # Final empty line to match C++ output
 | ||
| 
 | ||
|     data_dir = Path("data")
 | ||
|     data_dir.mkdir(exist_ok=True)
 | ||
|     bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
 | ||
|     txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
 | ||
| 
 | ||
|     # Save all embeddings flattened (matching what embedding.cpp would save if it did)
 | ||
|     flattened_embeddings = all_embeddings.flatten()
 | ||
|     flattened_embeddings.astype(np.float32).tofile(bin_filename)
 | ||
| 
 | ||
|     with open(txt_filename, "w") as f:
 | ||
|         f.write(f"# Model class: {model_name}\n")
 | ||
|         f.write(f"# Tokens: {token_strings}\n")
 | ||
|         f.write(f"# Shape: {all_embeddings.shape}\n")
 | ||
|         f.write(f"# n_embd_count: {n_embd_count}, n_embd: {n_embd}\n\n")
 | ||
| 
 | ||
|         for j in range(n_embd_count):
 | ||
|             f.write(f"# Token {j} ({token_strings[j]}):\n")
 | ||
|             for i, value in enumerate(all_embeddings[j]):
 | ||
|                 f.write(f"{j}_{i}: {value:.6f}\n")
 | ||
|             f.write("\n")
 | ||
|     print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} tokens × {n_embd} dimensions)")
 | ||
|     print("")
 | ||
|     print(f"Saved bin embeddings to: {bin_filename}")
 | ||
|     print(f"Saved txt embeddings to: {txt_filename}")
 |