mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			3268 lines
		
	
	
		
			187 KiB
		
	
	
	
		
			Objective-C
		
	
	
	
	
	
			
		
		
	
	
			3268 lines
		
	
	
		
			187 KiB
		
	
	
	
		
			Objective-C
		
	
	
	
	
	
| #import "ggml-metal.h"
 | |
| 
 | |
| #import "ggml-backend-impl.h"
 | |
| #import "ggml.h"
 | |
| 
 | |
| #import <Foundation/Foundation.h>
 | |
| 
 | |
| #import <Metal/Metal.h>
 | |
| 
 | |
| #undef MIN
 | |
| #undef MAX
 | |
| #define MIN(a, b) ((a) < (b) ? (a) : (b))
 | |
| #define MAX(a, b) ((a) > (b) ? (a) : (b))
 | |
| 
 | |
| #ifdef GGML_METAL_NDEBUG
 | |
| #define GGML_METAL_LOG_INFO(...)
 | |
| #define GGML_METAL_LOG_WARN(...)
 | |
| #define GGML_METAL_LOG_ERROR(...)
 | |
| #else
 | |
| #define GGML_METAL_LOG_INFO(...)  ggml_metal_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
 | |
| #define GGML_METAL_LOG_WARN(...)  ggml_metal_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
 | |
| #define GGML_METAL_LOG_ERROR(...) ggml_metal_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
 | |
| #endif
 | |
| 
 | |
| #define UNUSED(x) (void)(x)
 | |
| 
 | |
| struct ggml_metal_kernel {
 | |
|     id<MTLComputePipelineState> pipeline;
 | |
| };
 | |
| 
 | |
| enum ggml_metal_kernel_type {
 | |
|     GGML_METAL_KERNEL_TYPE_ADD,
 | |
|     GGML_METAL_KERNEL_TYPE_ADD_ROW,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_ROW,
 | |
|     GGML_METAL_KERNEL_TYPE_DIV,
 | |
|     GGML_METAL_KERNEL_TYPE_DIV_ROW,
 | |
|     GGML_METAL_KERNEL_TYPE_REPEAT_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_REPEAT_F16,
 | |
|     GGML_METAL_KERNEL_TYPE_REPEAT_I32,
 | |
|     GGML_METAL_KERNEL_TYPE_REPEAT_I16,
 | |
|     GGML_METAL_KERNEL_TYPE_SCALE,
 | |
|     GGML_METAL_KERNEL_TYPE_SCALE_4,
 | |
|     GGML_METAL_KERNEL_TYPE_CLAMP,
 | |
|     GGML_METAL_KERNEL_TYPE_TANH,
 | |
|     GGML_METAL_KERNEL_TYPE_RELU,
 | |
|     GGML_METAL_KERNEL_TYPE_SIGMOID,
 | |
|     GGML_METAL_KERNEL_TYPE_GELU,
 | |
|     GGML_METAL_KERNEL_TYPE_GELU_4,
 | |
|     GGML_METAL_KERNEL_TYPE_GELU_QUICK,
 | |
|     GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,
 | |
|     GGML_METAL_KERNEL_TYPE_SILU,
 | |
|     GGML_METAL_KERNEL_TYPE_SILU_4,
 | |
|     GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16,
 | |
|     GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4,
 | |
|     GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4,
 | |
|     GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,
 | |
|     GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_F16,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS,
 | |
|     GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
 | |
|     GGML_METAL_KERNEL_TYPE_RMS_NORM,
 | |
|     GGML_METAL_KERNEL_TYPE_GROUP_NORM,
 | |
|     GGML_METAL_KERNEL_TYPE_NORM,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
 | |
|   //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,
 | |
|   //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW,
 | |
|   //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16,
 | |
|     GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16,
 | |
|     GGML_METAL_KERNEL_TYPE_IM2COL_F16,
 | |
|     GGML_METAL_KERNEL_TYPE_IM2COL_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_PAD_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_ARANGE_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
 | |
|     GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC,
 | |
|     GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64,
 | |
|     GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80,
 | |
|     GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96,
 | |
|     GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112,
 | |
|     GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128,
 | |
|   //GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256,     // https://github.com/ggerganov/llama.cpp/issues/7261
 | |
|     GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128,
 | |
|   //GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, // https://github.com/ggerganov/llama.cpp/issues/7261
 | |
|     GGML_METAL_KERNEL_TYPE_CPY_F32_F16,
 | |
|     GGML_METAL_KERNEL_TYPE_CPY_F32_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
 | |
|     GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0,
 | |
|     GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1,
 | |
|     GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,
 | |
|     GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,
 | |
|     GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL,
 | |
|     GGML_METAL_KERNEL_TYPE_CPY_F16_F16,
 | |
|     GGML_METAL_KERNEL_TYPE_CPY_F16_F32,
 | |
|     GGML_METAL_KERNEL_TYPE_CONCAT,
 | |
|     GGML_METAL_KERNEL_TYPE_SQR,
 | |
|     GGML_METAL_KERNEL_TYPE_SUM_ROWS,
 | |
| 
 | |
|     GGML_METAL_KERNEL_TYPE_COUNT
 | |
| };
 | |
| 
 | |
| struct ggml_metal_context {
 | |
|     int n_cb;
 | |
| 
 | |
|     id<MTLDevice>       device;
 | |
|     id<MTLCommandQueue> queue;
 | |
| 
 | |
|     dispatch_queue_t d_queue;
 | |
| 
 | |
|     struct ggml_metal_kernel kernels[GGML_METAL_KERNEL_TYPE_COUNT];
 | |
| 
 | |
|     bool support_simdgroup_reduction;
 | |
|     bool support_simdgroup_mm;
 | |
| 
 | |
|     bool should_capture_next_compute;
 | |
| };
 | |
| 
 | |
| // MSL code
 | |
| // TODO: move the contents here when ready
 | |
| //       for now it is easier to work in a separate file
 | |
| // static NSString * const msl_library_source = @"see metal.metal";
 | |
| 
 | |
| // Here to assist with NSBundle Path Hack
 | |
| @interface GGMLMetalClass : NSObject
 | |
| @end
 | |
| @implementation GGMLMetalClass
 | |
| @end
 | |
| 
 | |
| static void ggml_metal_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
 | |
|     fprintf(stderr, "%s", msg);
 | |
| 
 | |
|     UNUSED(level);
 | |
|     UNUSED(user_data);
 | |
| }
 | |
| 
 | |
| ggml_log_callback ggml_metal_log_callback = ggml_metal_default_log_callback;
 | |
| void * ggml_metal_log_user_data = NULL;
 | |
| 
 | |
| GGML_ATTRIBUTE_FORMAT(2, 3)
 | |
| static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
 | |
|     if (ggml_metal_log_callback != NULL) {
 | |
|         va_list args;
 | |
|         va_start(args, format);
 | |
|         char buffer[128];
 | |
|         int len = vsnprintf(buffer, 128, format, args);
 | |
|         if (len < 128) {
 | |
|             ggml_metal_log_callback(level, buffer, ggml_metal_log_user_data);
 | |
|         } else {
 | |
|             char* buffer2 = malloc(len+1);
 | |
|             va_end(args);
 | |
|             va_start(args, format);
 | |
|             vsnprintf(buffer2, len+1, format, args);
 | |
|             buffer2[len] = 0;
 | |
|             ggml_metal_log_callback(level, buffer2, ggml_metal_log_user_data);
 | |
|             free(buffer2);
 | |
|         }
 | |
|         va_end(args);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void * ggml_metal_host_malloc(size_t n) {
 | |
|     void * data = NULL;
 | |
| 
 | |
| #if TARGET_OS_OSX
 | |
|     kern_return_t err = vm_allocate((vm_map_t) mach_task_self(), (void *) &data, n, VM_FLAGS_ANYWHERE);
 | |
|     if (err != KERN_SUCCESS) {
 | |
|         GGML_METAL_LOG_ERROR("%s: error: vm_allocate failed\n", __func__);
 | |
|         return NULL;
 | |
|     }
 | |
| #else
 | |
|     const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
 | |
|     if (result != 0) {
 | |
|         GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__);
 | |
|         return NULL;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| static struct ggml_metal_context * ggml_metal_init(int n_cb) {
 | |
|     GGML_METAL_LOG_INFO("%s: allocating\n", __func__);
 | |
| 
 | |
| #if TARGET_OS_OSX && !GGML_METAL_NDEBUG
 | |
|     // Show all the Metal device instances in the system
 | |
|     NSArray * devices = MTLCopyAllDevices();
 | |
|     for (id<MTLDevice> device in devices) {
 | |
|         GGML_METAL_LOG_INFO("%s: found device: %s\n", __func__, [[device name] UTF8String]);
 | |
|     }
 | |
|     [devices release]; // since it was created by a *Copy* C method
 | |
| #endif
 | |
| 
 | |
|     // Pick and show default Metal device
 | |
|     id<MTLDevice> device = MTLCreateSystemDefaultDevice();
 | |
|     GGML_METAL_LOG_INFO("%s: picking default device: %s\n", __func__, [[device name] UTF8String]);
 | |
| 
 | |
|     // Configure context
 | |
|     struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
 | |
|     ctx->device = device;
 | |
|     ctx->n_cb   = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
 | |
|     ctx->queue  = [ctx->device newCommandQueue];
 | |
|     ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
 | |
| 
 | |
|     id<MTLLibrary> metal_library;
 | |
| 
 | |
|     // load library
 | |
|     //
 | |
|     // - first check if the library is embedded
 | |
|     // - then check if the library is in the bundle
 | |
|     // - if not found, load the source and compile it
 | |
|     // - if that fails, return NULL
 | |
|     {
 | |
|         NSBundle * bundle = nil;
 | |
| #ifdef SWIFT_PACKAGE
 | |
|         bundle = SWIFTPM_MODULE_BUNDLE;
 | |
| #else
 | |
|         bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
 | |
| #endif
 | |
| 
 | |
|         NSError * error = nil;
 | |
| 
 | |
| #if GGML_METAL_EMBED_LIBRARY
 | |
|         const bool try_metallib = false;
 | |
| #else
 | |
|         const bool try_metallib = true;
 | |
| #endif
 | |
| 
 | |
|         NSString * path_lib = [bundle pathForResource:@"default" ofType:@"metallib"];
 | |
|         if (try_metallib && path_lib != nil) {
 | |
|             // pre-compiled library found
 | |
|             NSURL * libURL = [NSURL fileURLWithPath:path_lib];
 | |
|             GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [path_lib UTF8String]);
 | |
| 
 | |
|             metal_library = [ctx->device newLibraryWithURL:libURL error:&error];
 | |
|             if (error) {
 | |
|                 GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
 | |
|                 return NULL;
 | |
|             }
 | |
|         } else {
 | |
| #if GGML_METAL_EMBED_LIBRARY
 | |
|             GGML_METAL_LOG_INFO("%s: using embedded metal library\n", __func__);
 | |
| 
 | |
|             extern const char ggml_metallib_start[];
 | |
|             extern const char ggml_metallib_end[];
 | |
| 
 | |
|             NSString * src = [[NSString alloc] initWithBytes:ggml_metallib_start length:(ggml_metallib_end-ggml_metallib_start) encoding:NSUTF8StringEncoding];
 | |
| #else
 | |
|             GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
 | |
| 
 | |
|             NSString * path_source;
 | |
|             NSString * path_resource = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
 | |
| 
 | |
|             GGML_METAL_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, path_resource ? [path_resource UTF8String] : "nil");
 | |
| 
 | |
|             if (path_resource) {
 | |
|                 path_source = [path_resource stringByAppendingPathComponent:@"ggml-metal.metal"];
 | |
|             } else {
 | |
|                 path_source = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
 | |
|             }
 | |
| 
 | |
|             if (path_source == nil) {
 | |
|                 GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
 | |
|                 path_source = @"ggml-metal.metal";
 | |
|             }
 | |
| 
 | |
|             GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [path_source UTF8String]);
 | |
| 
 | |
|             NSString * src = [NSString stringWithContentsOfFile:path_source encoding:NSUTF8StringEncoding error:&error];
 | |
|             if (error) {
 | |
|                 GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
 | |
|                 return NULL;
 | |
|             }
 | |
| #endif // GGML_METAL_EMBED_LIBRARY
 | |
| 
 | |
|             @autoreleasepool {
 | |
|                 // dictionary of preprocessor macros
 | |
|                 NSMutableDictionary * prep = [NSMutableDictionary dictionary];
 | |
| 
 | |
|                 MTLCompileOptions* options = [MTLCompileOptions new];
 | |
|                 options.preprocessorMacros = prep;
 | |
| 
 | |
|                 //[options setFastMathEnabled:false];
 | |
| 
 | |
|                 metal_library = [ctx->device newLibraryWithSource:src options:options error:&error];
 | |
|                 if (error) {
 | |
|                     GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
 | |
|                     return NULL;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // print MTL GPU family:
 | |
|     GGML_METAL_LOG_INFO("%s: GPU name:   %s\n", __func__, [[ctx->device name] UTF8String]);
 | |
| 
 | |
|     const NSInteger MTLGPUFamilyMetal3 = 5001;
 | |
| 
 | |
|     // determine max supported GPU family
 | |
|     // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
 | |
|     // https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
 | |
|     {
 | |
|         for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
 | |
|             if ([ctx->device supportsFamily:i]) {
 | |
|                 GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d  (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (int i = MTLGPUFamilyCommon1 + 5; i >= MTLGPUFamilyCommon1; --i) {
 | |
|             if ([ctx->device supportsFamily:i]) {
 | |
|                 GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyCommon%d (%d)\n", __func__, i - (int) MTLGPUFamilyCommon1 + 1, i);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (int i = MTLGPUFamilyMetal3 + 5; i >= MTLGPUFamilyMetal3; --i) {
 | |
|             if ([ctx->device supportsFamily:i]) {
 | |
|                 GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyMetal%d  (%d)\n", __func__, i - (int) MTLGPUFamilyMetal3 + 3, i);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ctx->support_simdgroup_reduction  = [ctx->device supportsFamily:MTLGPUFamilyApple7];
 | |
|     ctx->support_simdgroup_reduction |= [ctx->device supportsFamily:MTLGPUFamilyMetal3];
 | |
| 
 | |
|     ctx->support_simdgroup_mm = [ctx->device supportsFamily:MTLGPUFamilyApple7];
 | |
| 
 | |
|     GGML_METAL_LOG_INFO("%s: simdgroup reduction support   = %s\n",       __func__, ctx->support_simdgroup_reduction ? "true" : "false");
 | |
|     GGML_METAL_LOG_INFO("%s: simdgroup matrix mul. support = %s\n",       __func__, ctx->support_simdgroup_mm ? "true" : "false");
 | |
|     GGML_METAL_LOG_INFO("%s: hasUnifiedMemory              = %s\n",       __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
 | |
| 
 | |
|     ctx->should_capture_next_compute = false;
 | |
| 
 | |
| #if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
 | |
|     if (@available(macOS 10.12, iOS 16.0, *)) {
 | |
|         GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize  = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6);
 | |
|     }
 | |
| #elif TARGET_OS_OSX
 | |
|     if (ctx->device.maxTransferRate != 0) {
 | |
|         GGML_METAL_LOG_INFO("%s: maxTransferRate               = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1e6);
 | |
|     } else {
 | |
|         GGML_METAL_LOG_INFO("%s: maxTransferRate               = built-in GPU\n", __func__);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // load kernels
 | |
|     {
 | |
|         NSError * error = nil;
 | |
| 
 | |
|         for (int i = 0; i < GGML_METAL_KERNEL_TYPE_COUNT; ++i) {
 | |
|             ctx->kernels[i].pipeline = nil;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|             GGML_METAL_LOG_INFO("%s: loaded %-40s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) kernel->pipeline, \
 | |
|                     (int) kernel->pipeline.maxTotalThreadsPerThreadgroup, \
 | |
|                     (int) kernel->pipeline.threadExecutionWidth); \
 | |
|         */
 | |
| #define GGML_METAL_ADD_KERNEL(e, name, supported) \
 | |
|         if (supported) { \
 | |
|             struct ggml_metal_kernel * kernel = &ctx->kernels[e]; \
 | |
|             id<MTLFunction> metal_function = [metal_library newFunctionWithName:@"kernel_"#name]; \
 | |
|             kernel->pipeline = [ctx->device newComputePipelineStateWithFunction:metal_function error:&error]; \
 | |
|             [metal_function release]; \
 | |
|             if (error) { \
 | |
|                 GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
 | |
|                 [metal_library release]; \
 | |
|                 return NULL; \
 | |
|             } \
 | |
|         } else { \
 | |
|             GGML_METAL_LOG_WARN("%s: skipping %-40s (not supported)\n", __func__, "kernel_"#name); \
 | |
|         }
 | |
| 
 | |
|         // simd_sum and simd_max requires MTLGPUFamilyApple7
 | |
| 
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD,                           add,                            true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW,                       add_row,                        true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL,                           mul,                            true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW,                       mul_row,                        true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV,                           div,                            true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW,                       div_row,                        true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F32,                    repeat_f32,                     true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F16,                    repeat_f16,                     true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I32,                    repeat_i32,                     true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I16,                    repeat_i16,                     true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE,                         scale,                          true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4,                       scale_4,                        true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP,                         clamp,                          true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH,                          tanh,                           true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU,                          relu,                           true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIGMOID,                       sigmoid,                        true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU,                          gelu,                           true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4,                        gelu_4,                         true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK,                    gelu_quick,                     true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,                  gelu_quick_4,                   true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU,                          silu,                           true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4,                        silu_4,                         true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16,                  soft_max_f16,                   ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4,                soft_max_f16_4,                 ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32,                  soft_max_f32,                   ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4,                soft_max_f32_4,                 ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,                 diag_mask_inf,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8,               diag_mask_inf_8,                true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32,                  get_rows_f32,                   true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16,                  get_rows_f16,                   true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0,                 get_rows_q4_0,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1,                 get_rows_q4_1,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0,                 get_rows_q5_0,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1,                 get_rows_q5_1,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0,                 get_rows_q8_0,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K,                 get_rows_q2_K,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K,                 get_rows_q3_K,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K,                 get_rows_q4_K,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K,                 get_rows_q5_K,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K,                 get_rows_q6_K,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS,              get_rows_iq2_xxs,               true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS,               get_rows_iq2_xs,                true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS,              get_rows_iq3_xxs,               true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S,                get_rows_iq3_s,                 true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S,                get_rows_iq2_s,                 true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S,                get_rows_iq1_s,                 true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M,                get_rows_iq1_m,                 true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL,               get_rows_iq4_nl,                true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS,               get_rows_iq4_xs,                true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,                  get_rows_i32,                   true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM,                      rms_norm,                       ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM,                    group_norm,                     ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM,                          norm,                           true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32,                mul_mv_f32_f32,                 ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16,                mul_mv_f16_f16,                 ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32,                mul_mv_f16_f32,                 ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW,           mul_mv_f16_f32_1row,            ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4,             mul_mv_f16_f32_l4,              ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32,               mul_mv_q4_0_f32,                ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32,               mul_mv_q4_1_f32,                ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32,               mul_mv_q5_0_f32,                ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32,               mul_mv_q5_1_f32,                ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32,               mul_mv_q8_0_f32,                ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32,               mul_mv_q2_K_f32,                ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32,               mul_mv_q3_K_f32,                ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32,               mul_mv_q4_K_f32,                ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32,               mul_mv_q5_K_f32,                ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32,               mul_mv_q6_K_f32,                ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32,            mul_mv_iq2_xxs_f32,             ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32,             mul_mv_iq2_xs_f32,              ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32,            mul_mv_iq3_xxs_f32,             ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32,              mul_mv_iq3_s_f32,               ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32,              mul_mv_iq2_s_f32,               ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32,              mul_mv_iq1_s_f32,               ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32,              mul_mv_iq1_m_f32,               ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32,             mul_mv_iq4_nl_f32,              ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32,             mul_mv_iq4_xs_f32,              ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,             mul_mv_id_f32_f32,              ctx->support_simdgroup_reduction);
 | |
|       //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,             mul_mv_id_f16_f16,              ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,             mul_mv_id_f16_f32,              ctx->support_simdgroup_reduction);
 | |
|       //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW,        mul_mv_id_f16_f32_1row,         ctx->support_simdgroup_reduction);
 | |
|       //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4,          mul_mv_id_f16_f32_l4,           ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32,            mul_mv_id_q4_0_f32,             ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32,            mul_mv_id_q4_1_f32,             ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32,            mul_mv_id_q5_0_f32,             ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32,            mul_mv_id_q5_1_f32,             ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32,            mul_mv_id_q8_0_f32,             ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32,            mul_mv_id_q2_K_f32,             ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32,            mul_mv_id_q3_K_f32,             ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32,            mul_mv_id_q4_K_f32,             ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32,            mul_mv_id_q5_K_f32,             ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32,            mul_mv_id_q6_K_f32,             ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32,         mul_mv_id_iq2_xxs_f32,          ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32,          mul_mv_id_iq2_xs_f32,           ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32,         mul_mv_id_iq3_xxs_f32,          ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32,           mul_mv_id_iq3_s_f32,            ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32,           mul_mv_id_iq2_s_f32,            ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32,           mul_mv_id_iq1_s_f32,            ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32,           mul_mv_id_iq1_m_f32,            ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32,          mul_mv_id_iq4_nl_f32,           ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32,          mul_mv_id_iq4_xs_f32,           ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,                mul_mm_f32_f32,                 ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,                mul_mm_f16_f32,                 ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,               mul_mm_q4_0_f32,                ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32,               mul_mm_q4_1_f32,                ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32,               mul_mm_q5_0_f32,                ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32,               mul_mm_q5_1_f32,                ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32,               mul_mm_q8_0_f32,                ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32,               mul_mm_q2_K_f32,                ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32,               mul_mm_q3_K_f32,                ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32,               mul_mm_q4_K_f32,                ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32,               mul_mm_q5_K_f32,                ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32,               mul_mm_q6_K_f32,                ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32,            mul_mm_iq2_xxs_f32,             ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32,             mul_mm_iq2_xs_f32,              ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32,            mul_mm_iq3_xxs_f32,             ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32,              mul_mm_iq3_s_f32,               ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32,              mul_mm_iq2_s_f32,               ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32,              mul_mm_iq1_s_f32,               ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32,              mul_mm_iq1_m_f32,               ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,             mul_mm_iq4_nl_f32,              ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,             mul_mm_iq4_xs_f32,              ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,             mul_mm_id_f32_f32,              ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,             mul_mm_id_f16_f32,              ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32,            mul_mm_id_q4_0_f32,             ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32,            mul_mm_id_q4_1_f32,             ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32,            mul_mm_id_q5_0_f32,             ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32,            mul_mm_id_q5_1_f32,             ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32,            mul_mm_id_q8_0_f32,             ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32,            mul_mm_id_q2_K_f32,             ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32,            mul_mm_id_q3_K_f32,             ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32,            mul_mm_id_q4_K_f32,             ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32,            mul_mm_id_q5_K_f32,             ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32,            mul_mm_id_q6_K_f32,             ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32,         mul_mm_id_iq2_xxs_f32,          ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32,          mul_mm_id_iq2_xs_f32,           ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32,         mul_mm_id_iq3_xxs_f32,          ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32,           mul_mm_id_iq3_s_f32,            ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32,           mul_mm_id_iq2_s_f32,            ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32,           mul_mm_id_iq1_s_f32,            ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32,           mul_mm_id_iq1_m_f32,            ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32,          mul_mm_id_iq4_nl_f32,           ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32,          mul_mm_id_iq4_xs_f32,           ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32,                 rope_norm_f32,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16,                 rope_norm_f16,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32,                 rope_neox_f32,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16,                 rope_neox_f16,                  true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16,                    im2col_f16,                     true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32,                    im2col_f32,                     true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32,                   upscale_f32,                    true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32,                       pad_f32,                        true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,        timestep_embedding_f32,         true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32,                    arange_f32,                     true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,           argsort_f32_i32_asc,            true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC,          argsort_f32_i32_desc,           true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32,                leaky_relu_f32,                 true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64,        flash_attn_ext_f16_h64,         ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80,        flash_attn_ext_f16_h80,         ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96,        flash_attn_ext_f16_h96,         ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112,       flash_attn_ext_f16_h112,        ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128,       flash_attn_ext_f16_h128,        ctx->support_simdgroup_mm);
 | |
|       //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256,       flash_attn_ext_f16_h256,        ctx->support_simdgroup_mm);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128,   flash_attn_ext_vec_f16_h128,    ctx->support_simdgroup_reduction);
 | |
|       //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256,   flash_attn_ext_vec_f16_h256,    ctx->support_simdgroup_reduction);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16,                   cpy_f32_f16,                    true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32,                   cpy_f32_f32,                    true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,                  cpy_f32_q8_0,                   true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0,                  cpy_f32_q4_0,                   true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1,                  cpy_f32_q4_1,                   true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,                  cpy_f32_q5_0,                   true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,                  cpy_f32_q5_1,                   true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL,                cpy_f32_iq4_nl,                 true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16,                   cpy_f16_f16,                    true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32,                   cpy_f16_f32,                    true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT,                        concat,                         true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR,                           sqr,                            true);
 | |
|         GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS,                      sum_rows,                       true);
 | |
|     }
 | |
| 
 | |
|     [metal_library release];
 | |
|     return ctx;
 | |
| }
 | |
| 
 | |
| static void ggml_metal_free(struct ggml_metal_context * ctx) {
 | |
|     GGML_METAL_LOG_INFO("%s: deallocating\n", __func__);
 | |
| 
 | |
|     for (int i = 0; i < GGML_METAL_KERNEL_TYPE_COUNT; ++i) {
 | |
|         [ctx->kernels[i].pipeline release];
 | |
|     }
 | |
| 
 | |
|     [ctx->queue release];
 | |
|     [ctx->device release];
 | |
| 
 | |
|     dispatch_release(ctx->d_queue);
 | |
| 
 | |
|     free(ctx);
 | |
| }
 | |
| 
 | |
| // temporarily defined here for compatibility between ggml-backend and the old API
 | |
| 
 | |
| struct ggml_backend_metal_buffer {
 | |
|     void   * data;
 | |
|     size_t   size;
 | |
| 
 | |
|     id<MTLBuffer> metal;
 | |
| };
 | |
| 
 | |
| struct ggml_backend_metal_buffer_context {
 | |
|     void * all_data;
 | |
|     size_t all_size;
 | |
|     bool owned;
 | |
| 
 | |
|     // multiple buffers are used only to avoid the maximum buffer size limitation when using mmap
 | |
|     int n_buffers;
 | |
|     struct ggml_backend_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
 | |
| };
 | |
| 
 | |
| // finds the Metal buffer that contains the tensor data on the GPU device
 | |
| // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
 | |
| // Metal buffer based on the host memory pointer
 | |
| //
 | |
| static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_tensor * t, size_t * offs) {
 | |
|     //GGML_METAL_LOG_INFO("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
 | |
| 
 | |
|     const int64_t tsize = ggml_nbytes(t);
 | |
| 
 | |
|     ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
 | |
| 
 | |
|     struct ggml_backend_metal_buffer_context * buf_ctx = (struct ggml_backend_metal_buffer_context *) buffer->context;
 | |
| 
 | |
|     // find the view that contains the tensor fully
 | |
|     for (int i = 0; i < buf_ctx->n_buffers; ++i) {
 | |
|         const int64_t ioffs = (int64_t) t->data - (int64_t) buf_ctx->buffers[i].data;
 | |
| 
 | |
|         //GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, buf_ctx->buffers[%d].size = %10ld\n", ioffs, tsize, ioffs + tsize, i, buf_ctx->buffers[i].size);
 | |
|         if (ioffs >= 0 && ioffs + tsize <= (int64_t) buf_ctx->buffers[i].size) {
 | |
|             *offs = (size_t) ioffs;
 | |
| 
 | |
|             //GGML_METAL_LOG_INFO("%s: tensor '%16s', offs = %8ld\n", __func__, t->name, *offs);
 | |
| 
 | |
|             return buf_ctx->buffers[i].metal;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     GGML_METAL_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name);
 | |
| 
 | |
|     return nil;
 | |
| }
 | |
| 
 | |
| static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const struct ggml_tensor * op) {
 | |
|     switch (op->op) {
 | |
|         case GGML_OP_UNARY:
 | |
|             switch (ggml_get_unary_op(op)) {
 | |
|                 case GGML_UNARY_OP_TANH:
 | |
|                 case GGML_UNARY_OP_RELU:
 | |
|                 case GGML_UNARY_OP_SIGMOID:
 | |
|                 case GGML_UNARY_OP_GELU:
 | |
|                 case GGML_UNARY_OP_GELU_QUICK:
 | |
|                 case GGML_UNARY_OP_SILU:
 | |
|                     return ggml_is_contiguous(op->src[0]);
 | |
|                 default:
 | |
|                     return false;
 | |
|             }
 | |
|         case GGML_OP_NONE:
 | |
|         case GGML_OP_RESHAPE:
 | |
|         case GGML_OP_VIEW:
 | |
|         case GGML_OP_TRANSPOSE:
 | |
|         case GGML_OP_PERMUTE:
 | |
|         case GGML_OP_CONCAT:
 | |
|         case GGML_OP_ADD:
 | |
|         case GGML_OP_ACC:
 | |
|         case GGML_OP_MUL:
 | |
|         case GGML_OP_DIV:
 | |
|         case GGML_OP_REPEAT:
 | |
|         case GGML_OP_SCALE:
 | |
|         case GGML_OP_CLAMP:
 | |
|         case GGML_OP_SQR:
 | |
|         case GGML_OP_SUM_ROWS:
 | |
|             return true;
 | |
|         case GGML_OP_SOFT_MAX:
 | |
|         case GGML_OP_RMS_NORM:
 | |
|         case GGML_OP_GROUP_NORM:
 | |
|             return ctx->support_simdgroup_reduction;
 | |
|         case GGML_OP_NORM:
 | |
|         case GGML_OP_ROPE:
 | |
|         case GGML_OP_IM2COL:
 | |
|             return true;
 | |
|         case GGML_OP_POOL_1D:
 | |
|         case GGML_OP_POOL_2D:
 | |
|             return false;
 | |
|         case GGML_OP_UPSCALE:
 | |
|         case GGML_OP_PAD:
 | |
|         case GGML_OP_ARANGE:
 | |
|         case GGML_OP_TIMESTEP_EMBEDDING:
 | |
|         case GGML_OP_ARGSORT:
 | |
|         case GGML_OP_LEAKY_RELU:
 | |
|             return true;
 | |
|         case GGML_OP_FLASH_ATTN_EXT:
 | |
|             if (op->src[1]->type != GGML_TYPE_F16) {
 | |
|                 return false;
 | |
|             }
 | |
|             if (op->src[2]->type != GGML_TYPE_F16) {
 | |
|                 return false;
 | |
|             }
 | |
|             if (op->src[0]->ne[0] == 256) {
 | |
|                 return false;
 | |
|             }
 | |
|             return ctx->support_simdgroup_mm; // TODO: over-restricted for vec-kernels
 | |
|         case GGML_OP_MUL_MAT:
 | |
|         case GGML_OP_MUL_MAT_ID:
 | |
|             return ctx->support_simdgroup_reduction &&
 | |
|                 (op->src[0]->type != GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F32);
 | |
|         case GGML_OP_CPY:
 | |
|         case GGML_OP_DUP:
 | |
|         case GGML_OP_CONT:
 | |
|             {
 | |
|                 switch (op->src[0]->type) {
 | |
|                     case GGML_TYPE_F32:
 | |
|                         switch (op->type) {
 | |
|                            case GGML_TYPE_F16:
 | |
|                            case GGML_TYPE_F32:
 | |
|                            case GGML_TYPE_Q8_0:
 | |
|                            case GGML_TYPE_Q4_0:
 | |
|                            case GGML_TYPE_Q4_1:
 | |
|                            case GGML_TYPE_Q5_0:
 | |
|                            case GGML_TYPE_Q5_1:
 | |
|                            case GGML_TYPE_IQ4_NL:
 | |
|                                 return true;
 | |
|                            default:
 | |
|                                 return false;
 | |
|                         }
 | |
|                     case GGML_TYPE_F16:
 | |
|                         switch (op->type) {
 | |
|                            case GGML_TYPE_F16:
 | |
|                            case GGML_TYPE_F32:
 | |
|                                 return true;
 | |
|                            default:
 | |
|                                 return false;
 | |
|                         }
 | |
|                     default:
 | |
|                         return false;
 | |
|                 };
 | |
|             }
 | |
|         case GGML_OP_DIAG_MASK_INF:
 | |
|         case GGML_OP_GET_ROWS:
 | |
|             {
 | |
|                 return op->src[0]->type != GGML_TYPE_BF16 && op->ne[3] == 1;
 | |
|             }
 | |
|         default:
 | |
|             return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static enum ggml_status ggml_metal_graph_compute(
 | |
|         struct ggml_metal_context * ctx,
 | |
|                struct ggml_cgraph * gf) {
 | |
| 
 | |
|     @autoreleasepool {
 | |
|     MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
 | |
|     edesc.dispatchType = MTLDispatchTypeSerial;
 | |
| 
 | |
|     // create multiple command buffers and enqueue them
 | |
|     // then, we encode the graph into the command buffers in parallel
 | |
| 
 | |
|     const int n_nodes  = gf->n_nodes;
 | |
|     const int n_cb = ctx->n_cb;
 | |
|     const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
 | |
| 
 | |
|     const bool should_capture = ctx->should_capture_next_compute;
 | |
|     if (should_capture) {
 | |
|         ctx->should_capture_next_compute = false;
 | |
| 
 | |
|         MTLCaptureDescriptor * descriptor = [MTLCaptureDescriptor new];
 | |
|         descriptor.captureObject = ctx->queue;
 | |
| 
 | |
|         NSError * error = nil;
 | |
|         if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) {
 | |
|             GGML_METAL_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]);
 | |
|             GGML_ASSERT(!"capture failed");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     id<MTLCommandBuffer> command_buffer_builder[n_cb];
 | |
|     for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
 | |
|         id<MTLCommandBuffer> command_buffer  = [ctx->queue commandBufferWithUnretainedReferences];
 | |
|         command_buffer_builder[cb_idx] = command_buffer;
 | |
| 
 | |
|         // enqueue the command buffers in order to specify their execution order
 | |
|         [command_buffer enqueue];
 | |
|     }
 | |
| 
 | |
|     const id<MTLCommandBuffer> *command_buffers = command_buffer_builder;
 | |
| 
 | |
|     dispatch_apply(n_cb, ctx->d_queue, ^(size_t iter) {
 | |
|         const int cb_idx = iter;
 | |
| 
 | |
|         size_t offs_src0 = 0;
 | |
|         size_t offs_src1 = 0;
 | |
|         size_t offs_src2 = 0;
 | |
|         size_t offs_dst  = 0;
 | |
| 
 | |
|         id<MTLCommandBuffer> command_buffer  = command_buffers[cb_idx];
 | |
|         id<MTLComputeCommandEncoder> encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
 | |
| 
 | |
|         const int node_start =                                      (cb_idx + 0) * n_nodes_per_cb;
 | |
|         const int node_end   = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes);
 | |
| 
 | |
|         for (int i = node_start; i < node_end; ++i) {
 | |
|             if (i == -1) {
 | |
|                 [encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             //GGML_METAL_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
 | |
| 
 | |
|             struct ggml_tensor * src0 = gf->nodes[i]->src[0];
 | |
|             struct ggml_tensor * src1 = gf->nodes[i]->src[1];
 | |
|             struct ggml_tensor * src2 = gf->nodes[i]->src[2];
 | |
|             struct ggml_tensor * dst  = gf->nodes[i];
 | |
| 
 | |
|             if (ggml_is_empty(dst)) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             switch (dst->op) {
 | |
|                 case GGML_OP_NONE:
 | |
|                 case GGML_OP_RESHAPE:
 | |
|                 case GGML_OP_VIEW:
 | |
|                 case GGML_OP_TRANSPOSE:
 | |
|                 case GGML_OP_PERMUTE:
 | |
|                     {
 | |
|                         // noop -> next node
 | |
|                     } continue;
 | |
|                 default:
 | |
|                     {
 | |
|                     } break;
 | |
|             }
 | |
| 
 | |
|             if (!ggml_metal_supports_op(ctx, dst)) {
 | |
|                 GGML_METAL_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
 | |
|                 GGML_ASSERT(!"unsupported op");
 | |
|             }
 | |
| 
 | |
|             if (should_capture) {
 | |
|                 [encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]];
 | |
|             }
 | |
| 
 | |
|             const int64_t  ne00 = src0 ? src0->ne[0] : 0;
 | |
|             const int64_t  ne01 = src0 ? src0->ne[1] : 0;
 | |
|             const int64_t  ne02 = src0 ? src0->ne[2] : 0;
 | |
|             const int64_t  ne03 = src0 ? src0->ne[3] : 0;
 | |
| 
 | |
|             const uint64_t nb00 = src0 ? src0->nb[0] : 0;
 | |
|             const uint64_t nb01 = src0 ? src0->nb[1] : 0;
 | |
|             const uint64_t nb02 = src0 ? src0->nb[2] : 0;
 | |
|             const uint64_t nb03 = src0 ? src0->nb[3] : 0;
 | |
| 
 | |
|             const int64_t  ne10 = src1 ? src1->ne[0] : 0;
 | |
|             const int64_t  ne11 = src1 ? src1->ne[1] : 0;
 | |
|             const int64_t  ne12 = src1 ? src1->ne[2] : 0;
 | |
|             const int64_t  ne13 = src1 ? src1->ne[3] : 0;
 | |
| 
 | |
|             const uint64_t nb10 = src1 ? src1->nb[0] : 0;
 | |
|             const uint64_t nb11 = src1 ? src1->nb[1] : 0;
 | |
|             const uint64_t nb12 = src1 ? src1->nb[2] : 0;
 | |
|             const uint64_t nb13 = src1 ? src1->nb[3] : 0;
 | |
| 
 | |
|             const int64_t  ne20 = src2 ? src2->ne[0] : 0;
 | |
|             const int64_t  ne21 = src2 ? src2->ne[1] : 0;
 | |
|             const int64_t  ne22 = src2 ? src2->ne[2] : 0; GGML_UNUSED(ne22);
 | |
|             const int64_t  ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23);
 | |
| 
 | |
|             const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20);
 | |
|             const uint64_t nb21 = src2 ? src2->nb[1] : 0;
 | |
|             const uint64_t nb22 = src2 ? src2->nb[2] : 0;
 | |
|             const uint64_t nb23 = src2 ? src2->nb[3] : 0;
 | |
| 
 | |
|             const int64_t  ne0  =  dst ?  dst->ne[0] : 0;
 | |
|             const int64_t  ne1  =  dst ?  dst->ne[1] : 0;
 | |
|             const int64_t  ne2  =  dst ?  dst->ne[2] : 0;
 | |
|             const int64_t  ne3  =  dst ?  dst->ne[3] : 0;
 | |
| 
 | |
|             const uint64_t nb0  =  dst ?  dst->nb[0] : 0;
 | |
|             const uint64_t nb1  =  dst ?  dst->nb[1] : 0;
 | |
|             const uint64_t nb2  =  dst ?  dst->nb[2] : 0;
 | |
|             const uint64_t nb3  =  dst ?  dst->nb[3] : 0;
 | |
| 
 | |
|             const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
 | |
|             const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
 | |
|             const enum ggml_type dstt  = dst  ? dst->type  : GGML_TYPE_COUNT;
 | |
| 
 | |
|             id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(src0, &offs_src0) : nil;
 | |
|             id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(src1, &offs_src1) : nil;
 | |
|             id<MTLBuffer> id_src2 = src2 ? ggml_metal_get_buffer(src2, &offs_src2) : nil;
 | |
|             id<MTLBuffer> id_dst  = dst  ? ggml_metal_get_buffer(dst,  &offs_dst)  : nil;
 | |
| 
 | |
|             //GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op));
 | |
|             //if (src0) {
 | |
|             //    GGML_METAL_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
 | |
|             //            ggml_is_contiguous(src0), src0->name);
 | |
|             //}
 | |
|             //if (src1) {
 | |
|             //    GGML_METAL_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
 | |
|             //            ggml_is_contiguous(src1), src1->name);
 | |
|             //}
 | |
|             //if (dst) {
 | |
|             //    GGML_METAL_LOG_INFO("%s: dst  - %4s [%5lld, %5lld, %5lld], 1, %s\n",  __func__, ggml_type_name(dstt),  ne0,  ne1,  ne2,
 | |
|             //            dst->name);
 | |
|             //}
 | |
| 
 | |
|             switch (dst->op) {
 | |
|                 case GGML_OP_CONCAT:
 | |
|                     {
 | |
|                         id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline;
 | |
| 
 | |
|                         const int32_t dim = ((int32_t *) dst->op_params)[0];
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                         [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
 | |
|                         [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
 | |
|                         [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
 | |
|                         [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
 | |
|                         [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
 | |
|                         [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
 | |
|                         [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
 | |
|                         [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
 | |
|                         [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
 | |
|                         [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
 | |
|                         [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
 | |
|                         [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
 | |
|                         [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
 | |
|                         [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
 | |
|                         [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
 | |
|                         [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
 | |
|                         [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
 | |
|                         [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:19];
 | |
|                         [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:20];
 | |
|                         [encoder setBytes:&ne2  length:sizeof(ne2)  atIndex:21];
 | |
|                         [encoder setBytes:&ne3  length:sizeof(ne3)  atIndex:22];
 | |
|                         [encoder setBytes:&nb0  length:sizeof(nb0)  atIndex:23];
 | |
|                         [encoder setBytes:&nb1  length:sizeof(nb1)  atIndex:24];
 | |
|                         [encoder setBytes:&nb2  length:sizeof(nb2)  atIndex:25];
 | |
|                         [encoder setBytes:&nb3  length:sizeof(nb3)  atIndex:26];
 | |
|                         [encoder setBytes:&dim  length:sizeof(dim)  atIndex:27];
 | |
| 
 | |
|                         const int nth = MIN(1024, ne0);
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_ADD:
 | |
|                 case GGML_OP_MUL:
 | |
|                 case GGML_OP_DIV:
 | |
|                     {
 | |
|                         GGML_ASSERT(src0t == GGML_TYPE_F32);
 | |
|                         GGML_ASSERT(src1t == GGML_TYPE_F32);
 | |
| 
 | |
|                         const size_t offs = 0;
 | |
| 
 | |
|                         bool bcast_row = false;
 | |
| 
 | |
|                         int64_t nb = ne00; // used by the "row" kernels
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                         if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
 | |
|                             GGML_ASSERT(ggml_is_contiguous(src0));
 | |
| 
 | |
|                             // src1 is a row
 | |
|                             GGML_ASSERT(ne11 == 1);
 | |
| 
 | |
|                             nb = ne00 / 4;
 | |
|                             switch (dst->op) {
 | |
|                                 case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break;
 | |
|                                 case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break;
 | |
|                                 case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break;
 | |
|                                 default: GGML_ASSERT(false);
 | |
|                             }
 | |
| 
 | |
|                             bcast_row = true;
 | |
|                         } else {
 | |
|                             switch (dst->op) {
 | |
|                                 case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; break;
 | |
|                                 case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break;
 | |
|                                 case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break;
 | |
|                                 default: GGML_ASSERT(false);
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                         [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
 | |
|                         [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
 | |
|                         [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
 | |
|                         [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
 | |
|                         [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
 | |
|                         [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
 | |
|                         [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
 | |
|                         [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
 | |
|                         [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
 | |
|                         [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
 | |
|                         [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
 | |
|                         [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
 | |
|                         [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
 | |
|                         [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
 | |
|                         [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
 | |
|                         [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
 | |
|                         [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
 | |
|                         [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:19];
 | |
|                         [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:20];
 | |
|                         [encoder setBytes:&ne2  length:sizeof(ne2)  atIndex:21];
 | |
|                         [encoder setBytes:&ne3  length:sizeof(ne3)  atIndex:22];
 | |
|                         [encoder setBytes:&nb0  length:sizeof(nb0)  atIndex:23];
 | |
|                         [encoder setBytes:&nb1  length:sizeof(nb1)  atIndex:24];
 | |
|                         [encoder setBytes:&nb2  length:sizeof(nb2)  atIndex:25];
 | |
|                         [encoder setBytes:&nb3  length:sizeof(nb3)  atIndex:26];
 | |
|                         [encoder setBytes:&offs length:sizeof(offs) atIndex:27];
 | |
|                         [encoder setBytes:&nb   length:sizeof(nb)   atIndex:28];
 | |
| 
 | |
|                         if (bcast_row) {
 | |
|                             const int64_t n = ggml_nelements(dst)/4;
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                         } else {
 | |
|                             const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                         }
 | |
|                     } break;
 | |
|                 case GGML_OP_REPEAT:
 | |
|                     {
 | |
|                         id<MTLComputePipelineState> pipeline;
 | |
| 
 | |
|                         switch (src0t) {
 | |
|                             case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F32].pipeline; break;
 | |
|                             case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F16].pipeline; break;
 | |
|                             case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I32].pipeline; break;
 | |
|                             case GGML_TYPE_I16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I16].pipeline; break;
 | |
|                             default: GGML_ASSERT(false);
 | |
|                         }
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
|                         [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
 | |
|                         [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
 | |
|                         [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
 | |
|                         [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
 | |
|                         [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
 | |
|                         [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
 | |
|                         [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
 | |
|                         [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
 | |
|                         [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:10];
 | |
|                         [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:11];
 | |
|                         [encoder setBytes:&ne2  length:sizeof(ne2)  atIndex:12];
 | |
|                         [encoder setBytes:&ne3  length:sizeof(ne3)  atIndex:13];
 | |
|                         [encoder setBytes:&nb0  length:sizeof(nb0)  atIndex:14];
 | |
|                         [encoder setBytes:&nb1  length:sizeof(nb1)  atIndex:15];
 | |
|                         [encoder setBytes:&nb2  length:sizeof(nb2)  atIndex:16];
 | |
|                         [encoder setBytes:&nb3  length:sizeof(nb3)  atIndex:17];
 | |
| 
 | |
|                         const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_ACC:
 | |
|                     {
 | |
|                         GGML_ASSERT(src0t == GGML_TYPE_F32);
 | |
|                         GGML_ASSERT(src1t == GGML_TYPE_F32);
 | |
|                         GGML_ASSERT(dstt  == GGML_TYPE_F32);
 | |
| 
 | |
|                         GGML_ASSERT(ggml_is_contiguous(src0));
 | |
|                         GGML_ASSERT(ggml_is_contiguous(src1));
 | |
| 
 | |
|                         const size_t pnb1 = ((int32_t *) dst->op_params)[0];
 | |
|                         const size_t pnb2 = ((int32_t *) dst->op_params)[1];
 | |
|                         const size_t pnb3 = ((int32_t *) dst->op_params)[2];
 | |
|                         const size_t offs = ((int32_t *) dst->op_params)[3];
 | |
| 
 | |
|                         const bool inplace = (bool) ((int32_t *) dst->op_params)[4];
 | |
| 
 | |
|                         if (!inplace) {
 | |
|                             // run a separete kernel to cpy src->dst
 | |
|                             // not sure how to avoid this
 | |
|                             // TODO: make a simpler cpy_bytes kernel
 | |
| 
 | |
|                             const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline;
 | |
| 
 | |
|                             [encoder setComputePipelineState:pipeline];
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0        atIndex:0];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst         atIndex:1];
 | |
|                             [encoder setBytes:&ne00    length:sizeof( int64_t) atIndex:2];
 | |
|                             [encoder setBytes:&ne01    length:sizeof( int64_t) atIndex:3];
 | |
|                             [encoder setBytes:&ne02    length:sizeof( int64_t) atIndex:4];
 | |
|                             [encoder setBytes:&ne03    length:sizeof( int64_t) atIndex:5];
 | |
|                             [encoder setBytes:&nb00    length:sizeof(uint64_t) atIndex:6];
 | |
|                             [encoder setBytes:&nb01    length:sizeof(uint64_t) atIndex:7];
 | |
|                             [encoder setBytes:&nb02    length:sizeof(uint64_t) atIndex:8];
 | |
|                             [encoder setBytes:&nb03    length:sizeof(uint64_t) atIndex:9];
 | |
|                             [encoder setBytes:&ne0     length:sizeof( int64_t) atIndex:10];
 | |
|                             [encoder setBytes:&ne1     length:sizeof( int64_t) atIndex:11];
 | |
|                             [encoder setBytes:&ne2     length:sizeof( int64_t) atIndex:12];
 | |
|                             [encoder setBytes:&ne3     length:sizeof( int64_t) atIndex:13];
 | |
|                             [encoder setBytes:&nb0     length:sizeof(uint64_t) atIndex:14];
 | |
|                             [encoder setBytes:&nb1     length:sizeof(uint64_t) atIndex:15];
 | |
|                             [encoder setBytes:&nb2     length:sizeof(uint64_t) atIndex:16];
 | |
|                             [encoder setBytes:&nb3     length:sizeof(uint64_t) atIndex:17];
 | |
| 
 | |
|                             const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                         }
 | |
| 
 | |
|                         const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline;
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                         [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
 | |
|                         [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
 | |
|                         [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
 | |
|                         [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
 | |
|                         [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
 | |
|                         [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
 | |
|                         [encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:8];
 | |
|                         [encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:9];
 | |
|                         [encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:10];
 | |
|                         [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
 | |
|                         [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
 | |
|                         [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
 | |
|                         [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
 | |
|                         [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
 | |
|                         [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
 | |
|                         [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
 | |
|                         [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
 | |
|                         [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:19];
 | |
|                         [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:20];
 | |
|                         [encoder setBytes:&ne2  length:sizeof(ne2)  atIndex:21];
 | |
|                         [encoder setBytes:&ne3  length:sizeof(ne3)  atIndex:22];
 | |
|                         [encoder setBytes:&nb0  length:sizeof(nb0)  atIndex:23];
 | |
|                         [encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:24];
 | |
|                         [encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:25];
 | |
|                         [encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:26];
 | |
|                         [encoder setBytes:&offs length:sizeof(offs) atIndex:27];
 | |
| 
 | |
|                         const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(ne11, ne12, ne13) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_SCALE:
 | |
|                     {
 | |
|                         GGML_ASSERT(ggml_is_contiguous(src0));
 | |
| 
 | |
|                         float scale;
 | |
|                         memcpy(&scale, dst->op_params, sizeof(scale));
 | |
| 
 | |
|                         int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                         if (n % 4 == 0) {
 | |
|                             n /= 4;
 | |
|                             pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE_4].pipeline;
 | |
|                         } else {
 | |
|                             pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE].pipeline;
 | |
|                         }
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0   offset:offs_src0 atIndex:0];
 | |
|                         [encoder setBuffer:id_dst    offset:offs_dst  atIndex:1];
 | |
|                         [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_CLAMP:
 | |
|                     {
 | |
|                         id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CLAMP].pipeline;
 | |
| 
 | |
|                         float min;
 | |
|                         float max;
 | |
|                         memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
 | |
|                         memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0   offset:offs_src0 atIndex:0];
 | |
|                         [encoder setBuffer:id_dst    offset:offs_dst  atIndex:1];
 | |
|                         [encoder setBytes:&min length:sizeof(min) atIndex:2];
 | |
|                         [encoder setBytes:&max length:sizeof(max) atIndex:3];
 | |
| 
 | |
|                         const int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_UNARY:
 | |
|                     switch (ggml_get_unary_op(gf->nodes[i])) {
 | |
|                         // we are not taking into account the strides, so for now require contiguous tensors
 | |
|                         GGML_ASSERT(ggml_is_contiguous(src0));
 | |
| 
 | |
|                         case GGML_UNARY_OP_TANH:
 | |
|                             {
 | |
|                                 id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline;
 | |
| 
 | |
|                                 [encoder setComputePipelineState:pipeline];
 | |
|                                 [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                                 [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
| 
 | |
|                                 const int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                             } break;
 | |
|                         case GGML_UNARY_OP_RELU:
 | |
|                             {
 | |
|                                 id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RELU].pipeline;
 | |
| 
 | |
|                                 [encoder setComputePipelineState:pipeline];
 | |
|                                 [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                                 [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
| 
 | |
|                                 const int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                             } break;
 | |
|                         case GGML_UNARY_OP_SIGMOID:
 | |
|                             {
 | |
|                                 id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SIGMOID].pipeline;
 | |
| 
 | |
|                                 [encoder setComputePipelineState:pipeline];
 | |
|                                 [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                                 [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
| 
 | |
|                                 const int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                             } break;
 | |
|                         case GGML_UNARY_OP_GELU:
 | |
|                             {
 | |
|                                 int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                                 id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                                 if (n % 4 == 0) {
 | |
|                                     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_4].pipeline;
 | |
|                                     n /= 4;
 | |
|                                 } else {
 | |
|                                     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
 | |
|                                 }
 | |
| 
 | |
|                                 [encoder setComputePipelineState:pipeline];
 | |
|                                 [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                                 [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
| 
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                             } break;
 | |
|                         case GGML_UNARY_OP_GELU_QUICK:
 | |
|                             {
 | |
|                                 int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                                 id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                                 if (n % 4 == 0) {
 | |
|                                     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK_4].pipeline;
 | |
|                                     n /= 4;
 | |
|                                 } else {
 | |
|                                     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
 | |
|                                 }
 | |
| 
 | |
|                                 [encoder setComputePipelineState:pipeline];
 | |
|                                 [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                                 [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
| 
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                             } break;
 | |
|                         case GGML_UNARY_OP_SILU:
 | |
|                             {
 | |
|                                 int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                                 id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                                 if (n % 4 == 0) {
 | |
|                                     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU_4].pipeline;
 | |
|                                     n /= 4;
 | |
|                                 } else {
 | |
|                                     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
 | |
|                                 }
 | |
| 
 | |
|                                 [encoder setComputePipelineState:pipeline];
 | |
|                                 [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                                 [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
| 
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                             } break;
 | |
|                         default:
 | |
|                             {
 | |
|                                 GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
 | |
|                                 GGML_ASSERT(false);
 | |
|                             }
 | |
|                     } break;
 | |
|                 case GGML_OP_SQR:
 | |
|                     {
 | |
|                         GGML_ASSERT(ggml_is_contiguous(src0));
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQR].pipeline;
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst atIndex:1];
 | |
| 
 | |
|                         const int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_SUM_ROWS:
 | |
|                     {
 | |
|                         GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
|                         [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
 | |
|                         [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
 | |
|                         [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
 | |
|                         [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
 | |
|                         [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
 | |
|                         [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
 | |
|                         [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
 | |
|                         [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
 | |
|                         [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10];
 | |
|                         [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11];
 | |
|                         [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
 | |
|                         [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
 | |
|                         [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
 | |
|                         [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
 | |
|                         [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
 | |
|                         [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17];
 | |
|                         [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:18];
 | |
|                         [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:19];
 | |
|                         [encoder setBytes:&ne2  length:sizeof(ne2)  atIndex:20];
 | |
|                         [encoder setBytes:&ne3  length:sizeof(ne3)  atIndex:21];
 | |
|                         [encoder setBytes:&nb0  length:sizeof(nb0)  atIndex:22];
 | |
|                         [encoder setBytes:&nb1  length:sizeof(nb1)  atIndex:23];
 | |
|                         [encoder setBytes:&nb2  length:sizeof(nb2)  atIndex:24];
 | |
|                         [encoder setBytes:&nb3  length:sizeof(nb3)  atIndex:25];
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_SOFT_MAX:
 | |
|                     {
 | |
|                         GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
 | |
| 
 | |
|                         int nth = 32; // SIMD width
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                         const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
 | |
| 
 | |
|                         if (ne00%4 == 0) {
 | |
|                             while (nth < ne00/4 && nth*ne01*ne02*ne03 < 256) {
 | |
|                                 nth *= 2;
 | |
|                             }
 | |
|                             if (use_f16) {
 | |
|                                 pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4].pipeline;
 | |
|                             } else {
 | |
|                                 pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4].pipeline;
 | |
|                             }
 | |
|                         } else {
 | |
|                             while (nth < ne00 && nth*ne01*ne02*ne03 < 256) {
 | |
|                                 nth *= 2;
 | |
|                             }
 | |
|                             if (use_f16) {
 | |
|                                 pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16].pipeline;
 | |
|                             } else {
 | |
|                                 pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32].pipeline;
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         float scale;
 | |
|                         float max_bias;
 | |
| 
 | |
|                         memcpy(&scale,    ((int32_t *) dst->op_params) + 0, sizeof(scale));
 | |
|                         memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias));
 | |
| 
 | |
|                         const int64_t nrows_x = ggml_nrows(src0);
 | |
|                         const int64_t nrows_y = src0->ne[1];
 | |
| 
 | |
|                         const uint32_t n_head      = nrows_x/nrows_y;
 | |
|                         const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
 | |
| 
 | |
|                         const float m0 = powf(2.0f, -(max_bias       ) / n_head_log2);
 | |
|                         const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0   atIndex:0];
 | |
|                         if (id_src1) {
 | |
|                             [encoder setBuffer:id_src1 offset:offs_src1   atIndex:1];
 | |
|                         } else {
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0   atIndex:1];
 | |
|                         }
 | |
|                         [encoder setBuffer:id_dst      offset:offs_dst            atIndex:2];
 | |
|                         [encoder setBytes:&ne00        length:sizeof(ne00)        atIndex:3];
 | |
|                         [encoder setBytes:&ne01        length:sizeof(ne01)        atIndex:4];
 | |
|                         [encoder setBytes:&ne02        length:sizeof(ne02)        atIndex:5];
 | |
|                         [encoder setBytes:&scale       length:sizeof(scale)       atIndex:6];
 | |
|                         [encoder setBytes:&max_bias    length:sizeof(max_bias)    atIndex:7];
 | |
|                         [encoder setBytes:&m0          length:sizeof(m0)          atIndex:8];
 | |
|                         [encoder setBytes:&m1          length:sizeof(m1)          atIndex:9];
 | |
|                         [encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:10];
 | |
|                         [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_DIAG_MASK_INF:
 | |
|                     {
 | |
|                         const int n_past = ((int32_t *)(dst->op_params))[0];
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                         if (ne00%8 == 0) {
 | |
|                             pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8].pipeline;
 | |
|                         } else {
 | |
|                             pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF].pipeline;
 | |
|                         }
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
|                         [encoder setBytes:&ne00   length:sizeof(ne00) atIndex:2];
 | |
|                         [encoder setBytes:&ne01   length:sizeof(ne01) atIndex:3];
 | |
|                         [encoder setBytes:&n_past length:sizeof(int)  atIndex:4];
 | |
| 
 | |
|                         if (ne00%8 == 0) {
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                         }
 | |
|                         else {
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                         }
 | |
|                     } break;
 | |
|                 case GGML_OP_MUL_MAT:
 | |
|                     {
 | |
|                         GGML_ASSERT(ne00 == ne10);
 | |
| 
 | |
|                         GGML_ASSERT(ne12 % ne02 == 0);
 | |
|                         GGML_ASSERT(ne13 % ne03 == 0);
 | |
| 
 | |
|                         const uint r2 = ne12/ne02;
 | |
|                         const uint r3 = ne13/ne03;
 | |
| 
 | |
|                         // find the break-even point where the matrix-matrix kernel becomes more efficient compared
 | |
|                         // to the matrix-vector kernel
 | |
|                         int ne11_mm_min = 1;
 | |
| 
 | |
| #if 0
 | |
|                         // the numbers below are measured on M2 Ultra for 7B and 13B models
 | |
|                         // these numbers do not translate to other devices or model sizes
 | |
|                         // TODO: need to find a better approach
 | |
|                         if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) {
 | |
|                             switch (src0t) {
 | |
|                                 case GGML_TYPE_F16:  ne11_mm_min = 2;  break;
 | |
|                                 case GGML_TYPE_Q8_0: ne11_mm_min = 7;  break;
 | |
|                                 case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
 | |
|                                 case GGML_TYPE_Q3_K: ne11_mm_min = 7;  break;
 | |
|                                 case GGML_TYPE_Q4_0:
 | |
|                                 case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
 | |
|                                 case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
 | |
|                                 case GGML_TYPE_Q5_0:                          // not tested yet
 | |
|                                 case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
 | |
|                                 case GGML_TYPE_Q5_K: ne11_mm_min = 7;  break;
 | |
|                                 case GGML_TYPE_Q6_K: ne11_mm_min = 7;  break;
 | |
|                                 default:             ne11_mm_min = 1;  break;
 | |
|                             }
 | |
|                         }
 | |
| #endif
 | |
| 
 | |
|                         // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
 | |
|                         // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
 | |
|                         if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
 | |
|                             !ggml_is_transposed(src0) &&
 | |
|                             !ggml_is_transposed(src1) &&
 | |
|                             src1t == GGML_TYPE_F32 &&
 | |
|                             ne00 % 32 == 0 && ne00 >= 64 &&
 | |
|                             (ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) {
 | |
|                             //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
 | |
| 
 | |
|                             // some Metal matrix data types require aligned pointers
 | |
|                             // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
 | |
|                             switch (src0->type) {
 | |
|                                 case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
 | |
|                                 case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8  == 0); break;
 | |
|                                 default: break;
 | |
|                             }
 | |
| 
 | |
|                             id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                             switch (src0->type) {
 | |
|                                 case GGML_TYPE_F32:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32    ].pipeline; break;
 | |
|                                 case GGML_TYPE_F16:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32    ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q4_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q4_1:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q5_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q5_1:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q8_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q2_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q3_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q4_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q5_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q6_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ2_XS:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ3_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32  ].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ2_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32  ].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ1_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32  ].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ1_M:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32  ].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ4_NL:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ4_XS:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break;
 | |
|                                 default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
 | |
|                             }
 | |
| 
 | |
|                             [encoder setComputePipelineState:pipeline];
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0    atIndex:0];
 | |
|                             [encoder setBuffer:id_src1 offset:offs_src1    atIndex:1];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst     atIndex:2];
 | |
|                             [encoder setBytes:&ne00    length:sizeof(ne00) atIndex:3];
 | |
|                             [encoder setBytes:&ne02    length:sizeof(ne02) atIndex:4];
 | |
|                             [encoder setBytes:&nb01    length:sizeof(nb01) atIndex:5];
 | |
|                             [encoder setBytes:&nb02    length:sizeof(nb02) atIndex:6];
 | |
|                             [encoder setBytes:&ne12    length:sizeof(ne12) atIndex:7];
 | |
|                             [encoder setBytes:&nb10    length:sizeof(nb10) atIndex:8];
 | |
|                             [encoder setBytes:&nb11    length:sizeof(nb11) atIndex:9];
 | |
|                             [encoder setBytes:&nb12    length:sizeof(nb12) atIndex:10];
 | |
|                             [encoder setBytes:&ne0     length:sizeof(ne0)  atIndex:11];
 | |
|                             [encoder setBytes:&ne1     length:sizeof(ne1)  atIndex:12];
 | |
|                             [encoder setBytes:&r2      length:sizeof(r2)   atIndex:13];
 | |
|                             [encoder setBytes:&r3      length:sizeof(r3)   atIndex:14];
 | |
|                             [encoder setThreadgroupMemoryLength:8192 atIndex:0];
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
 | |
|                         } else {
 | |
|                             int nth0 = 32;
 | |
|                             int nth1 = 1;
 | |
|                             int nrows = 1;
 | |
|                             //printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
 | |
| 
 | |
|                             id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                             // use custom matrix x vector kernel
 | |
|                             switch (src0t) {
 | |
|                                 case GGML_TYPE_F32:
 | |
|                                     {
 | |
|                                         GGML_ASSERT(src1t == GGML_TYPE_F32);
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32].pipeline;
 | |
|                                         nrows = 4;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_F16:
 | |
|                                     {
 | |
|                                         nth0 = 32;
 | |
|                                         nth1 = 1;
 | |
|                                         if (src1t == GGML_TYPE_F32) {
 | |
|                                             if (ne11 * ne12 < 4) {
 | |
|                                                 pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW].pipeline;
 | |
|                                             } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
 | |
|                                                 pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4].pipeline;
 | |
|                                                 nrows = ne11;
 | |
|                                             } else {
 | |
|                                                 pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32].pipeline;
 | |
|                                                 nrows = 4;
 | |
|                                             }
 | |
|                                         } else {
 | |
|                                             pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16].pipeline;
 | |
|                                             nrows = 4;
 | |
|                                         }
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q4_0:
 | |
|                                     {
 | |
|                                         nth0 = 8;
 | |
|                                         nth1 = 8;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q4_1:
 | |
|                                     {
 | |
|                                         nth0 = 8;
 | |
|                                         nth1 = 8;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q5_0:
 | |
|                                     {
 | |
|                                         nth0 = 8;
 | |
|                                         nth1 = 8;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q5_1:
 | |
|                                     {
 | |
|                                         nth0 = 8;
 | |
|                                         nth1 = 8;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q8_0:
 | |
|                                     {
 | |
|                                         nth0 = 8;
 | |
|                                         nth1 = 8;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q2_K:
 | |
|                                     {
 | |
|                                         nth0 = 2;
 | |
|                                         nth1 = 32;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q3_K:
 | |
|                                     {
 | |
|                                         nth0 = 2;
 | |
|                                         nth1 = 32;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q4_K:
 | |
|                                     {
 | |
|                                         nth0 = 4; //1;
 | |
|                                         nth1 = 8; //32;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q5_K:
 | |
|                                     {
 | |
|                                         nth0 = 2;
 | |
|                                         nth1 = 32;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q6_K:
 | |
|                                     {
 | |
|                                         nth0 = 2;
 | |
|                                         nth1 = 32;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ2_XXS:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ2_XS:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ3_XXS:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ3_S:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ2_S:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ1_S:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ1_M:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ4_NL:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ4_XS:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 default:
 | |
|                                     {
 | |
|                                         GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
 | |
|                                         GGML_ASSERT(false && "not implemented");
 | |
|                                     }
 | |
|                             };
 | |
| 
 | |
|                             if (ggml_is_quantized(src0t)) {
 | |
|                                 GGML_ASSERT(ne00 >= nth0*nth1);
 | |
|                             }
 | |
| 
 | |
|                             [encoder setComputePipelineState:pipeline];
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                             [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
 | |
|                             [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
 | |
|                             [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
 | |
|                             [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
 | |
|                             [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
 | |
|                             [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
 | |
|                             [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
 | |
|                             [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
 | |
|                             [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
 | |
|                             [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11];
 | |
|                             [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12];
 | |
|                             [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13];
 | |
|                             [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
 | |
|                             [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:15];
 | |
|                             [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:16];
 | |
|                             [encoder setBytes:&r2   length:sizeof(r2)   atIndex:17];
 | |
|                             [encoder setBytes:&r3   length:sizeof(r3)   atIndex:18];
 | |
| 
 | |
|                             if (src0t == GGML_TYPE_Q4_0  || src0t == GGML_TYPE_Q4_1  || src0t == GGML_TYPE_Q5_0 ||
 | |
|                                 src0t == GGML_TYPE_Q5_1  || src0t == GGML_TYPE_Q8_0  || src0t == GGML_TYPE_Q2_K ||
 | |
|                                 src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) {
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                             else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
 | |
|                                 const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128;
 | |
|                                 [encoder setThreadgroupMemoryLength:mem_size atIndex:0];
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                             else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) {
 | |
|                                 const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4;
 | |
|                                 [encoder setThreadgroupMemoryLength:mem_size atIndex:0];
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                             else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) {
 | |
|                                 const int mem_size = 32*sizeof(float);
 | |
|                                 [encoder setThreadgroupMemoryLength:mem_size atIndex:0];
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                             else if (src0t == GGML_TYPE_Q4_K) {
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                             else if (src0t == GGML_TYPE_Q3_K) {
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                             else if (src0t == GGML_TYPE_Q5_K) {
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                             else if (src0t == GGML_TYPE_Q6_K) {
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             } else {
 | |
|                                 const int64_t ny = (ne11 + nrows - 1)/nrows;
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                         }
 | |
|                     } break;
 | |
|                 case GGML_OP_MUL_MAT_ID:
 | |
|                     {
 | |
|                         const int n_as = src0->ne[2];
 | |
| 
 | |
|                         // src2 = ids
 | |
|                         const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t);
 | |
| 
 | |
|                         GGML_ASSERT(src2t == GGML_TYPE_I32);
 | |
| 
 | |
|                         GGML_ASSERT(!ggml_is_transposed(src0));
 | |
|                         GGML_ASSERT(!ggml_is_transposed(src1));
 | |
| 
 | |
|                         GGML_ASSERT(src1t == GGML_TYPE_F32);
 | |
| 
 | |
|                         // find the break-even point where the matrix-matrix kernel becomes more efficient compared
 | |
|                         // to the matrix-vector kernel
 | |
|                         // ne20 = n_used_experts
 | |
|                         // ne21 = n_rows
 | |
|                         const int dst_rows = ne20*ne21;
 | |
|                         const int dst_rows_min = n_as;
 | |
|                         const int dst_rows_max = (ctx->device.maxThreadgroupMemoryLength - 32 - 8192)/4;
 | |
| 
 | |
|                         // max size of the rowids array in the kernel shared buffer
 | |
|                         GGML_ASSERT(dst_rows <= dst_rows_max);
 | |
| 
 | |
|                         // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
 | |
|                         // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
 | |
|                         // !!!
 | |
|                         // TODO: for now, always use mat-vec kernels until we figure out how to improve the
 | |
|                         //       indirect matrix multiplication
 | |
|                         // !!!
 | |
|                         if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
 | |
|                             ne00 % 32 == 0 && ne00 >= 64 &&
 | |
|                             dst_rows > dst_rows_min) {
 | |
| 
 | |
|                             // some Metal matrix data types require aligned pointers
 | |
|                             // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
 | |
|                             switch (src0->type) {
 | |
|                                 case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
 | |
|                                 case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8  == 0); break;
 | |
|                                 default: break;
 | |
|                             }
 | |
| 
 | |
|                             id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                             switch (src0->type) {
 | |
|                                 case GGML_TYPE_F32:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32    ].pipeline; break;
 | |
|                                 case GGML_TYPE_F16:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32    ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q4_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q4_1:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q5_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q5_1:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q8_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q2_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q3_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q4_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q5_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_Q6_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32   ].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ2_XS:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ3_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32  ].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ2_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32  ].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ1_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32  ].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ1_M:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32  ].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ4_NL:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break;
 | |
|                                 case GGML_TYPE_IQ4_XS:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break;
 | |
|                                 default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
 | |
|                             }
 | |
| 
 | |
|                             [encoder setComputePipelineState:pipeline];
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0    atIndex:0];
 | |
|                             [encoder setBuffer:id_src1 offset:offs_src1    atIndex:1];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst     atIndex:2];
 | |
|                             [encoder setBuffer:id_src2 offset:offs_src2    atIndex:3];
 | |
|                             [encoder setBytes:&ne20    length:sizeof(ne20) atIndex:4];
 | |
|                             [encoder setBytes:&ne21    length:sizeof(ne21) atIndex:5];
 | |
|                             [encoder setBytes:&nb21    length:sizeof(nb21) atIndex:6];
 | |
|                             [encoder setBytes:&ne00    length:sizeof(ne00) atIndex:7];
 | |
|                             [encoder setBytes:&ne02    length:sizeof(ne02) atIndex:8];
 | |
|                             [encoder setBytes:&nb01    length:sizeof(nb01) atIndex:9];
 | |
|                             [encoder setBytes:&nb02    length:sizeof(nb02) atIndex:10];
 | |
|                             [encoder setBytes:&ne11    length:sizeof(ne11) atIndex:11];
 | |
|                             [encoder setBytes:&ne12    length:sizeof(ne12) atIndex:12];
 | |
|                             [encoder setBytes:&ne13    length:sizeof(ne13) atIndex:13];
 | |
|                             [encoder setBytes:&nb10    length:sizeof(nb10) atIndex:14];
 | |
|                             [encoder setBytes:&nb11    length:sizeof(nb11) atIndex:15];
 | |
|                             [encoder setBytes:&nb12    length:sizeof(nb12) atIndex:16];
 | |
|                             [encoder setBytes:&ne0     length:sizeof(ne0)  atIndex:17];
 | |
|                             [encoder setBytes:&ne1     length:sizeof(ne1)  atIndex:18];
 | |
|                             [encoder setBytes:&nb1     length:sizeof(nb1)  atIndex:19];
 | |
| 
 | |
|                             [encoder setThreadgroupMemoryLength:GGML_PAD(8192 + dst_rows*4/*sizeof(ushort2)*/, 16) atIndex:0];
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, n_as) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
 | |
|                         } else {
 | |
|                             int nth0 = 32;
 | |
|                             int nth1 = 1;
 | |
|                             int nrows = 1;
 | |
|                             //printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
 | |
| 
 | |
|                             id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                             // use custom matrix x vector kernel
 | |
|                             switch (src0t) {
 | |
|                                 case GGML_TYPE_F32:
 | |
|                                     {
 | |
|                                         GGML_ASSERT(src1t == GGML_TYPE_F32);
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_F16:
 | |
|                                     {
 | |
|                                         GGML_ASSERT(src1t == GGML_TYPE_F32);
 | |
|                                         nth0 = 32;
 | |
|                                         nth1 = 1;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q4_0:
 | |
|                                     {
 | |
|                                         nth0 = 8;
 | |
|                                         nth1 = 8;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q4_1:
 | |
|                                     {
 | |
|                                         nth0 = 8;
 | |
|                                         nth1 = 8;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q5_0:
 | |
|                                     {
 | |
|                                         nth0 = 8;
 | |
|                                         nth1 = 8;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q5_1:
 | |
|                                     {
 | |
|                                         nth0 = 8;
 | |
|                                         nth1 = 8;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q8_0:
 | |
|                                     {
 | |
|                                         nth0 = 8;
 | |
|                                         nth1 = 8;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q2_K:
 | |
|                                     {
 | |
|                                         nth0 = 2;
 | |
|                                         nth1 = 32;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q3_K:
 | |
|                                     {
 | |
|                                         nth0 = 2;
 | |
|                                         nth1 = 32;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q4_K:
 | |
|                                     {
 | |
|                                         nth0 = 4; //1;
 | |
|                                         nth1 = 8; //32;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q5_K:
 | |
|                                     {
 | |
|                                         nth0 = 2;
 | |
|                                         nth1 = 32;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_Q6_K:
 | |
|                                     {
 | |
|                                         nth0 = 2;
 | |
|                                         nth1 = 32;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ2_XXS:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ2_XS:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ3_XXS:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ3_S:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ2_S:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ1_S:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ1_M:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ4_NL:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 case GGML_TYPE_IQ4_XS:
 | |
|                                     {
 | |
|                                         nth0 = 4;
 | |
|                                         nth1 = 16;
 | |
|                                         pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline;
 | |
|                                     } break;
 | |
|                                 default:
 | |
|                                     {
 | |
|                                         GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t);
 | |
|                                         GGML_ASSERT(false && "not implemented");
 | |
|                                     }
 | |
|                             };
 | |
| 
 | |
|                             if (ggml_is_quantized(src0t)) {
 | |
|                                 GGML_ASSERT(ne00 >= nth0*nth1);
 | |
|                             }
 | |
| 
 | |
|                             [encoder setComputePipelineState:pipeline];
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                             [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
 | |
|                             [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
 | |
|                             [encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
 | |
|                             [encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
 | |
|                             [encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5];
 | |
|                             [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6];
 | |
|                             [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:7];
 | |
|                             [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:8];
 | |
|                             [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:9];
 | |
|                             [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:10];
 | |
|                             [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:11];
 | |
|                             [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:12];
 | |
|                             [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:13];
 | |
|                             [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:14];
 | |
|                             [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:15];
 | |
|                             [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:16];
 | |
|                             [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:17];
 | |
|                             [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:18];
 | |
|                             [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:19];
 | |
|                             [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:20];
 | |
|                             [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:21];
 | |
|                             [encoder setBytes:&nb1  length:sizeof(nb1)  atIndex:22];
 | |
| 
 | |
|                             const int64_t _ne1 = 1;
 | |
|                             const int tgz = dst_rows;
 | |
| 
 | |
|                             if (src0t == GGML_TYPE_Q4_0  || src0t == GGML_TYPE_Q4_1  || src0t == GGML_TYPE_Q5_0 ||
 | |
|                                 src0t == GGML_TYPE_Q5_1  || src0t == GGML_TYPE_Q8_0  || src0t == GGML_TYPE_Q2_K ||
 | |
|                                 src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) {
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                             else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
 | |
|                                 const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128;
 | |
|                                 [encoder setThreadgroupMemoryLength:mem_size atIndex:0];
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                             else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) {
 | |
|                                 const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4;
 | |
|                                 [encoder setThreadgroupMemoryLength:mem_size atIndex:0];
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                             else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) {
 | |
|                                 const int mem_size = 32*sizeof(float);
 | |
|                                 [encoder setThreadgroupMemoryLength:mem_size atIndex:0];
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                             else if (src0t == GGML_TYPE_Q4_K) {
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                             else if (src0t == GGML_TYPE_Q3_K) {
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                             else if (src0t == GGML_TYPE_Q5_K) {
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                             else if (src0t == GGML_TYPE_Q6_K) {
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             } else {
 | |
|                                 const int64_t ny = (_ne1 + nrows - 1)/nrows; // = _ne1
 | |
|                                 [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
 | |
|                             }
 | |
|                         }
 | |
|                     } break;
 | |
|                 case GGML_OP_GET_ROWS:
 | |
|                     {
 | |
|                         id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                         switch (src0->type) {
 | |
|                             case GGML_TYPE_F32:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F32    ].pipeline; break;
 | |
|                             case GGML_TYPE_F16:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F16    ].pipeline; break;
 | |
|                             case GGML_TYPE_Q4_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0   ].pipeline; break;
 | |
|                             case GGML_TYPE_Q4_1:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1   ].pipeline; break;
 | |
|                             case GGML_TYPE_Q5_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0   ].pipeline; break;
 | |
|                             case GGML_TYPE_Q5_1:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1   ].pipeline; break;
 | |
|                             case GGML_TYPE_Q8_0:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0   ].pipeline; break;
 | |
|                             case GGML_TYPE_Q2_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K   ].pipeline; break;
 | |
|                             case GGML_TYPE_Q3_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K   ].pipeline; break;
 | |
|                             case GGML_TYPE_Q4_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K   ].pipeline; break;
 | |
|                             case GGML_TYPE_Q5_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K   ].pipeline; break;
 | |
|                             case GGML_TYPE_Q6_K:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K   ].pipeline; break;
 | |
|                             case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break;
 | |
|                             case GGML_TYPE_IQ2_XS:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break;
 | |
|                             case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS].pipeline; break;
 | |
|                             case GGML_TYPE_IQ3_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S  ].pipeline; break;
 | |
|                             case GGML_TYPE_IQ2_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S  ].pipeline; break;
 | |
|                             case GGML_TYPE_IQ1_S:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S  ].pipeline; break;
 | |
|                             case GGML_TYPE_IQ1_M:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M  ].pipeline; break;
 | |
|                             case GGML_TYPE_IQ4_NL:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break;
 | |
|                             case GGML_TYPE_IQ4_XS:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break;
 | |
|                             case GGML_TYPE_I32:     pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32    ].pipeline; break;
 | |
|                             default: GGML_ASSERT(false && "not implemented");
 | |
|                         }
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0     offset:offs_src0 atIndex:0];
 | |
|                         [encoder setBuffer:id_src1     offset:offs_src1 atIndex:1];
 | |
|                         [encoder setBuffer:id_dst      offset:offs_dst  atIndex:2];
 | |
|                         [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
 | |
|                         [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4];
 | |
|                         [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:5];
 | |
|                         [encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:6];
 | |
|                         [encoder setBytes:&nb10 length:sizeof( int64_t) atIndex:7];
 | |
|                         [encoder setBytes:&nb11 length:sizeof( int64_t) atIndex:8];
 | |
|                         [encoder setBytes:&nb1  length:sizeof(uint64_t) atIndex:9];
 | |
|                         [encoder setBytes:&nb2  length:sizeof(uint64_t) atIndex:10];
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_RMS_NORM:
 | |
|                     {
 | |
|                         GGML_ASSERT(ne00 % 4 == 0);
 | |
|                         GGML_ASSERT(ggml_is_contiguous_1(src0));
 | |
| 
 | |
|                         float eps;
 | |
|                         memcpy(&eps, dst->op_params, sizeof(float));
 | |
| 
 | |
|                         int nth = 32; // SIMD width
 | |
| 
 | |
|                         while (nth < ne00/4 && nth < 1024) {
 | |
|                             nth *= 2;
 | |
|                         }
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM].pipeline;
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0        atIndex:0];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst         atIndex:1];
 | |
|                         [encoder setBytes:&ne00    length:sizeof( int64_t) atIndex:2];
 | |
|                         [encoder setBytes:&nb01    length:sizeof(uint64_t) atIndex:3];
 | |
|                         [encoder setBytes:&eps     length:sizeof(   float) atIndex:4];
 | |
|                         [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
 | |
| 
 | |
|                         const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_GROUP_NORM:
 | |
|                     {
 | |
|                         GGML_ASSERT(ne00 % 4 == 0);
 | |
|                         GGML_ASSERT(ggml_is_contiguous(src0));
 | |
| 
 | |
|                         //float eps;
 | |
|                         //memcpy(&eps, dst->op_params, sizeof(float));
 | |
| 
 | |
|                         const float eps = 1e-6f; // TODO: temporarily hardcoded
 | |
| 
 | |
|                         const int32_t n_groups = ((int32_t *) dst->op_params)[0];
 | |
| 
 | |
|                         int nth = 32; // SIMD width
 | |
| 
 | |
|                         //while (nth < ne00/4 && nth < 1024) {
 | |
|                         //    nth *= 2;
 | |
|                         //}
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GROUP_NORM].pipeline;
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0  offset:offs_src0        atIndex:0];
 | |
|                         [encoder setBuffer:id_dst   offset:offs_dst         atIndex:1];
 | |
|                         [encoder setBytes:&ne00     length:sizeof( int64_t) atIndex:2];
 | |
|                         [encoder setBytes:&ne01     length:sizeof( int64_t) atIndex:3];
 | |
|                         [encoder setBytes:&ne02     length:sizeof( int64_t) atIndex:4];
 | |
|                         [encoder setBytes:&nb00     length:sizeof(uint64_t) atIndex:5];
 | |
|                         [encoder setBytes:&nb01     length:sizeof(uint64_t) atIndex:6];
 | |
|                         [encoder setBytes:&nb02     length:sizeof(uint64_t) atIndex:7];
 | |
|                         [encoder setBytes:&n_groups length:sizeof( int32_t) atIndex:8];
 | |
|                         [encoder setBytes:&eps      length:sizeof(   float) atIndex:9];
 | |
|                         [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(n_groups, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_NORM:
 | |
|                     {
 | |
|                         GGML_ASSERT(ggml_is_contiguous_1(src0));
 | |
| 
 | |
|                         float eps;
 | |
|                         memcpy(&eps, dst->op_params, sizeof(float));
 | |
| 
 | |
|                         const int nth = MIN(256, ne00);
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NORM].pipeline;
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0        atIndex:0];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst         atIndex:1];
 | |
|                         [encoder setBytes:&ne00    length:sizeof( int64_t) atIndex:2];
 | |
|                         [encoder setBytes:&nb01    length:sizeof(uint64_t) atIndex:3];
 | |
|                         [encoder setBytes:&eps     length:sizeof(   float) atIndex:4];
 | |
|                         [encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0];
 | |
| 
 | |
|                         const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_ROPE:
 | |
|                     {
 | |
|                         GGML_ASSERT(ne10 == ne02);
 | |
| 
 | |
|                         const int nth = MIN(1024, ne00);
 | |
| 
 | |
|                         const int n_past     = ((int32_t *) dst->op_params)[0];
 | |
|                         const int n_dims     = ((int32_t *) dst->op_params)[1];
 | |
|                         const int mode       = ((int32_t *) dst->op_params)[2];
 | |
|                         // skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
 | |
|                         const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
 | |
| 
 | |
|                         float freq_base;
 | |
|                         float freq_scale;
 | |
|                         float ext_factor;
 | |
|                         float attn_factor;
 | |
|                         float beta_fast;
 | |
|                         float beta_slow;
 | |
| 
 | |
|                         memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
 | |
|                         memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
 | |
|                         memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
 | |
|                         memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
 | |
|                         memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
 | |
|                         memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
 | |
| 
 | |
|                         const bool is_neox = mode & 2;
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                         if (!is_neox) {
 | |
|                             switch (src0->type) {
 | |
|                                 case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break;
 | |
|                                 case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break;
 | |
|                                 default: GGML_ASSERT(false);
 | |
|                             };
 | |
|                         } else {
 | |
|                             switch (src0->type) {
 | |
|                                 case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break;
 | |
|                                 case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break;
 | |
|                                 default: GGML_ASSERT(false);
 | |
|                             };
 | |
|                         }
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0     offset:offs_src0        atIndex:0];
 | |
|                         [encoder setBuffer:id_src1     offset:offs_src1        atIndex:1];
 | |
|                         if (id_src2 != nil) {
 | |
|                             [encoder setBuffer:id_src2 offset:offs_src2        atIndex:2];
 | |
|                         } else {
 | |
|                             [encoder setBuffer:id_src0 offset:offs_src0        atIndex:2];
 | |
|                         }
 | |
|                         [encoder setBuffer:id_dst      offset:offs_dst         atIndex:3];
 | |
|                         [encoder setBytes:&ne00        length:sizeof( int64_t) atIndex:4];
 | |
|                         [encoder setBytes:&ne01        length:sizeof( int64_t) atIndex:5];
 | |
|                         [encoder setBytes:&ne02        length:sizeof( int64_t) atIndex:6];
 | |
|                         [encoder setBytes:&ne03        length:sizeof( int64_t) atIndex:7];
 | |
|                         [encoder setBytes:&nb00        length:sizeof(uint64_t) atIndex:8];
 | |
|                         [encoder setBytes:&nb01        length:sizeof(uint64_t) atIndex:9];
 | |
|                         [encoder setBytes:&nb02        length:sizeof(uint64_t) atIndex:10];
 | |
|                         [encoder setBytes:&nb03        length:sizeof(uint64_t) atIndex:11];
 | |
|                         [encoder setBytes:&ne0         length:sizeof( int64_t) atIndex:12];
 | |
|                         [encoder setBytes:&ne1         length:sizeof( int64_t) atIndex:13];
 | |
|                         [encoder setBytes:&ne2         length:sizeof( int64_t) atIndex:14];
 | |
|                         [encoder setBytes:&ne3         length:sizeof( int64_t) atIndex:15];
 | |
|                         [encoder setBytes:&nb0         length:sizeof(uint64_t) atIndex:16];
 | |
|                         [encoder setBytes:&nb1         length:sizeof(uint64_t) atIndex:17];
 | |
|                         [encoder setBytes:&nb2         length:sizeof(uint64_t) atIndex:18];
 | |
|                         [encoder setBytes:&nb3         length:sizeof(uint64_t) atIndex:19];
 | |
|                         [encoder setBytes:&n_past      length:sizeof(     int) atIndex:20];
 | |
|                         [encoder setBytes:&n_dims      length:sizeof(     int) atIndex:21];
 | |
|                         [encoder setBytes:&n_ctx_orig  length:sizeof(     int) atIndex:22];
 | |
|                         [encoder setBytes:&freq_base   length:sizeof(   float) atIndex:23];
 | |
|                         [encoder setBytes:&freq_scale  length:sizeof(   float) atIndex:24];
 | |
|                         [encoder setBytes:&ext_factor  length:sizeof(   float) atIndex:25];
 | |
|                         [encoder setBytes:&attn_factor length:sizeof(   float) atIndex:26];
 | |
|                         [encoder setBytes:&beta_fast   length:sizeof(   float) atIndex:27];
 | |
|                         [encoder setBytes:&beta_slow   length:sizeof(   float) atIndex:28];
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_IM2COL:
 | |
|                     {
 | |
|                         GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|                         GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|                         GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|                         const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
 | |
|                         const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
 | |
|                         const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
 | |
|                         const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
 | |
|                         const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
 | |
|                         const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
 | |
| 
 | |
|                         const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
 | |
| 
 | |
|                         const int32_t N  = src1->ne[is_2D ? 3 : 2];
 | |
|                         const int32_t IC = src1->ne[is_2D ? 2 : 1];
 | |
|                         const int32_t IH = is_2D ? src1->ne[1] : 1;
 | |
|                         const int32_t IW =         src1->ne[0];
 | |
| 
 | |
|                         const int32_t KH = is_2D ? src0->ne[1] : 1;
 | |
|                         const int32_t KW =         src0->ne[0];
 | |
| 
 | |
|                         const int32_t OH = is_2D ? dst->ne[2] : 1;
 | |
|                         const int32_t OW =         dst->ne[1];
 | |
| 
 | |
|                         const int32_t CHW = IC * KH * KW;
 | |
| 
 | |
|                         const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
 | |
|                         const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                         switch (dst->type) {
 | |
|                             case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline; break;
 | |
|                             case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline; break;
 | |
|                             default: GGML_ASSERT(false);
 | |
|                         };
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src1 offset:offs_src1        atIndex:0];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst         atIndex:1];
 | |
|                         [encoder setBytes:&ofs0    length:sizeof( int32_t) atIndex:2];
 | |
|                         [encoder setBytes:&ofs1    length:sizeof( int32_t) atIndex:3];
 | |
|                         [encoder setBytes:&IW      length:sizeof( int32_t) atIndex:4];
 | |
|                         [encoder setBytes:&IH      length:sizeof( int32_t) atIndex:5];
 | |
|                         [encoder setBytes:&CHW     length:sizeof( int32_t) atIndex:6];
 | |
|                         [encoder setBytes:&s0      length:sizeof( int32_t) atIndex:7];
 | |
|                         [encoder setBytes:&s1      length:sizeof( int32_t) atIndex:8];
 | |
|                         [encoder setBytes:&p0      length:sizeof( int32_t) atIndex:9];
 | |
|                         [encoder setBytes:&p1      length:sizeof( int32_t) atIndex:10];
 | |
|                         [encoder setBytes:&d0      length:sizeof( int32_t) atIndex:11];
 | |
|                         [encoder setBytes:&d1      length:sizeof( int32_t) atIndex:12];
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
 | |
|                     } break;
 | |
|                 case GGML_OP_UPSCALE:
 | |
|                     {
 | |
|                         GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
| 
 | |
|                         const float sf0 = (float)ne0/src0->ne[0];
 | |
|                         const float sf1 = (float)ne1/src0->ne[1];
 | |
|                         const float sf2 = (float)ne2/src0->ne[2];
 | |
|                         const float sf3 = (float)ne3/src0->ne[3];
 | |
| 
 | |
|                         const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline;
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
|                         [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
 | |
|                         [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
 | |
|                         [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
 | |
|                         [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
 | |
|                         [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
 | |
|                         [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
 | |
|                         [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
 | |
|                         [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
 | |
|                         [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:10];
 | |
|                         [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:11];
 | |
|                         [encoder setBytes:&ne2  length:sizeof(ne2)  atIndex:12];
 | |
|                         [encoder setBytes:&ne3  length:sizeof(ne3)  atIndex:13];
 | |
|                         [encoder setBytes:&nb0  length:sizeof(nb0)  atIndex:14];
 | |
|                         [encoder setBytes:&nb1  length:sizeof(nb1)  atIndex:15];
 | |
|                         [encoder setBytes:&nb2  length:sizeof(nb2)  atIndex:16];
 | |
|                         [encoder setBytes:&nb3  length:sizeof(nb3)  atIndex:17];
 | |
|                         [encoder setBytes:&sf0  length:sizeof(sf0)  atIndex:18];
 | |
|                         [encoder setBytes:&sf1  length:sizeof(sf1)  atIndex:19];
 | |
|                         [encoder setBytes:&sf2  length:sizeof(sf2)  atIndex:20];
 | |
|                         [encoder setBytes:&sf3  length:sizeof(sf3)  atIndex:21];
 | |
| 
 | |
|                         const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_PAD:
 | |
|                     {
 | |
|                         GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_F32].pipeline;
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
|                         [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
 | |
|                         [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
 | |
|                         [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
 | |
|                         [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
 | |
|                         [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
 | |
|                         [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
 | |
|                         [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
 | |
|                         [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
 | |
|                         [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:10];
 | |
|                         [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:11];
 | |
|                         [encoder setBytes:&ne2  length:sizeof(ne2)  atIndex:12];
 | |
|                         [encoder setBytes:&ne3  length:sizeof(ne3)  atIndex:13];
 | |
|                         [encoder setBytes:&nb0  length:sizeof(nb0)  atIndex:14];
 | |
|                         [encoder setBytes:&nb1  length:sizeof(nb1)  atIndex:15];
 | |
|                         [encoder setBytes:&nb2  length:sizeof(nb2)  atIndex:16];
 | |
|                         [encoder setBytes:&nb3  length:sizeof(nb3)  atIndex:17];
 | |
| 
 | |
|                         const int nth = MIN(1024, ne0);
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_ARANGE:
 | |
|                     {
 | |
|                         GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|                         float start;
 | |
|                         float step;
 | |
| 
 | |
|                         memcpy(&start, ((int32_t *) dst->op_params) + 0, sizeof(float));
 | |
|                         memcpy(&step,  ((int32_t *) dst->op_params) + 2, sizeof(float));
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARANGE_F32].pipeline;
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst    atIndex:0];
 | |
|                         [encoder setBytes:&ne0   length:sizeof(ne0)   atIndex:1];
 | |
|                         [encoder setBytes:&start length:sizeof(start) atIndex:2];
 | |
|                         [encoder setBytes:&step  length:sizeof(step)  atIndex:3];
 | |
| 
 | |
|                         const int nth = MIN(1024, ne0);
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_TIMESTEP_EMBEDDING:
 | |
|                     {
 | |
|                         GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
| 
 | |
|                         const int dim        = dst->op_params[0];
 | |
|                         const int max_period = dst->op_params[1];
 | |
| 
 | |
|                         const int half = dim / 2;
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32].pipeline;
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
 | |
|                         [encoder setBytes:&nb1   length:sizeof(nb1) atIndex:2];
 | |
|                         [encoder setBytes:&dim   length:sizeof(dim) atIndex:3];
 | |
|                         [encoder setBytes:&max_period length:sizeof(max_period) atIndex:4];
 | |
| 
 | |
|                         const int nth = MIN(1024, half);
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(ne00, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_ARGSORT:
 | |
|                     {
 | |
|                         GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|                         GGML_ASSERT( dst->type == GGML_TYPE_I32);
 | |
| 
 | |
|                         const int nrows = ggml_nrows(src0);
 | |
| 
 | |
|                         enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
 | |
| 
 | |
|                         // bitonic sort requires the number of elements to be power of 2
 | |
|                         int64_t ne00_padded = 1;
 | |
|                         while (ne00_padded < ne00) {
 | |
|                             ne00_padded *= 2;
 | |
|                         }
 | |
| 
 | |
|                         // Metal kernels require the buffer size to be multiple of 16 bytes
 | |
|                         // https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/1443142-setthreadgroupmemorylength
 | |
|                         const int mem_size = GGML_PAD(ne00_padded*sizeof(int32_t), 16);
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                         switch (order) {
 | |
|                             case GGML_SORT_ORDER_ASC:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline;  break;
 | |
|                             case GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
 | |
|                             default: GGML_ASSERT(false);
 | |
|                         };
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0     offset:offs_src0        atIndex:0];
 | |
|                         [encoder setBuffer:id_dst      offset:offs_dst         atIndex:1];
 | |
|                         [encoder setBytes:&ne00        length:sizeof( int64_t) atIndex:2];
 | |
|                         [encoder setBytes:&ne00_padded length:sizeof( int64_t) atIndex:3];
 | |
|                         [encoder setThreadgroupMemoryLength:mem_size atIndex:0];
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00_padded, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_LEAKY_RELU:
 | |
|                     {
 | |
|                         GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
| 
 | |
|                         float slope;
 | |
|                         memcpy(&slope, dst->op_params, sizeof(float));
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32].pipeline;
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0   atIndex:0];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst    atIndex:1];
 | |
|                         [encoder setBytes:&slope length:sizeof(slope) atIndex:2];
 | |
| 
 | |
|                         const int64_t n = ggml_nelements(dst);
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
 | |
|                     } break;
 | |
|                 case GGML_OP_FLASH_ATTN_EXT:
 | |
|                     {
 | |
|                         GGML_ASSERT(ne00 % 4  == 0);
 | |
|                         GGML_ASSERT(ne11 % 32 == 0);
 | |
| 
 | |
|                         GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
| 
 | |
|                         GGML_ASSERT(ggml_are_same_shape (src1, src2));
 | |
| 
 | |
|                         struct ggml_tensor * src3 = gf->nodes[i]->src[3];
 | |
| 
 | |
|                         size_t offs_src3 = 0;
 | |
| 
 | |
|                         id<MTLBuffer> id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil;
 | |
| 
 | |
|                         GGML_ASSERT(!src3 || src3->type == GGML_TYPE_F16);
 | |
|                         GGML_ASSERT(!src3 || src3->ne[1] >= GGML_PAD(src0->ne[1], 8) &&
 | |
|                                 "the Flash-Attention Metal kernel requires the mask to be padded to 8 and at least n_queries big");
 | |
| 
 | |
|                         const int64_t  ne30 = src3 ? src3->ne[0] : 0; GGML_UNUSED(ne30);
 | |
|                       //const int64_t  ne31 = src3 ? src3->ne[1] : 0;
 | |
|                         const int64_t  ne32 = src3 ? src3->ne[2] : 0; GGML_UNUSED(ne32);
 | |
|                         const int64_t  ne33 = src3 ? src3->ne[3] : 0; GGML_UNUSED(ne33);
 | |
| 
 | |
|                         const uint64_t nb30 = src3 ? src3->nb[0] : 0; GGML_UNUSED(nb30);
 | |
|                         const uint64_t nb31 = src3 ? src3->nb[1] : 0;
 | |
|                         const uint64_t nb32 = src3 ? src3->nb[2] : 0; GGML_UNUSED(nb32);
 | |
|                         const uint64_t nb33 = src3 ? src3->nb[3] : 0; GGML_UNUSED(nb33);
 | |
| 
 | |
|                         const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t);
 | |
| 
 | |
|                         float scale;
 | |
|                         float max_bias;
 | |
| 
 | |
|                         memcpy(&scale,    ((int32_t *) dst->op_params) + 0, sizeof(scale));
 | |
|                         memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias));
 | |
| 
 | |
|                         const uint32_t n_head      = src0->ne[2];
 | |
|                         const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
 | |
| 
 | |
|                         const float m0 = powf(2.0f, -(max_bias       ) / n_head_log2);
 | |
|                         const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                         bool use_vec_kernel = false;
 | |
| 
 | |
|                         if (ne01 >= 4 || (ne00%128 != 0)) {
 | |
|                             switch (ne00) {
 | |
|                                 case 64:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64 ].pipeline; break;
 | |
|                                 case 80:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80 ].pipeline; break;
 | |
|                                 case 96:  pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96 ].pipeline; break;
 | |
|                                 case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112].pipeline; break;
 | |
|                                 case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128].pipeline; break;
 | |
|                               //case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256].pipeline; break;
 | |
|                                 default:
 | |
|                                           {
 | |
|                                               GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);
 | |
|                                               GGML_METAL_LOG_ERROR("add template specialization for this size\n");
 | |
|                                               GGML_ASSERT(false && "add template specialization for this size");
 | |
|                                           }
 | |
|                             }
 | |
|                         } else {
 | |
|                             use_vec_kernel = true;
 | |
| 
 | |
|                             switch (ne00) {
 | |
|                                 case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128].pipeline; break;
 | |
|                               //case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256].pipeline; break;
 | |
|                                 default:
 | |
|                                           {
 | |
|                                               GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);
 | |
|                                               GGML_METAL_LOG_ERROR("add template specialization for this size\n");
 | |
|                                               GGML_ASSERT(false && "add template specialization for this size");
 | |
|                                           }
 | |
|                             }
 | |
|                         }
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0     offset:offs_src0           atIndex:0];
 | |
|                         [encoder setBuffer:id_src1     offset:offs_src1           atIndex:1];
 | |
|                         [encoder setBuffer:id_src2     offset:offs_src2           atIndex:2];
 | |
|                         if (id_src3) {
 | |
|                             [encoder setBuffer:id_src3     offset:offs_src3           atIndex:3];
 | |
|                         } else {
 | |
|                             [encoder setBuffer:id_src0     offset:offs_src0           atIndex:3];
 | |
|                         }
 | |
|                         [encoder setBuffer:id_dst      offset:offs_dst            atIndex:4];
 | |
|                         [encoder setBytes:&ne01        length:sizeof( int64_t)    atIndex:5];
 | |
|                         [encoder setBytes:&ne02        length:sizeof( int64_t)    atIndex:6];
 | |
|                         [encoder setBytes:&ne03        length:sizeof( int64_t)    atIndex:7];
 | |
|                         [encoder setBytes:&nb01        length:sizeof(uint64_t)    atIndex:8];
 | |
|                         [encoder setBytes:&nb02        length:sizeof(uint64_t)    atIndex:9];
 | |
|                         [encoder setBytes:&nb03        length:sizeof(uint64_t)    atIndex:10];
 | |
|                         [encoder setBytes:&ne11        length:sizeof( int64_t)    atIndex:11];
 | |
|                         [encoder setBytes:&ne12        length:sizeof( int64_t)    atIndex:12];
 | |
|                         [encoder setBytes:&ne13        length:sizeof( int64_t)    atIndex:13];
 | |
|                         [encoder setBytes:&nb11        length:sizeof(uint64_t)    atIndex:14];
 | |
|                         [encoder setBytes:&nb12        length:sizeof(uint64_t)    atIndex:15];
 | |
|                         [encoder setBytes:&nb13        length:sizeof(uint64_t)    atIndex:16];
 | |
|                         [encoder setBytes:&nb21        length:sizeof(uint64_t)    atIndex:17];
 | |
|                         [encoder setBytes:&nb22        length:sizeof(uint64_t)    atIndex:18];
 | |
|                         [encoder setBytes:&nb23        length:sizeof(uint64_t)    atIndex:19];
 | |
|                         [encoder setBytes:&nb31        length:sizeof(uint64_t)    atIndex:20];
 | |
|                         [encoder setBytes:&ne1         length:sizeof( int64_t)    atIndex:21];
 | |
|                         [encoder setBytes:&ne2         length:sizeof( int64_t)    atIndex:22];
 | |
|                         [encoder setBytes:&scale       length:sizeof(   float)    atIndex:23];
 | |
|                         [encoder setBytes:&max_bias    length:sizeof(   float)    atIndex:24];
 | |
|                         [encoder setBytes:&m0          length:sizeof(m0)          atIndex:25];
 | |
|                         [encoder setBytes:&m1          length:sizeof(m1)          atIndex:26];
 | |
|                         [encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:27];
 | |
| 
 | |
|                         if (!use_vec_kernel) {
 | |
|                             // half8x8 kernel
 | |
|                             const int64_t nqptg = 8;  // queries per threadgroup    !! sync with kernel template arguments !!
 | |
|                             const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !!
 | |
| 
 | |
|                             GGML_ASSERT(nqptg <= 32);
 | |
|                             GGML_ASSERT(nqptg  % 8  == 0);
 | |
|                             GGML_ASSERT(ncpsg  % 32 == 0);
 | |
| 
 | |
|                             int64_t nsgmax = 2;
 | |
| 
 | |
|                             while (true) {
 | |
|                                 const size_t smem = nqptg*(ne00 + 2*nsgmax*(ncpsg + nqptg))*(sizeof(float)/2);
 | |
|                                 if (smem > ctx->device.maxThreadgroupMemoryLength) {
 | |
|                                     break;
 | |
|                                 }
 | |
|                                 nsgmax *= 2;
 | |
|                             }
 | |
|                             nsgmax /= 2;
 | |
| 
 | |
|                             // simdgroups per threadgroup (a.k.a. warps)
 | |
|                             const int64_t nsg = ne01 <= nqptg ? MAX(4, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))) : 4;
 | |
| 
 | |
|                             const size_t smem = nqptg*(ne00 + 2*nsg*(ncpsg + nqptg))*(sizeof(float)/2);
 | |
| 
 | |
|                             //printf("smem: %zu, max: %zu\n", smem, ctx->device.maxThreadgroupMemoryLength);
 | |
|                             GGML_ASSERT(smem <= ctx->device.maxThreadgroupMemoryLength);
 | |
| 
 | |
|                             [encoder setThreadgroupMemoryLength:GGML_PAD(smem, 16) atIndex:0];
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
 | |
|                         } else {
 | |
|                             // half1x4 kernel
 | |
|                             const int64_t nqptg = 1;  // queries per threadgroup    !! sync with kernel template arguments !!
 | |
|                             const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !!
 | |
| 
 | |
|                             GGML_ASSERT(nqptg <= 32);
 | |
|                             GGML_ASSERT(nqptg  % 1  == 0);
 | |
|                             GGML_ASSERT(ncpsg  % 32 == 0);
 | |
| 
 | |
|                             // simdgroups per threadgroup (a.k.a. warps)
 | |
|                             const int64_t nsgt = MAX(2, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32));
 | |
| 
 | |
|                             int64_t nsg = 1;
 | |
|                             while (nsg <= nsgt) {
 | |
|                                 nsg *= 2;
 | |
|                             }
 | |
|                             nsg /= 2;
 | |
| 
 | |
|                             const size_t smem = (nqptg*(ne00 + 2*nsg*(ncpsg + nqptg)) + nsg*ne00)*(sizeof(float)/2);
 | |
| 
 | |
|                             //printf("smem: %zu, max: %zu\n", smem, ctx->device.maxThreadgroupMemoryLength);
 | |
|                             GGML_ASSERT(smem <= ctx->device.maxThreadgroupMemoryLength);
 | |
|                             [encoder setThreadgroupMemoryLength:GGML_PAD(smem, 16) atIndex:0];
 | |
| 
 | |
|                             [encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
 | |
|                         }
 | |
|                     } break;
 | |
|                 case GGML_OP_DUP:
 | |
|                 case GGML_OP_CPY:
 | |
|                 case GGML_OP_CONT:
 | |
|                     {
 | |
|                         GGML_ASSERT(ne00 % ggml_blck_size(src0->type) == 0);
 | |
| 
 | |
|                         int nth = MIN(1024, ne00/ggml_blck_size(src0->type));
 | |
| 
 | |
|                         id<MTLComputePipelineState> pipeline = nil;
 | |
| 
 | |
|                         switch (src0t) {
 | |
|                             case GGML_TYPE_F32:
 | |
|                                 {
 | |
|                                     GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0);
 | |
| 
 | |
|                                     switch (dstt) {
 | |
|                                         case GGML_TYPE_F16:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline;  break;
 | |
|                                         case GGML_TYPE_F32:    pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline;  break;
 | |
|                                         case GGML_TYPE_Q8_0:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break;
 | |
|                                         case GGML_TYPE_Q4_0:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break;
 | |
|                                         case GGML_TYPE_Q4_1:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break;
 | |
|                                         case GGML_TYPE_Q5_0:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break;
 | |
|                                         case GGML_TYPE_Q5_1:   pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break;
 | |
|                                         case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL].pipeline; break;
 | |
|                                         default: GGML_ASSERT(false && "not implemented");
 | |
|                                     };
 | |
|                                 } break;
 | |
|                             case GGML_TYPE_F16:
 | |
|                                 {
 | |
|                                     switch (dstt) {
 | |
|                                         case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break;
 | |
|                                         case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break;
 | |
|                                         default: GGML_ASSERT(false && "not implemented");
 | |
|                                     };
 | |
|                                 } break;
 | |
|                             default: GGML_ASSERT(false && "not implemented");
 | |
|                         }
 | |
| 
 | |
|                         [encoder setComputePipelineState:pipeline];
 | |
|                         [encoder setBuffer:id_src0 offset:offs_src0        atIndex:0];
 | |
|                         [encoder setBuffer:id_dst  offset:offs_dst         atIndex:1];
 | |
|                         [encoder setBytes:&ne00    length:sizeof( int64_t) atIndex:2];
 | |
|                         [encoder setBytes:&ne01    length:sizeof( int64_t) atIndex:3];
 | |
|                         [encoder setBytes:&ne02    length:sizeof( int64_t) atIndex:4];
 | |
|                         [encoder setBytes:&ne03    length:sizeof( int64_t) atIndex:5];
 | |
|                         [encoder setBytes:&nb00    length:sizeof(uint64_t) atIndex:6];
 | |
|                         [encoder setBytes:&nb01    length:sizeof(uint64_t) atIndex:7];
 | |
|                         [encoder setBytes:&nb02    length:sizeof(uint64_t) atIndex:8];
 | |
|                         [encoder setBytes:&nb03    length:sizeof(uint64_t) atIndex:9];
 | |
|                         [encoder setBytes:&ne0     length:sizeof( int64_t) atIndex:10];
 | |
|                         [encoder setBytes:&ne1     length:sizeof( int64_t) atIndex:11];
 | |
|                         [encoder setBytes:&ne2     length:sizeof( int64_t) atIndex:12];
 | |
|                         [encoder setBytes:&ne3     length:sizeof( int64_t) atIndex:13];
 | |
|                         [encoder setBytes:&nb0     length:sizeof(uint64_t) atIndex:14];
 | |
|                         [encoder setBytes:&nb1     length:sizeof(uint64_t) atIndex:15];
 | |
|                         [encoder setBytes:&nb2     length:sizeof(uint64_t) atIndex:16];
 | |
|                         [encoder setBytes:&nb3     length:sizeof(uint64_t) atIndex:17];
 | |
| 
 | |
|                         [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
 | |
|                     } break;
 | |
|                 default:
 | |
|                     {
 | |
|                         GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
 | |
|                         GGML_ASSERT(false);
 | |
|                     }
 | |
|             }
 | |
| 
 | |
|             if (should_capture) {
 | |
|                 [encoder popDebugGroup];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         [encoder endEncoding];
 | |
| 
 | |
|         [command_buffer commit];
 | |
|     });
 | |
| 
 | |
|     // Wait for completion and check status of each command buffer
 | |
|     // needed to detect if the device ran out-of-memory for example (#1881)
 | |
| 
 | |
|     for (int i = 0; i < n_cb; ++i) {
 | |
|         id<MTLCommandBuffer> command_buffer = command_buffers[i];
 | |
|         [command_buffer waitUntilCompleted];
 | |
| 
 | |
|         MTLCommandBufferStatus status = [command_buffer status];
 | |
|         if (status != MTLCommandBufferStatusCompleted) {
 | |
|             GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
 | |
|             if (status == MTLCommandBufferStatusError) {
 | |
|                 NSString * error_code = [command_buffer error].localizedDescription;
 | |
|                 GGML_METAL_LOG_INFO("error: %s\n", [error_code UTF8String]);
 | |
|             }
 | |
| 
 | |
|             return GGML_STATUS_FAILED;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (should_capture) {
 | |
|         [[MTLCaptureManager sharedCaptureManager] stopCapture];
 | |
|     }
 | |
| 
 | |
|     }
 | |
|     return GGML_STATUS_SUCCESS;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| // backend interface
 | |
| 
 | |
| // default buffer
 | |
| static id<MTLDevice> g_backend_device = nil;
 | |
| static int g_backend_device_ref_count = 0;
 | |
| 
 | |
| static id<MTLDevice> ggml_backend_metal_get_device(void) {
 | |
|     if (g_backend_device == nil) {
 | |
|         g_backend_device = MTLCreateSystemDefaultDevice();
 | |
|     }
 | |
| 
 | |
|     g_backend_device_ref_count++;
 | |
| 
 | |
|     return g_backend_device;
 | |
| }
 | |
| 
 | |
| static void ggml_backend_metal_free_device(void) {
 | |
|     assert(g_backend_device_ref_count > 0);
 | |
| 
 | |
|     g_backend_device_ref_count--;
 | |
| 
 | |
|     if (g_backend_device_ref_count == 0) {
 | |
|         [g_backend_device release];
 | |
|         g_backend_device = nil;
 | |
|     }
 | |
| }
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) {
 | |
|     return "Metal";
 | |
| 
 | |
|     UNUSED(buffer);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | |
|     struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
 | |
| 
 | |
|     for (int i = 0; i < ctx->n_buffers; i++) {
 | |
|         [ctx->buffers[i].metal release];
 | |
|     }
 | |
|     ggml_backend_metal_free_device();
 | |
| 
 | |
|     if (ctx->owned) {
 | |
| #if TARGET_OS_OSX
 | |
|         vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ctx->all_data, ctx->all_size);
 | |
| #else
 | |
|         free(ctx->all_data);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     free(ctx);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
 | |
|     struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
 | |
| 
 | |
|     return ctx->all_data;
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
 | |
|     memcpy((char *)tensor->data + offset, data, size);
 | |
| 
 | |
|     UNUSED(buffer);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
 | |
|     memcpy(data, (const char *)tensor->data + offset, size);
 | |
| 
 | |
|     UNUSED(buffer);
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
 | |
|     if (ggml_backend_buffer_is_host(src->buffer)) {
 | |
|         memcpy(dst->data, src->data, ggml_nbytes(src));
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| 
 | |
|     UNUSED(buffer);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
 | |
|     struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
 | |
| 
 | |
|     memset(ctx->all_data, value, ctx->all_size);
 | |
| }
 | |
| 
 | |
| static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
 | |
|     /* .get_name        = */ ggml_backend_metal_buffer_get_name,
 | |
|     /* .free_buffer     = */ ggml_backend_metal_buffer_free_buffer,
 | |
|     /* .get_base        = */ ggml_backend_metal_buffer_get_base,
 | |
|     /* .init_tensor     = */ NULL,
 | |
|     /* .set_tensor      = */ ggml_backend_metal_buffer_set_tensor,
 | |
|     /* .get_tensor      = */ ggml_backend_metal_buffer_get_tensor,
 | |
|     /* .cpy_tensor      = */ ggml_backend_metal_buffer_cpy_tensor,
 | |
|     /* .clear           = */ ggml_backend_metal_buffer_clear,
 | |
|     /* .reset           = */ NULL,
 | |
| };
 | |
| 
 | |
| // default buffer type
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
 | |
|     return "Metal";
 | |
| 
 | |
|     UNUSED(buft);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device, size_t size_aligned) {
 | |
| #ifndef GGML_METAL_NDEBUG
 | |
| #if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
 | |
|     if (@available(macOS 10.12, iOS 16.0, *)) {
 | |
|         GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f / %8.2f)",
 | |
|                 __func__,
 | |
|                 size_aligned / 1024.0 / 1024.0,
 | |
|                 device.currentAllocatedSize / 1024.0 / 1024.0,
 | |
|                 device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
 | |
| 
 | |
|         if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
 | |
|             GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
 | |
|         } else {
 | |
|             GGML_METAL_LOG_INFO("\n");
 | |
|         }
 | |
|     } else {
 | |
|         GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f)\n",
 | |
|                 __func__,
 | |
|                 size_aligned / 1024.0 / 1024.0,
 | |
|                 device.currentAllocatedSize / 1024.0 / 1024.0);
 | |
|     }
 | |
| #endif
 | |
| #endif
 | |
|     UNUSED(device);
 | |
|     UNUSED(size_aligned);
 | |
| }
 | |
| 
 | |
| GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | |
|     struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
 | |
| 
 | |
|     const size_t size_page = sysconf(_SC_PAGESIZE);
 | |
| 
 | |
|     size_t size_aligned = size;
 | |
|     if ((size_aligned % size_page) != 0) {
 | |
|         size_aligned += (size_page - (size_aligned % size_page));
 | |
|     }
 | |
| 
 | |
|     id<MTLDevice> device = ggml_backend_metal_get_device();
 | |
| 
 | |
|     ctx->all_data = ggml_metal_host_malloc(size_aligned);
 | |
|     ctx->all_size = size_aligned;
 | |
|     ctx->owned = true;
 | |
|     ctx->n_buffers = 1;
 | |
| 
 | |
|     if (ctx->all_data != NULL) {
 | |
|         ctx->buffers[0].data = ctx->all_data;
 | |
|         ctx->buffers[0].size = size;
 | |
|         ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data
 | |
|                         length:size_aligned
 | |
|                         options:MTLResourceStorageModeShared
 | |
|                         deallocator:nil];
 | |
|     }
 | |
| 
 | |
|     if (ctx->all_data == NULL || ctx->buffers[0].metal == nil) {
 | |
|         GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
 | |
|         free(ctx);
 | |
|         ggml_backend_metal_free_device();
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     //ggml_backend_metal_log_allocated_size(device, size_aligned);
 | |
| 
 | |
|     return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size);
 | |
| }
 | |
| 
 | |
| GGML_CALL static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
 | |
|     return 32;
 | |
|     UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
 | |
|     id<MTLDevice> device = ggml_backend_metal_get_device();
 | |
|     size_t max_size = device.maxBufferLength;
 | |
|     ggml_backend_metal_free_device();
 | |
| 
 | |
|     return max_size;
 | |
| 
 | |
|     UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
 | |
|     return true;
 | |
| 
 | |
|     UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
 | |
|     static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
 | |
|         /* .iface = */ {
 | |
|             /* .get_name         = */ ggml_backend_metal_buffer_type_get_name,
 | |
|             /* .alloc_buffer     = */ ggml_backend_metal_buffer_type_alloc_buffer,
 | |
|             /* .get_alignment    = */ ggml_backend_metal_buffer_type_get_alignment,
 | |
|             /* .get_max_size     = */ ggml_backend_metal_buffer_type_get_max_size,
 | |
|             /* .get_alloc_size   = */ NULL, // defaults to ggml_nbytes
 | |
|             /* .is_host          = */ ggml_backend_metal_buffer_type_is_host,
 | |
|         },
 | |
|         /* .context = */ NULL,
 | |
|     };
 | |
| 
 | |
|     return &ggml_backend_buffer_type_metal;
 | |
| }
 | |
| 
 | |
| // buffer from ptr
 | |
| 
 | |
| GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) {
 | |
|     struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
 | |
| 
 | |
|     ctx->all_data = data;
 | |
|     ctx->all_size = size;
 | |
|     ctx->owned = false;
 | |
|     ctx->n_buffers = 0;
 | |
| 
 | |
|     const size_t size_page = sysconf(_SC_PAGESIZE);
 | |
| 
 | |
|     // page-align the data ptr
 | |
|     {
 | |
|         const uintptr_t offs = (uintptr_t) data % size_page;
 | |
|         data  = (void *) ((char *) data - offs);
 | |
|         size += offs;
 | |
|     }
 | |
| 
 | |
|     size_t size_aligned = size;
 | |
|     if ((size_aligned % size_page) != 0) {
 | |
|         size_aligned += (size_page - (size_aligned % size_page));
 | |
|     }
 | |
| 
 | |
|     id<MTLDevice> device = ggml_backend_metal_get_device();
 | |
| 
 | |
|     // the buffer fits into the max buffer size allowed by the device
 | |
|     if (size_aligned <= device.maxBufferLength) {
 | |
|         ctx->buffers[ctx->n_buffers].data = data;
 | |
|         ctx->buffers[ctx->n_buffers].size = size;
 | |
| 
 | |
|         ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
 | |
| 
 | |
|         if (ctx->buffers[ctx->n_buffers].metal == nil) {
 | |
|             GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         ggml_backend_metal_log_allocated_size(device, size_aligned);
 | |
| 
 | |
|         ++ctx->n_buffers;
 | |
|     } else {
 | |
|         // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
 | |
|         // one of the views
 | |
|         const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
 | |
|         const size_t size_step = device.maxBufferLength - size_ovlp;
 | |
|         const size_t size_view = device.maxBufferLength;
 | |
| 
 | |
|         for (size_t i = 0; i < size; i += size_step) {
 | |
|             const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
 | |
| 
 | |
|             ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
 | |
|             ctx->buffers[ctx->n_buffers].size = size_step_aligned;
 | |
| 
 | |
|             ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
 | |
| 
 | |
|             if (ctx->buffers[ctx->n_buffers].metal == nil) {
 | |
|                 GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0);
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             ggml_backend_metal_log_allocated_size(device, size_step_aligned);
 | |
| 
 | |
|             if (i + size_step < size) {
 | |
|                 GGML_METAL_LOG_INFO("\n");
 | |
|             }
 | |
| 
 | |
|             ++ctx->n_buffers;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ggml_backend_buffer_init(ggml_backend_metal_buffer_type(), ggml_backend_metal_buffer_i, ctx, size);
 | |
| }
 | |
| 
 | |
| // backend
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_metal_name(ggml_backend_t backend) {
 | |
|     return "Metal";
 | |
| 
 | |
|     UNUSED(backend);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_metal_free(ggml_backend_t backend) {
 | |
|     struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
 | |
|     ggml_metal_free(ctx);
 | |
|     free(backend);
 | |
| }
 | |
| 
 | |
| GGML_CALL static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) {
 | |
|     return ggml_backend_metal_buffer_type();
 | |
| 
 | |
|     UNUSED(backend);
 | |
| }
 | |
| 
 | |
| GGML_CALL static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
 | |
|     struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;
 | |
| 
 | |
|     return ggml_metal_graph_compute(metal_ctx, cgraph);
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
 | |
|     struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;
 | |
| 
 | |
|     return ggml_metal_supports_op(metal_ctx, op);
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_metal_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
 | |
|     return buft->iface.get_name == ggml_backend_metal_buffer_type_get_name;
 | |
| 
 | |
|     UNUSED(backend);
 | |
| }
 | |
| 
 | |
| static struct ggml_backend_i ggml_backend_metal_i = {
 | |
|     /* .get_name                = */ ggml_backend_metal_name,
 | |
|     /* .free                    = */ ggml_backend_metal_free,
 | |
|     /* .get_default_buffer_type = */ ggml_backend_metal_get_default_buffer_type,
 | |
|     /* .set_tensor_async        = */ NULL,
 | |
|     /* .get_tensor_async        = */ NULL,
 | |
|     /* .cpy_tensor_async        = */ NULL,
 | |
|     /* .synchronize             = */ NULL,
 | |
|     /* .graph_plan_create       = */ NULL,
 | |
|     /* .graph_plan_free         = */ NULL,
 | |
|     /* .graph_plan_update       = */ NULL,
 | |
|     /* .graph_plan_compute      = */ NULL,
 | |
|     /* .graph_compute           = */ ggml_backend_metal_graph_compute,
 | |
|     /* .supports_op             = */ ggml_backend_metal_supports_op,
 | |
|     /* .supports_buft           = */ ggml_backend_metal_supports_buft,
 | |
|     /* .offload_op              = */ NULL,
 | |
|     /* .event_new               = */ NULL,
 | |
|     /* .event_free              = */ NULL,
 | |
|     /* .event_record            = */ NULL,
 | |
|     /* .event_wait              = */ NULL,
 | |
|     /* .event_synchronize       = */ NULL,
 | |
| };
 | |
| 
 | |
| void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) {
 | |
|     ggml_metal_log_callback  = log_callback;
 | |
|     ggml_metal_log_user_data = user_data;
 | |
| }
 | |
| 
 | |
| static ggml_guid_t ggml_backend_metal_guid(void) {
 | |
|     static ggml_guid guid = { 0x81, 0xa1, 0x8b, 0x1e, 0x71, 0xec, 0x79, 0xed, 0x2b, 0x85, 0xdc, 0x8a, 0x61, 0x98, 0x30, 0xe6 };
 | |
|     return &guid;
 | |
| }
 | |
| 
 | |
| ggml_backend_t ggml_backend_metal_init(void) {
 | |
|     struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));
 | |
| 
 | |
|     *metal_backend = (struct ggml_backend) {
 | |
|         /* .guid      = */ ggml_backend_metal_guid(),
 | |
|         /* .interface = */ ggml_backend_metal_i,
 | |
|         /* .context   = */ ctx,
 | |
|     };
 | |
| 
 | |
|     return metal_backend;
 | |
| }
 | |
| 
 | |
| bool ggml_backend_is_metal(ggml_backend_t backend) {
 | |
|     return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_metal_guid());
 | |
| }
 | |
| 
 | |
| void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
 | |
|     GGML_ASSERT(ggml_backend_is_metal(backend));
 | |
| 
 | |
|     struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
 | |
| 
 | |
|     ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
 | |
| }
 | |
| 
 | |
| bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
 | |
|     GGML_ASSERT(ggml_backend_is_metal(backend));
 | |
| 
 | |
|     struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
 | |
| 
 | |
|     return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
 | |
| }
 | |
| 
 | |
| void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
 | |
|     GGML_ASSERT(ggml_backend_is_metal(backend));
 | |
| 
 | |
|     struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
 | |
|     ctx->should_capture_next_compute = true;
 | |
| }
 | |
| 
 | |
| GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
 | |
| 
 | |
| GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
 | |
|     return ggml_backend_metal_init();
 | |
| 
 | |
|     GGML_UNUSED(params);
 | |
|     GGML_UNUSED(user_data);
 | |
| }
 | 
